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1 Introduction

General surveys of group analysis of differential equations have been given
by many authors (see, e.g., [1–3]). Group analysis involves the study of symme-
tries of the equations, which means finding local groups of transformations that
map a solution of the system of equations into a solution of the transformed sys-
tem. Symmetry can make it possible to reduce the number of dependent and
independent variables in the system, and also allows finding new solutions of the
system and studying various parts of its solutions. Also, as originally shown by
Noether (see, e.g., [2], chap.4), an important application of Lie group analysis is
finding invariants for the system of equations. This application of group theory
has been found to be essential in many areas of science and engineering in finding
conservation laws that correspond to the group symmetry and the mathematical
invariants that correspond to them. For example, both finite and Lie groups are
used in classifying fundamental particles in physics, classsifying spectra of atoms
and molecules in chemistry, analyzing electric radiation in electrical engineering
etc.

In contrast to deterministic differential equations, there have been compara-
tively few attempts to apply symmetry techniques to stochastic differential equa-
tions or to find invariants or conservation laws associated with the systems. How-
ever, see [4, 5] for a study of approximate conservation laws for stochastic differ-
ential equations.

In the existing literature two main approaches have been used in applying
group analysis to stochastic differential equations. The first approach (see, e.g., [6–
9]) is based on fiber-preserving transformations of the form

xi = ϕi(t, x, a), t = H(t, a) (i = 1, ..., n), (1.1)

where t is the independent variable, xi is a dependent variable and a is a canonical
parameter for a Lie group of transformations. This approach has been applied to
stochastic dynamical systems ( [6, 9]), and to associated Fokker-Planck equations
( [7, 8]). A weakness of this approach is that it is restricted to transformations
in which the transformed independent variable is a function of the independent
variable only.

The second approach ( [4,5,10–12]) deals with symmetry transformations for a
system of Itô differential equations in which the transformation of the independent
and dependent variables are functions of both independent and dependent vari-
ables. This approach has been applied to scalar second-order stochastic differential
systems ( [11,12]), to partial differential equations such as the heat equation [12],
to Fokker-Planck equations ( [5, 10]) and to Hamiltonian-Stratonovich dynamical
control systems [5]. In these papers, there have also been attempts to involve
Brownian motion in the transformation, but usually without proof that Brownian
motion is transformed to Brownian motion.

In [13, 14], a new definition of an admitted Lie group of transformations for
stochastic differential equations was given. These transformations included de-
pendent as well as independent variables. In particular, the transformation of the
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Brownian motion included both dependent and independent variables, and a strict
proof was given that the transformed Brownian motion satisfied the properties of
Brownian motion. This theory was then applied in [13–15] to derive Lie groups of
transformations for first-order and some higher order stochastic differential equa-
tions.

In the present paper, the results given in [13,14] are used to derive Lie groups
for some higher-order stochastic differential equations of physical interest. We
show how to construct determining equations for admitted Lie groups of trans-
formations for second and third-order stochastic differential equations and give
examples of the applications to selected second and third-order equations. Exam-
ples are given of both fiber-preserving and non-fiber-preserving transformations.

2 Transformations of Itô Integrals and Brownian
motion

In this section, we summarize the mathematical tools required for defining the
transformation of Brownian motion [13–16].

Let Ω be a set of elementary events ω, F be a σ-algebra of subsets of Ω, and
P be a probability (or probability measure) on F . The triple (Ω, F , P ) is called
a probability space. It is assumed that a σ-algebra F is generated by a family of
σ-algebras Ft, (t ≥ 0) such that

Fs ⊂ Ft ⊂ F ∀s ≤ t, s, t ∈ I,

where I = [0, T ] and T ∈ [0,∞).

