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Abstract : Sklar’s theorem states that any joint distribution function can be
written as a composition of its marginal distributions and a subcopula. Structural
study of the latter is therefore natural. In this work, we define a new metric on
the space of subcopulas making the space of copula its subspace. This is done via
suitably extended subcopulas to joint distribution functions. Relationship between
this new metric and the previously defined metric on the space of subcopulas is
also discussed.
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1 Introduction and Preliminaries

A (bivariate) copula is a joint distribution of two random variables uniformly
distributed on the unit interval [0, 1]. A subcopula is a restriction of a copula on
some closed subset A × B of [0, 1]2 such that both zero and one belongs to both
A and B. Equivalently, a subcopula is a function S : A × B → [0, 1], where both
A and B are closed subsets of [0, 1] containing zero and one, satisfies the following
properties:

(G) S(a, 0) = 0 = S(0, b) for all a ∈ A and b ∈ B,
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(U) S(a, 1) = a and S(1, b) = b for all a ∈ A and b ∈ B, and

(2I) VS ([a, b]× [c, d]) ≥ 0 where

VS ([a, b]× [c, d]) = S(b, d)− S(a, d)− S(b, c) + S(a, c) (1.1)

for all a, c ∈ A and b, d ∈ B such that a ≤ c and b ≤ d.

For example, functions M and W defined by

M(u, v) = min(u, v)

and
W (u, v) = max(u+ v − 1, 0)

for all u, v ∈ [0, 1] are (sub)copulas. Moreover, a function S : [0, 1]2 → [0, 1] is a
subcopula if and only if W ≤ S ≤ M on the domain of S and the condition (2I)
holds.

Sklar Theorem [1] states that any (bivariate) joint distribution function of ran-
dom variables can be written as a composition of a subcopula and its marginals.
Moreover, this composition also determines the joint distribution. To be precise,
let F denote the space of distribution functions, H denote the space of joint dis-
tribution functions and S denote the set of subcopulas. Then there is a map
α : H→ S× F× F such that the following statement holds.

∀H ∈ H, α(H) = (S, F,G)⇐⇒

{
dom(S) = Range(F )× Range(G) and

∀x, y ∈ R, H(x, y) = S(F (x), G(y))

where A denotes the closure of the set A. Clearly, F and G in the above identifica-
tion are the marginals ofH and S can be computed via S(u, v) = H(F−(u), G−(v))
for all u ∈ Range(F ) and v ∈ Range(G). Here F− denotes the quantile function
associated with F , that is,

F−(u) = inf {x ∈ R : F (x) ≥ u}

for all u ∈ [0, 1]. It follows that α defines a one-one correspondence between the

set H of joint distribution functions and the set Ĥ of triple (S, F,G) ∈ S× F× F
such that dom(S) = Range(F )× Range(G).

In [2], a metric on S based on Hausdorff distance was introduced. Recall that
the Hausdorff distance hd(A,B) between two closed subsets A and B of a compact
metric space (X, d) is given by

hd(A,B) = max

(
max
y∈B

d(y,A),max
x∈A

d(x,B)

)
.

With this, the space K(X) of closed subsets of (X, d) is a compact metric space [3,
Appendix B]. The convergence in K(X) is characterized by the following theorem.
Its proof is an immediate application of [3, Corollary C.6 and Theorem C.2 (iii)]
(see also [3, Definition B.4 and Definition B.5] for definitions of related concepts).
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Theorem 1.1. Let (X, d) be a compact metric space. A sequence Kn converges
to K in (K(X), hd) if and only if Kn converges to K in the sense of Painleve-
Kuratowski, that is, if and only if the following holds.

1. For any xn(k) ∈ Kn(k) such that n(k)→∞ and xn(k) → x as k →∞,
x must belong to K.

2. For any x ∈ K, there is xn ∈ Kn such that xn → x.

Denote d2 the Euclidean distance and d∞ the supremum distance. Define
d̄ : S×S→ [0,∞) by letting

d̄(A,B) = hd∞ ([A], [B]) + hd2
(dom (A) ,dom (B)) (1.2)

where [A] denote the set of all copulas extending a subcopula A. For copulas
A and B, d̄ (A,B) = hd∞ ([A], [B]) + hd2

(
[0, 1]2, [0, 1]2

)
= d∞ (A,B). Thus, the

space of copula (C, d∞) is a subspace of
(
S, d̄

)
and that

(
S, d̄

)
is a compact

metric space [2, Corollary 4.5]. The convergences in
(
S, d̄

)
is characterized by the

following result.

