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1 Introduction

The information related to patients in each country is an important indicator
that can be used to improve health and medical care services in the future. How-
ever, in Thailand, some of these previous medical informations are not available
consistently every year due to, for example, lack of linkage between hospitals’ sys-
tems and restricted access to data. As a results, reconstructing unavailable data
efficiently and accurately can be an essential part to recover a trend of the coun-
try’s health situation. In this work, a supervised-learning technique is employed
to estimate missing information by testing on the in-patient data from only one
of the central provinces in Thailand to avoid the inconsistent problem in data due
to, e.g. incomplete reports from local offices. In particular, this work focuses on
the number of in-patients arranged by 70 cause groups, according to health service
units, Ministry of Public Heath, in Saraburi province, Thailand.

The concept of proper orthogonal decomposition (POD) is introduced in 1937
by Lumley in the context of inhomogeneous structure turbulent flows [1] and
stochastic tools in turbulence [2]. POD is also known as, for example, Karhunen-
Love decomposition (KLD), principal component analysis (PCA), or singular value
decomposition(SVD). POD has been used in many applications, e.g. [3–6]. It can
be considered as a supervised learning method, since it can provide an approx-
imation from the basis that extracts the dominant characteristic of the existing
data.

An important class of POD applications is based on repairing damaged data
and constructing missing or “gappy” data as proposed by Everson and Sirovich [7]
in the context of face recognition. The approach using POD for the purpose of data
reconstruction is therefore often called gappy POD (GPOD). In the application
of aerodynamic flow fields, GPOD was formally introduced in [8] and it was later
used to calibrate and illustrate air flow past a wing [9]. GPOD has been recently
used in many other engineering applications. In chemical engineering, GPOD
was applied on the reconstruction of flame kinematic in spark ignition engine
[10] and combustion of natural gases [11]. In mechanical engineering, GPOD has
been applied to fluid mechanics [12] and it was used to estimate of the spatial
distribution of the unknown material properties [13]. In image processing, it can
be used to derive a low-dimensional model [14]. In [15], GPOD was used to
optimize the operation of wells in water flooding reservoir.

In this work, we apply GPOD to approximate data for the number of in-
patients arranged by many cause groups, such as influenza, malaria, HIV, alco-
holic liver diseases, thalassaemia, diabetes mellitus, and motorcycle rider injured
transport accidents. This type of data is different from the ones used in the previ-
ous works (e.g flow or image data) in the sense that there is no smooth continuity
between the nearby data samples or their features in adjacent components, which
makes the estimation task more difficult and challenging. Therefore, in this pa-
per, besides introducing some basic concepts of POD and GPOD in Section 2,
we introduce a simple normalization using mean and standard deviation of the
data to avoid the effect of large variation in the components (features) of data,
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which are corresponding to the number of in-patients in various categories each
year. A general procedure for constructing POD basis that extracts the dominant
trend of data is given in Algorithm 1. A modified gappy POD procedure that
includes the approximation based on the normalization and a possible range of
each approximated missing value is described in Section 2.2 and summarized in
Algorithm 2. Numerical experiments are shown in Section 3. In Section 3.1, the
accuracy of reconstructing the known data using POD are investigated with nor-
malized and non-normalized data with mean and standard deviation. Section 3.2
demonstrates the accuracy of the estimation from GPOD using different amount
of complete samples. It also compares accuracy of the approximations when the
number of missing data in each incomplete sample changes. Finally, some con-
cluded remarks and future extension are discussed in Section 4.

2 Methodology

This section provides the fundamental concept of proper orthogonal decom-
position (POD) and the mathematical explanation for its extension, called gappy
POD method, with some modifications to make it suitable for the data.

2.1 Proper Orthogonal Decomposition (POD)

The aim of POD is to construct a set of basis by extracting features that
describe the main characteristics from the system of interest. Let {yj}ns

j=1 ⊂ Rn be

the set of snapshots with mean zero for each component. I.e. ȳi = 1
ns

∑ns

j=1 yij = 0,

for all i = 1, . . . , n. The POD basis {vi}ki=1 can be viewed as an orthonormal
basis that minimizes the approximation error in 2−norm for a given fixed basis
rank. Note that the approximation for each snapshot yj using projection on an
orthogonal basis {vi}ki=1 is given by

yj ≈
k∑
i=1

vi(v
T
i yj) = VVTyj ,

where V = [v1, . . . ,vk] ∈ Rn×k. When POD is used to generate the basis {vi}ki=1,
the resulting basis solves the minimization problem

min
{φi}ki=1

ns∑
j=1

‖yj −
k∑
i=1

φi(φ
T
i yj)‖22, φTi φj = δij ,

where δij = 0 if i 6= j and δij = 1 of i = j. POD basis can be computed by the
singular value decomposition (SVD) of solutions or snapshots:Y = [y1, . . . ,yns