The flow of non-decreasing σ-algebras Ft is also called a filtration and the
σ-algebra F is denoted by F = (Ft)t≥0. The triple (Ω, F = (Ft)t≥0,P ) is called
a filtrated probability space. Let {X(t) = X1(t), ..., Xn(t)}t≥0 be a stochastic
process satisfying the system of n Itô equations with r Brownian motion terms
given by (see, e.g., [16])

dXi(t, ω) = fi(t,X(t, ω))dt+

r∑
k=1

gik(t,X(t, ω))dBk(t, ω), (i = 1, ..., n), (2.1)

with the initial condition X(0) = X0. In (2.1), the fi(t, x) represent drift vectors,
gik(t, x) represent diffusion matrices and Bk (k = 1, ..., r) are one-dimensional
Brownian motions. To simplify notation, we will use the standard summation
convention in the remainder of this paper that a repeated index denotes summation
over that index.

As usual [16], the Itô equations (2.1) are to be interpreted in the sense that

Xi(t, ω) = X0
i (ω) +

∫ t

0

fi(s,X(s, ω))ds +

∫ t

0

gik(s,X(s, ω))dBk(s, ω), (2.2)
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for almost all ω ∈ Ω and for each t > 0. In (2.2), the integral
∫ t
0
fi(s,X(s, ω))ds

represents a Riemann or Lebesgue integral and
∫ t
0
gik(s,X(s, ω))dBk(s, ω) is an

Itô integral.
Following the derivations in Øksendal ( [16], chap.8) and Srihirun et al. [13,

14], we introduce transformations of the stochastic integrals in (2.2) as follows.
Let η(t, x) be a sufficiently many times continuously differentiable function and
{X(t, ω)}t≥0 be a continuous and adapted stochastic process (see, also [1–3]).
Since η2(t, x) is continuous, η2(t,X(t, ω)) is also an adapted process. We define

β(t, ω) =

∫ t

0

η2(s,X(s, ω))ds, t ≥ 0, (2.3)

and for brevity write β(t) instead of β(t, ω). The function β(t) is called a random
time change with time change rate η2(t,X(t, ω)). Note that β(t) is also an Ft
adapted process. Suppose now that η(t, x) 6= 0 for all (t, x). Then for each ω, the
map t 7→ β(t) is strictly increasing. Next, we define (see, e.g., [14, 16])

α(t, ω) = inf
s≥0
{s : β(s, ω) > t}, (2.4)

and, for convenience, write α(t) instead of α(t, ω). For almost all ω, the map
t 7→ α(t) is continuous, and

β(α(t)) = t = α(β(t)). (2.5)

Then, since β(t) is an Ft-adapted process, we have

{ω : α(t) ≤ s} = {ω : t ≤ β(s)} ∈ Fs, for all t ≥ 0 and s ≥ 0. (2.6)

Hence t 7→ α(t) is an Fs-stopping time for each t.
The following theorem [14] (see also [16], chap.8) will be crucial for defining

the transformation of a Brownian motion.

Theorem 2.1. Let η(t, x) be a sufficiently many times continuously differentiable
function and {X(t, ω)}t≥0 be a continuous and adapted stochastic process that is
a solution of (2.2). If {B(t)}t≥0 is a standard Brownian motion then

B(t) =

∫ α(t)

0

η(s,X(s, ω))dB(s), t ≥ 0 (2.7)

is a standard Brownian motion (B(t), Fα(t)), where

Fα(t) = {A ∈ F : A ∪ {ω : α(t) ≤ s} ∈ Fs, for all s ≥ 0}.

3 Lie Groups of Transformations for Stochastic
Processes and Stochastic Differential Equations

This section is devoted to reviewing the group analysis method and its appli-
cation to stochastic processes and in summarizing the theory developed in [14,15]
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for obtaining Lie groups of transformations for stochastic differential equations.
The theory will be used in section 5 to develop Lie groups for some second and
third order stochastic differential equations of physical interest.