Theorem 1.2. [2, Theorem 4.4] The sequence (Sn) converges to S in
(
S, d̄

)
if

and only if the following two conditions hold.

(C1) dom (Sn)→ dom (S) under the Hausdorff metric.

(C2) For all xn ∈ dom (Sn) and x ∈ dom (S) such that xn → x, Sn (xn)→ S(x).

In this work, will define another metric on S. We believe this new metric
is more natural and is easier to compute since it does not rely on the distance
between sets, yet, it has similar advantages as the metric d̄.

2 Main Results

Denote

Ŝ(u, v) = sup {S(s, t) : (s, t) ∈ dom(S), s ≤ u, t ≤ v}

where min(u, v) > 0 and Ŝ(u, v) = 0 when min(u, v) ≤ 0 for all u, v ∈ R and
S ∈ S. Since this extension all have the same domain, it is possible to define
supremum distance between them, that is, define

d̂(S, T ) = d∞(Ŝ, T̂ )

for all S, T ∈ S. It turns out that the topology induced by
(
S, d̂

)
is stronger than

that induced by
(
S, d̄

)
. It follows that α−1 : Ĥ→ H is continuous. The proofs of

these results are carefully explained below.



38 Thai J. Math. (Special Issue, 2018)/ J. Rachasingho and S. Tasena

2.1 Distribution Form of Subcopulas

For any closed set A ⊆ [0, 1] containing zero and one, denote l(A) the set of
all x ∈ (0, 1] such that (x− ε, x] ∩ A = {x} for some small ε > 0 and r(A) the set
of all x ∈ [0, 1) such that [x, x+ ε) ∩ A = {x} for some small ε > 0. Denote also

DA(x) = sup {a ∈ A : a ≤ x}

when x ≥ 0 and DA(x) = 0 otherwise. Then DA is non-decreasing, right con-
tinuous, and DA(x) = x for all x ∈ A. Thus, DA is a distribution function. We
will called DA the subuniform distribution with support A. Clearly, DA 6= D−A
unless A = [0, 1]. Also, discontinuity points of DA are exactly those that belongs
to l(A) while the discontinuity points of D−A are exactly those that belongs to
r(A). For example, the following figure show graphs of both DA and D−A when
A =

[
0, 13
]
∪
[
2
3 , 1
]
.

Figure 1: Graphs of DA (left) and D−A (right) when A =
[
0, 13
]
∪
[
2
3 , 1
]
.

Note that a subuniform distributions is not a uniform distribution unless its
support is the unit interval since the former is not continuous while the latter is.

For any S ∈ S and u, v ∈ R, denote Ŝ(u, v) = 0 when min(u, v) ≤ 0 and

Ŝ(u, v) = sup {S(s, t) : (s, t) ∈ dom(S), s ≤ u, t ≤ v}

otherwise. Clearly, Ŝ is a right-continuous extension of S. Since S satisfies (2I),
Ŝ is actually a joint distribution function. We will called Ŝ the distribution form
of S. The marginal distributions of Ŝ are DA and DB where A×B is the domain
of S. Also, α(Ŝ) = (S,DA, DB). One advantage of using distribution forms is
that their domains are always R2 while the domain of subcopulas might vary. For
example, it is possible to consider supremum distance between two distribution
forms of two subcopulas even when the supremum distance between those two
subcopulas themselves are not well-defined due to domain inequality.
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Another extension that has the same domain advantage is the function S− de-
fined by S−(u, v) = H(F−(u), G−(v)) for all u, v ∈ [0, 1] where α(H) = (S, F,G).
Equivalently,

S−(u, v) = inf {S(s, t) : (s, t) ∈ dom(S), s ≥ u, t ≥ v}

whenever u, v ≤ 1 and S−(u, v) = min(u, v, 1) otherwise. Due to the fact that
F− and G− are not necessary right continuous, S− is also not necessary right
continuous which means S− is not necessary a joint distribution function. Thus,
we dismiss S− from consideration.

Another advantage of distribution forms is the following change of variable
formula.

Proposition 2.1. Let H be a joint distribution and α(H) = (S, F,G). If H is the
joint distribution of random variables X and Y , then Ŝ is the joint distribution of
random variables F (X) and G(Y ). If Ŝ is a joint distribution function of random
variables U and V , then H is the joint distribution of random varibles F−(U) and
G−(V ). Particularly,∫

h(u, v)dŜ(u, v) =

∫
h(F (x), G(y))dH(x, y)

for any integrable function h.