] ∈
Rn×ns . The SVD of a rectangular matrix Y ∈ Rn×ns is given by Y = V̂ΣZT ,
where r is the rank of Y, V̂ = [v1, . . . ,vr] ∈ Rn×r and Z ∈ Rns×r are orthogonal
matrices and Σ = diag(σ1, . . . , σr) ∈ Rr×r with singular values in decreasing order:
σ1 ≥ σ2 ≥ · · · ≥ σr > 0. Then the POD basis of rank k < r consists of the first k
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columns of V̂. It can be shown [16] that the minimum error of the approximation
by using POD basis is given by

ns∑
j=1

‖yj −VVTyj‖22 =

r∑
`=k+1

σ2
` , (2.1)

which is the sum of the neglected singular values σk+1, . . . , σr. Note that, besides
using SVD, the POD basis can be computed by using the method of snapshots
based on eigenvalue decomposition of correlation matrix of the snapshots [7]. The
procedure for computing POD basis is shown in Algorithm 1.

Algorithm 1 Algorithm for constructing POD basis

Input: Snapshots {yj}ns
j=1 ⊂ Rn

Output: POD basis Vk .

1: Create snapshot matrix : Y = [y1, . . . ,yns ] ∈ Rn×nsand let r = rank(Y)

2: Compute SVD: Y = V̂ΣZT and choose dimension k ≤ r
3: POD basis of rank k : V = [v1, . . . ,vk] = V̂(:, 1 : k)

2.2 Gappy POD

Gappy POD can be used to approximate or reconstruct missing data from
the available partial data, that obtained, e.g. from experimental measurements or
numerical simulations.

Let W := {w1,w2, . . . ,wns
} ⊂ Rn be a set of complete data. I.e. all n

components of wj are knows, for j = 1, . . . , ns. Each vector wj = [w1j , . . . , wnj ]
T

, j = 1, . . . , ns is generally called a snapshot or a sample and each component
i of every vector in W consists of the same feature. The mean and the unbiased
sample variance of each feature i for all snapshots inW is defined by, respectively,

w̄i =
1

ns

ns∑
j=1

wij , and s2
i =

1

ns − 1

ns∑
j=1

(wij − w̄i), i = 1, . . . , n, (2.2)

and the corresponding standard deviation is si =
√
s2
i . In general, each snapshot

could have extremely different quantities in its components due to the variation
among the features as shown in Section 3.1. To avoid this variation effect, each
i-th component wij of snapshot wj , j = 1, . . . , ns, will be scaled or normalized as

yij =
wij − w̄i

si
, i = 1, . . . , n (2.3)

to obtain yj = [y1j , . . . , ynj ]
T ∈ Rn. Let w̄ = [w̄1, . . . , w̄n]T be the mean vector of

all features 1, ..., n. Then w̄ = 1
ns

∑ns

j=1 wj ∈ Rn.

Let D = diag(1/s1, 1/s2, . . . , 1/sn) ∈ Rn×n be the diagonal matrix whose diagonal
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entries consist of reciprocal of all standard deviations. Then we can write the
normalized snapshot yj as

yj = D(wj − w̄), j = 1, 2, ..., ns. (2.4)

Define Y := {y1,y2, . . . ,yns} ⊂ Rn. Let Y = [y1,y2, . . . ,yns ] ∈ Rn×ns . Let V be
the POD basis of rank k constructed as described in Algorithm 1 of the previous
section.