Assume that the set of transformations

t = H(t, x, a), xi = ϕi(t, x, a), i = 1, . . . , n, (3.1)

compose a one-parameter Lie group, where H(t, x, a) and ϕi(t, x, a) are sufficiently
many times continuously differentiable functions, and a is a canonical parameter
for the group. Let

h(t, x) =
∂

∂a
H(t, x, a)

∣∣∣∣
a=0

and ξi(t, x) =
∂

∂a
ϕi(t, x, a)

∣∣∣∣
a=0

(3.2)

be the coefficients of the infinitesimal generator h(t, x)∂t+ξi(t, x)∂xi
of a Lie group.

Then H(t, x, a) and the ϕi(t, x, a) satisfy the Lie equations (see, e.g., [2, 17]),

∂H

∂a
= h(H,ϕ1, . . . , ϕn),

∂ϕi
∂a

= ξi(H,ϕ1, . . . , ϕn), (3.3)

where the initial conditions at a = 0 are that

H(t, x, 0) = t, ϕi(t, x, 0) = xi, i = 1, 2, . . . , n. (3.4)

In the following, we will use the standard notation Ht(t, x, a) = ∂
∂tH(t, x, a) for

partial derivatives. Since Ht(t, x, 0) = 1 and Ht(t, x, a) are continuous functions,
we must have Ht(t, x, a) > 0 in some neighborhood of a = 0. Therefore there
exists a function η(t, x, a) such that

η(t, x, a) =
√
Ht(t, x, a), η(t, x, 0) =

√
Ht(t, x, 0) = 1, (3.5)

which satisfies the conditions in section 2. Then, following the development in
section 2, we let β(t) =

∫ t
0
η2(s,X(s, ω), a)ds and α(t) be the inverse function of

β(t). Since β(α(t)) = t for almost all ω, then

η2(α(t), X(α(t), ω), a)αt(t) = 1 and αt(s) = η−2(α(s), X(α(s), ω), a). (3.6)

We now consider the application of Lie group theory to stochastic processes.
Let X(t, ω) be a continuous and adapted stochastic process. A Lie group for
X(t, ω) will be defined by a transformation of the form of (3.1). That is,

X(t, ω) = ϕ(α(t), X(α(t), ω), a), (3.7)

and α(t) is the inverse function of β(t). This gives an action of a Lie group (3.1)
on stochastic processes. Then, replacing t by β(t) and α(t) by t in (3.7), we obtain

X(β(t), ω) = ϕ(t,X(t, ω), a).
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It is useful to introduce a function τ(t, x) =
∂

∂a
η(t, x, a)

∣∣∣∣
a=0

. Then, using (3.2)

and (3.5), we have

τ(t, x) =
1

2η(t, x, 0)

∂

∂a
η2(t, x, a)

∣∣∣∣
a=0

=
1

2

∂

∂a
Ht(t, x, a)

∣∣∣∣
a=0

=
1

2
ht(t, x). (3.8)

The functions τ(t, x) in (3.8) and ξi(t, x) in (3.2) can be used to define a Lie
group of transformations for stochastic processes with the infinitesimal generator

h(t, x)∂t + ξi(t, x)∂xi
. (3.9)

The functions H(t, x, a) and ϕi(t, x, a) for a stochastic differential equation can be
obtained from the infinitesimal generator formula by using the Lie equations (3.3)
with the initial conditions (3.4).

4 Admitted Groups and Determinining Equations
for Stochastic Differential Equations

We now summarize the method of Srihirun [13–15] for deriving Lie groups for
systems of stochastic differential equations.