Proof. Assume H is the joint distribution of random variables X and Y . Using
the fact that F (x) = F (F−(F (x))), P(X ≤ x) = P(X ≤ F−F (x)) for all x ∈ R.
It follows that

P
(
X 6= F−(F (X))

)
≤ P

(
X ∈

{
x ∈ R : F−F (x) < x

})
= 0,

that is, X = F−(F (X)) with probability one. Similarly, Y = G−(G(Y )) with
probability one. Using monotonicity of F and G, we have

P (X ≤ x, Y ≤ y) ≤ P (F (X) ≤ F (x), G(Y ) ≤ G(y))

= P
(
FF−F (X) ≤ F (x), GG−G(Y ) ≤ G(y)

)
≤ P

(
F−F (X) ≤ x,G−G(Y ) ≤ y

)
= P (X ≤ x, Y ≤ y) ,

that is,

P (F (X) ≤ F (x), G(Y ) ≤ G(y)) = H(x, y) = S(F (x), G(y))

for all x, y ∈ R. Combining this with the fact that

P (F (X) ∈ Range(F ), G(Y ) ∈ Range(G)) = 1,
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Ŝ is the joint distribution function of F (X) and G(Y ). Particularly,∫
h(u, v)dŜ(u, v) = Eh(F (X), G(Y )) =

∫
h(F (x), G(y))dH(x, y)

for any integrable function h.
Last, assume that Ŝ is the joint distribution function of U and V . Then U and

V have the same joint distribution as F (X) and G(Y ). This means F−(U) and
G−(V ) have the same joint distribution as F−F (X) = X and G−G(Y ) = Y .

2.2 Supremum Distance between Subuniform Distributions

In this part, we will study the metric space (U, d∞) where U is the set of subuni-
form distributions defined in the previous section. Since subuniform distributions
can be identified by their supports, it is natural to compare the convergences in
(U, d∞) with the convergences of their supports under Hausdorff metric.

Proposition 2.2. Let A and B be closed subsets of [0, 1] containing both zero and
one. Then

hd2 (A,B) ≤ d∞ (DA, DB) .

Proof. Assume that A 6= B; otherwise, the result is obvious. Without loss of
generality, we may assume that hd2 (A,B) = maxa∈A d2(a,B). Let x ∈ A and
y ∈ B be such that |x − y| = minb∈B |x − b| = hd2

(A,B). Since hd2
(A,B) > 0,

x /∈ B . Particularly, x 6= y.
Case 1. y < x.
Suppose there is z ∈ B ∩ (y, x]. Then x− z < x− y = minb∈B |x− b| ≤ x− z

which is a contradiction. Thus, B ∩ (y, x] = ∅. It follows that

d∞ (DA, DB) ≥ DA(x)−DB(x) = x− y.

Case 2. y > x
Suppose there is z ∈ B ∩ (2x − y, x]. Then x − z < x − (2x − y) = y − x =

minb∈B |x − b| ≤ x − z which is a contradiction. Thus, B ∩ (2x − y, x] = ∅. It
follows that DB(x) ≤ 2x− y. Thus,

d∞ (DA, DB) ≥ |DA(x)−DB(x)| ≥ x− (2x− y) = y − x.

In either cases, hd2
(A,B) ≤ d∞ (DA, DB).

Using the same technique, we can also prove that hd2
(A,B) ≤ d∞

(
D−A, D

−
B
)

for all closed subsets A and B of [0, 1] containing both zero and one. The con-
verse does not hold, however. Consider for example the sequence An =

[
0, 1

n

]
∪[

1− 1
n , 1
]
. Then hd2

(An,A∞) = 1
n where A∞ = {0, 1}. However,

d∞ (DAn
, DA∞) ≥ DAn

(1− 1

n
)−DA∞(1− 1

n
) = 1− 1

n
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and

d∞
(
D−An

, D−A∞

)
≥ D−A∞

(
1

n
)−DAn

(
1

n
) = 1− 1

n
.

Thus, we can conclude that the correspondence DA 7→ A is continuous while its
inverse is not. This example can also be adapted to show that uniform conver-
gences of subuniform distributions does not implies uniform convergences of their
corresponding quantiles and vice versa. For example, let Bn =

[
0, 1

n

]
∪ {1}. Then

d∞ (DBn , DA∞)→ 0 while d∞
(
D−Bn

, D−A∞

)
→ 1. Similarly, Cn = {0} ∪

[
1− 1

n , 1
]

implies d∞
(
D−Cn , D

−
A∞

)
→ 0 while d∞ (DCn , DA∞)→ 1.