Suppose ŵ ∈ Rn is a vector of incomplete snapshot, ŵ /∈ W. That is, there
are some components in ŵ that are unknown. Define ŷ := D(ŵ − w̄). Then
the unknown components in ŵ and ŷ are in the same locations, i.e. the same
indices. In particular, suppose there are n℘ known components and nm = n− n℘
unknown components. Let P := {℘1, ℘2, . . . , ℘n℘

} ⊂ {1, 2, . . . , n} be the index
set of the known components in ŷ. Define ~℘ = [℘1, ℘2, . . . , ℘n℘

] ∈ Rn℘ and
P = [e℘1

, . . . , e℘n℘
] ∈ Rn×n℘ , where e℘i

= [0, . . . , 0, 1, 0, . . . , 0]T ∈ Rn is the

℘i-th column of the identity matrix In ∈ Rn×n, for i = 1, . . . , n℘. Note that, pre-
multiplying PT is equivalent to extracting the n℘ rows corresponding to the indices
℘1, . . . , ℘n℘

,. Similarly, let M = {m1,m2, . . . ,mnm
} ⊂ {1, 2, . . . , n} be the index

set of the unknown components in ŷ and define ~m = [m1,m2, . . . ,mn℘
] ∈ Rnm ,

M = [em1
, . . . , emnm

] ∈ Rn×nm . I.e. the known components and the unknown
components are given in the following two vectors, respectively:

ŷ℘ := PT ŷ = [ŷ℘1 , . . . , ŷ℘n℘
]T ∈ Rn℘, ŷm := MT ŷ = [ŷm1 , . . . , ŷmnm

]T ∈ Rnm.

The goal is to approximate the components of ŷm. To do this, we first assume
that

ŷ ≈ Va

for some coefficient vector a ∈ Rk, which implies that

PT ŷ ≈ (PTV)a or ŷ℘ = V℘a, where V℘ := PTV ∈ Rn℘×k

and MT ŷ ≈ (MTV)a or ŷm = Vma, where Vm := MTV ∈ Rnm×k.

Since the only available data points are contained in ŷ℘ = PT ŷ, we can find the
vector a by focusing on the approximation ŷ℘ ≈ V℘a and solving for a from the
following least-squares problem:

min
a∈Rk

‖ŷ℘ −V℘a‖22. (2.5)

The closed-form solution of the above problem is given by a = (VT
℘V℘)−1VT

℘ ŷ℘.
By using the solution from (2.5), ŷm is approximated by

ŷm ≈ Vma = Vm(VT
℘V℘)−1VT

℘ ŷ℘. (2.6)

Equivalently, an approximation of the unknown component ŷi is given by

ŷi =

k∑
j=1

vijaj , i ∈M, (2.7)



26 Thai J. Math. (Special Issue, 2018)/ N. Sukuntee and S. Chaturantabut

where vij is the element in row i and column j of the basis matrix V. From the
normalization formula (2.3), a direct approximation of the original non-normalized
data is given by

ŵi = siŷi + w̄i, i ∈M (2.8)

which is equivalent to the following matrix form

ŵm = D−1
m ŷm + w̄m, (2.9)

where ŵm := MT ŵ and w̄m := MT w̄, D−1
m = diag(sm1

, . . . , smnm
) ∈ Rnm×nm .

Alternatively, we can introduce a range of possible approximation by using a sim-
ilar notion as N standard deviation of the mean, N = 1, 2, 3, which is given
by

w̄i ± siŷi, i ∈M.

In particular, let Li = min{w̄i−siŷi, w̄i+siŷi} and Ui = max{w̄i−siŷi, w̄i+siŷi}.
Then, Li and Ui are the lower and upper bounds, respectively, of the approximation
ŵi, i.e.

ŵi ∈ [Li, Ui], i ∈M. (2.10)

The steps described above are summarized in Algorithm 2, which will be used to
generate numerical results in the next section.

Algorithm 2 Algorithm for approximating missing data
Inputs:
- Complete snapshot set {wj}ns

j=1 ⊂ Rn and
- Incomplete data ŵ ∈ Rn with
known entries ŵj , j ∈ P and unknown entries s ŵj , j ∈M
Outputs:
- Approximation: ŵm = [ŵj ], j ∈M = {m1,m2, . . . ,mnm

}
- Approximated Range [Li, Ui] for ŵi, i ∈M
1: Compute w̄ = 1

m

∑ns

j=1 wj ∈ Rn.
2: Compute si, i = 1, ..., n from (2.2) and

form D = diag(1/s1, 1/s2, . . . , 1/sn) ∈ Rn×n.
3: Set yj = D(wj − w̄), j = 1, 2, ..., ns.
4: Create snapshot matrix : Y = [y1, . . . ,yns ] ∈ Rn×ns , r = rank(Y).
5: Compute POD basis V of rank k ≤ r for Y from Algorithm 1.
6: Compute ŷ℘: ŷi = ŵi−w̄i

si
, i ∈ P.

7: Find coefficient vector a from (2.5).
8: Compute:

- Approximation: ŵm = D−1
m Vma + w̄m from (2.6) and (2.9).

- Approximated interval: [Li, Ui] , i ∈M, from (2.10)where
Li = min{w̄i − siŷi, w̄i + siŷi} and Ui = max{w̄i − siŷi, w̄i + siŷi}.
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3 Numerical Results

This section considers the data representing numbers of in-patients with 70
different cause groups, provided by Office of the Permanent Secretary for Public
Health, Ministry of Public Health, Saraburi provice, Thailand. This information is
compiled by Statistical Forecasting Bureau, National Statistical Office and avail-
able on the website:
http://service.nso.go.th/nso/web/statseries/statseries.html. Some ex-
amples of these 70 cause groups are dengue hemorrhagic fever and other mosquito-
borne viral hemorrhagic fever, viral hepatitis, human immunodeficiency virus
(HIV) disease, influenza, malaria, thalassemia, alcoholic liver diseases, and mo-
torcycle rider injured transport accidents.

We will first consider the accuracy in reconstructing the complete data set
in Section 3.1. Then we will use the Gappy POD approach in Algorithm 2 to
approximate the missing data of incomplete sample in Section 3.2.

3.1 Reconstruction Data

To apply the approaches described in the previous sections, we can consider
each snapshot or sample as the data in each year that consists of 70 numbers of
patients with different cause groups (i.e. 70 features in each data). Due to the
large differences in the numbers of patients for 70 diseases, the standard deviations
and the means of these data can be extremely difference as shown in Figure 1. To
handle this variation, the data set would be normalized by subtracting mean and
dividing the standard deviation shown in Step 2 of Algorithm 2, which is not
required, in general, when reconstructing data for the flow applications, e.g. [8].
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Figure 1: Means and standard deviations of 70 features that represent numbers
of patients in 70 different diseases or cause groups.
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Figure 2: Comparison of average relative errors from nomalized and nomalized
data.

To emphasize the importance of normalization, the comparisons of reconstruct-
ing errors for data from 2003 to 2010 are provided in Figure 2 for both normalized
and non-normalized data. Notice from the first plot of Figure 2 that it is more
accurate when the normalized data is used for all cases of dimensions for POD
basis. The plots in Figure 3 and the first plot in Figure 2 demonstrate that, as
the dimension of POD basis vectors used in the reconstruction increases, the error
generally decreases.
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Figure 3: Comparison of average relative errors from nomalized and nomalized
data using 2, 4, 5, and 7 POD basis vectors.
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In conclusion, the numerical experiment in this section confirms the conver-
gence of the reconstruction accuracy as the number of POD basis vector increases,
as well as suggests that using the normalization could improve accuracy of the
approximation, which will be used in the next section.

3.2 Approximation of Missing Data

We present two numerical tests in this section. The first one, in Section 3.2.1,
uses POD basis constructed from 7 complete samples from the year 2003 to the
year 2009 and apply GPOD to construct approximated interval for missing data.
The second numerical test, in Section 3.2.2, considers two different POD basis sets:
one is constructed from 5 complete samples from 2003-2007, and the other one is
constructed from 7 complete samples from 2003-2009 as in the first numerical test.
In each of these tests, we will consider different percentages of missing data.

3.2.1 Numerical Test 1

Missing data in 2010 Approximation Approximated True data
(Cause groups of in-patients) (2.9) Range (2.10)

1. Ca liver 249.30 [199.27, 249.30] 257

2. Mental and 757.73 [699.12, 757.73] 959
behavioral disorders
due to psychoactive
substance use

3. Chronic rheumatic 97.10 [97.10, 133.47] 101
heart diseases

4. Asthma and acute 1875.69 [1569.17, 1875.69] 1893
severe asthma

5. Diseases of the skin 2762.88 [2762.88, 2816.26] 2805
and subcutaneous tissue

6. Pregnancy with 1141.56 [950.16, 1141.56] 972
abortive outcome

7. Poisoning and toxic 703.31 [551.26, 703.31] 623
effect by accidental
event self-harm,
assault and event of
undetermined intent

Table 1: Comparison of true data (number of patients) with the approx-
imated value (2.9) and the approximated range (2.10) from Algorithm 2
with POD basis of dimension 3.
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Figure 4: Approximated intervals and the true data values when 10%, 50% , and
70% of 70 features are missing in 2010 and 2012. The red circle dots are the true
data values and the blue lines indicate the approximated interval obtained from
(2.10) with 3 POD basis vectors.