Next, we will show that (U, d∞) is a closed subspace of (F, d∞). This will also
implies (U, d∞) is compact since (F, d∞) is.

Corollary 2.3. The space (U, d∞) is complete. Equivalently, (U, d∞) is a closed
subspace of (F, d∞).

Proof. Let An be closed subsets of [0, 1] containing both zero and one such that
(DAn) is a Cauchy sequence in (U, d∞). Then, (An) is Cauchy under Hausdorff
metric by Proposition (2.2). Thus, An → A for some closed subset A of [0, 1].
Since all An contains both zero and one, A also contains both zero and one. Since
(F, d∞) is compact, DAn

→ F for some F ∈ F. We will show that F = DA. Since
all DAn

agree outside the unit interval, F = DA outside the unit interval too.
Next, consider a continuity point x ∈ [0, 1] of F . If x ∈ A, there is a sequence

xn ∈ An such that xn → x. Thus, F (x) = limn→∞DAn(xn) = limn→∞ xn =
x = DA(x). If x /∈ A, set xn = maxAn ∩ [0, x). Since (xn) ⊆ [0, 1], it has a
convergence subsequence, say xn(k) → y as k → ∞. It follows that y ∈ A and
y < x. Suppose there is z ∈ A ∩ (y, x). Then there is zn ∈ An such that zn → z.
Since z < x, zn < x for large n. Thus, zn(k) ≤ xn(k) for large k which directly
implies z ≤ y, a contradiction. Thus, A ∩ (y, x) = ∅ and DA(x) = DA(y). Now,
DA(y) = F (y) ≤ F (x) = limn→∞DAn(xn) = limn→∞ xn = y = DA(y). Hence
F (x) = DA(x) also.

Last, consider when x ∈ [0, 1] is not a continuity point of F . Since there are
only countably many such points, there is a sequence (xn) of continuity points
of F such that xn ↘ x. Since both F and DA are right continuious, F (x) =
limn→∞ F (xn) = limn→∞DA(xn) = DA(x).

We end this section with the comparison between the Hausdorff distance of
domains of subcopulas and the supremum distance of their corresponding marginal
distributions. Since the domain of a subcopula is a product of closed sets and
its corresponding marginal distributions are subuniform, the statement takes the
following form.

Proposition 2.4. Let A,B, C and D be closed subsets of [0, 1] containing both zero
and one. Then

max (hd2
(A,B) , hd2

(C,D)) ≤ hd2
(A× C,B ×D) ≤

√
hd2

(A,B)
2

+ hd2
(C,D)

2
.

Particularly, hd2
(A× C,B ×D) ≤ d∞ (DA, DB) + d∞ (DC , DD).
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Proof. Notice that minb∈B |a− b| ≤ min(b,d)∈B×D
√
|a− b|2 + |c− d|2

for all (a, c) ∈ A× C. It follows that

max
a∈A

min
b∈B
|a− b| ≤ max

(a,c)∈A×C
min

(b,d)∈B×D

√
|a− b|2 + |c− d|2

= max
x∈A×C

min
y∈B×D

d2(x, y).

By symmetry, maxb∈Bmina∈A |a − b| ≤ maxy∈B×Dminx∈A×C d2(x, y). Hence
hd2

(A,B) ≤ hd2
(A× C,B ×D). The proof that hd2

(C,D) ≤ hd2
(A× C,B ×D)

can be done similarly.
To prove the second inequality, we may assume hd2 (A× C,B ×D) =

maxx∈A×C d2(x,B × D). Let x = (x1, x2) ∈ A × C and y = (y1, y2) ∈ B × D be
such that d2(x, y) = d2(x,B × D) = hd2

(A× C,B ×D). Denote ai = min(xi, yi)
and bi = max(xi, yi). If there is y3 ∈ B ∩ (2a1 − b1, b1), then

d2(x, (y3, y2)) < d2(x, y) = d2(x,B ×D)

which is a contradiction. Thus, B ∩ (2a1 − b1, b1) = ∅.
Similarly, D ∩ (2a2 − b2, b2) = ∅. This implies

|x1 − y1| = d2(x1,B) ≤ d2(A,B),

|x2 − y2| = d2(x2,D) ≤ d2(C,D),

and hence d2 (x, y) ≤
√
hd2

(A,B)
2

+ hd2
(C,D)

2
.