In this section, we use a set of complete 7 snapshots corresponding to the
data in 2003-2009 to construct a POD basis from Algorithm 1. This section first
considers the case when there are 10% of 70 components (features) missing in the
sample for 2010, which are not included in the complete sample set. In particular,
7 components of the data in 2010 are chosen to be missing randomly. By applying
Algorithm 2 with POD basis of rank 3, we obtain the approximation (2.9) and the
predicted range (2.10) as shown in Table 1. Notice that almost every true data
lies in the approximated range.
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Figure 4 also illustrates the approximated ranges and the true data values for
missing features for 2010 given in Table 1 in the first plot together with other
similar plots for 2010 and 2012 with 10%, 50%, and 70% missing data.

Notice from Figure 4 that, as the number of missing features increases, there
are more approximated ranges that fail to include the true values. However, almost
all true data values of the missing features lie close to the approximated ranges.
Since the scales for these missing features are very different, it might be hard
to compare the accuracy of the approximated missing values. To decrease this
variation effect, we will next consider average relative error for each approximation,
which is shown in Table 2 of the next section.

3.2.2 Numerical Test 2

Two different POD basis sets are used in this section: one is constructed
from 5 complete samples from 2003-2007, and the other one is constructed from 7
complete samples from 2003-2009 as in Section 3.2.1. For each of these POD basis
sets, we consider average relative errors over 3 years of incomplete samples from
2010 to 2012 given by

E =
1

nm

∑
i∈M

E2010
i + E2011

i + E2012
i

3w̄i
, (3.1)

where Eki is the absolute error between the approximation from (2.9) and the true
data value in year k of feature i ∈ M, for k = 2010, 2011, 2012, with index set
M of missing data, and w̄i is the mean of feature i from the complete sample set
W. The average relative errors in Table 2, which are computed by using (3.1),
consider 4 different cases of missing data, i.e. 10%, 50%, 70% and 90% missing
data. These errors demonstrate that the accuracy could be increased by using
more complete samples to construct POD basis. As demonstrated in Figure 4, the
results in Table 2 also show that the approximation errors increase when there are
more missing data points in the incomplete sample.

Number of Average Relative Error (3.1) Average Relative Error (3.1)
missing data: nm (POD: 5 complete samples (POD: 7 complete samples

– years 2003-2007) – years 2003-2009)

7 (10%) 0.1426 0.1338
35 (50%) 0.2322 0.2170
49 (70%) 0.2736 0.2592
63 (90%) 0.9386 0.4119

Table 2
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Table 2: Average relative error (3.1) of three incomplete samples from 2010 to
2012 when using Gappy POD approximation with 3 POD basis vectors from two
cases of 5 and 7 complete samples from 2003-2007 and 2003-2009, respectively, in
Algorithm 1.

4 Conclusion

This work has shown an application of GPOD on the data representing num-
ber of in-patients arranged by 70 cause groups in Saraburi provice, Thailand. A
simple normalization using mean and standard deviation of the data has been in-
troduced and shown to be efficient for avoiding the effect of large variation in the
components of sample data. The numerical results demonstrate that GPOD can
be used effectively to approximate data when partial components or features are
missing. Almost all approximated intervals given in Algorithm 2 can capture the
true data values accurately with different amount of missing components, e.g.10%,
50%, 70%. These results also suggest that the accuracy can be improved by using
more complete samples to construct the POD basis.

All numerical experiments in the previous section have illustrated the possi-
bility of using GPOD with minor modification to recover missing or unavailable
features, even though the data does not process smooth continuity among nearby
samples or features. This nature of data set is different from most existing ap-
plications of GPOD, for example, in flow field or image reconstruction. GPOD
approach has also shown the potential to predict trends on a larger scale for this
type of data. Theoretical analysis of GPOD approach can be considered in the
future to provide a rigorous error bound for the approximation of missing data.
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