Since

√
hd2 (A,B)

2
+ hd2 (C,D)

2 ≤ hd2 (A,B) + hd2 (C,D) ≤ d∞ (DA, DB) +

d∞ (DC , DD), we are done.

2.3 Supremum Distance between Distribution Forms of
Subcopulas

For any S, T ∈ S, denote d̂(S, T ) = d∞(Ŝ, T̂ ). Then
(
S, d̂

)
is a metric

space. For any closed sets A,B ⊆ [0, 1] containing both zero and one, denote

S (A× B) the set of subcopulas with domain A×B. It is easy to see that d̂(S, T ) =

d∞(S, T ) = d̄(S, T ) whenever S and T have the same domain. Thus,
(
S, d̂

)
contains

(
S (A× B) , d̄

)
= (S (A× B) , d∞) as a subspace for all such A×B. The

space
(
S, d̂

)
and

(
S, d̄

)
, however, are not topologically equivalent. Consider the

following example.

Example 2.5. Let An =
[
0, 1

n

]
∪
[
1− 1

n , 1
]
. Then hd2

(An,A∞) → 0 where

A∞ = {0, 1}. However, d∞ (DAn
, DA∞) → 1. Define Ŝn(u, v) = DAn

(u)DAn
(v)

for all u, v ∈ [0, 1] and define Sn to be the restriction of Ŝn on An ×An. Then Sn

is a subcopula for all n. It follows that d̂(Sn, S∞) → 1. However, the condition
(C2) holds since hd2 (An,A∞)→ 0 which immediately implies d̄(Sn, S∞)→ 0.
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Theorem 2.6. The convergence in
(
S, d̂

)
implies the convergence in

(
S, d̄

)
.

Proof. Let Sn, S ∈ S be such that d̂(Sn, S) = d∞(Ŝn, Ŝ)→ 0. Denote dom(S) =
A× B and dom(Sn) = An × Bn. Since d∞ (DAn , DA) ≤ d∞(Ŝn, Ŝ),

d∞ (DAn
, DA)→ 0.

Similarly, we can show that d∞ (DBn
, DB)→ 0. Hence hd2

(An × Bn,A× B)→ 0
by Proposition (2.4).

Now, let (un, vn) ∈ An × Bn be such that (un, vn) → (u, v) ∈ A × B. Then
u = DA(u) and |un −DAn(u)| ≤ |un − u| + |DA(u)−DAn(u)| → 0. Similarly,
|vn −DBn(v)| → 0. Since

|Sn(un, vn)− S(u, v)| ≤ |Sn(un, vn)− Sn(DAn
(u), DBn

(v))|
+ |Sn(DAn

(u), DBn
(v))− S(u, v)|

≤ |un −DAn
(u)|+ |vn −DBn

(v)|+
∣∣∣Ŝn(u, v)− Ŝ(u, v)

∣∣∣
≤ |un −DAn

(u)|+ |vn −DBn
(v)|+ d∞

(
Ŝn, Ŝ

)
,

Sn(un, vn)→ S(u, v). By Theorem (1.2), d̄(Sn, S)→ 0.

We end this work with the following result stating that convergences in
(
S, d̂

)
is equivalent to convergences in

(
S, d̄

)
and convergences of their marginals.

Theorem 2.7. For any S ∈ S (A× C) and T ∈ S (B ×D), then

d̂(S, T ) ≤ d̄(S, T ) + d∞ (DA, DB) + d∞ (DC , DD) .

As a consequence, convergences in
(
S, d̄

)
and convergences of their marginals

together implies convergences in
(
S, d̂

)
.

Proof. Pick a copula C extending S and a copula D extending T such that
d∞ (C,D) = hd∞ ([S], [T ]). For any x, y ∈ R,∣∣∣Ŝ (x, y)− T̂ (x, y)

∣∣∣ = |S (DA (x) , DC (y))− T (DB (x) , DD (y))|

= |C (DA (x) , DC (y))−D (DA (x) , DC (y))|
≤ |C (DA (x) , DC (y))−D (DA (x) , DC (y))|

+ |D (DA (x) , DC (y))−D (DB (x) , DD (y))|
≤ d∞ (C,D) + |DA (x)−DB (x)|+ |DC (y)−DD (y)|
≤ hd∞ ([S], [T ]) + d∞ (DA, DB) + d∞ (DC , DD)

≤ d̄(S, T ) + d∞ (DA, DB) + d∞ (DC , DD) .

By taking supremum over all x, y ∈ R, d̂(S, T ) ≤ d̄(S, T ) + d∞ (DA, DB) +
d∞ (DC , DD).
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