Definition 4.1. ( [13,14]) A Lie group of transformations (3.1) is called
admitted by a system of n stochastic differential equations (2.1) if for any solution
X(t, ω) of (2.1) the functions ξi(t, x) (i = 1, . . . , n) and τ(t, x) satisfy the following
determining equations:

ξi,t(t,X(t, ω)) + fjξi,j(t,X(t, ω)) +
1

2
gjkglkξi,jl(t,X(t, ω))

− 2fi,t(t,X(t, ω))

∫ t

0

τ(s,X(s, ω))ds− fi,jξj(t,X(t, ω))− 2fiτ(t,X(t, ω)) = 0,

gjkξi,j(t,X(t, ω))− 2gik,t(t,X(t, ω))

∫ t

0

τ(s,X(s, ω))ds

− gikτ(t,X(t, ω))− gik,jξj(t,X(t, ω)) = 0, (i = 1, ..., n; k = 1, ..., r), (4.1)

where, for example, the notation used for partial derivatives is

ξi,t =
∂ξi
∂t
, ξi,j =

∂ξi
∂Xj

, ξi,jl =
∂2ξi

∂Xj∂Xl
, (4.2)

and a repeated index again means summation over the index.
The determining equations (4.1) are constructed so that the Lie group of

transformations (3.1) transforms any solution of equations (2.1) or (2.2) into a
solution of the same equations.
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The symmetry of the stochastic differential equation can be checked by ap-
plying the time change formula for Riemann integrals (see, e.g., [18]) to the Itô
integral. According to the time change formula, if ϕ is a continuously differentiable
function on a closed and bounded interval [a, b] with ϕ′(x) 6= 0 for all x ∈ [a, b],
and if [c, d] = ϕ([a, b]) and f is integrable on [c, d], then∫ d

c

f(t)dt =

∫ b

a

f(ϕ(x))|ϕ′(x)|dx. (4.3)

The time change formula for Itô integrals given in [19] is a non-anticipating func-
tion e with

P (

∫ t

0

e2ds+

∫ t

0

η2ds <∞, t ≥ 0) = 1, (4.4)

which satisfies the formula∫ α(t)

0

e(s, ω)dB(s) =

∫ t

0

e(α(s), ω)
1

η(α(s), X(α(s), ω), a)
dB(s).

We note that the determining equations in (4.1) can easily be adapted for a
second or third order equation in explicit form by the standard process of convert-
ing the higher-order equation to a system of first-order equations. For example,
consider the third-order Itô equation

...
X(t) = f(t,X(t), Ẋ(t), Ẍ(t)) + g(t,X(t), Ẋ(t), Ẍ(t))

dB(t)

dt
, (4.5)

where f and g are given functions and B is a Brownian motion. Equation (4.5)
can be rewritten as the system of first-order Itô integral equations

X(t, ω) = X(0, ω) +

∫ t

0

Y (s, ω)ds, Y (t, ω) = Y (0, ω) +

∫ t

0

Z(s, ω)ds,

Z(t, ω) = Z(0, ω) +

∫ t

0

f(s,X(s, ω), Y (s, ω))ds

+

∫ t

0

g(s,X(s, ω), Y (s, ω))dB(s).

(4.6)

Comparing this system of first-order equations with (2.1) and (2.2), we have n = 3,
r = 1 and

f1(t,X, Y, Z) = Y, f2(t,X, Y, Z) = Z, f3(t,X, Y, Z) = f(t,X, Y ),

g11(t,X, Y, Z) = g21(t,X, Y, Z) = 0, g31(t,X, Y, Z) = g(t,X, Y ). (4.7)

The determining equations for the functions ξi(t,x,y,z), i = 1, 2, 3, and
τ(t,x,y,z) can then be obtained from the determining equations (4.1).
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5 Results and Examples

In this section, we present some examples of group analysis of second and
third-order stochastic differential equations of physical interest.

5.1 Second-Order Stochastic Differential Equations

Example 5.1. (Stochastic Mathieu Equation). Consider the stochastic gener-
alization of the Mathieu equation given in (5.1). This generalization has been
studied by [20] and plays an important role in the study of stability of excited
oscillators.

Ẍ(t) + εβẊ(t) +X(t) = −εX(t)
dB(t)

dt
, (5.1)

where ε and β are constants and 0 < ε < 1. The corresponding Itô integral
equations are:

X(t, ω) = X(0, ω) +

∫ t

0

Y (s, ω)ds, (5.2)

Y (t, ω) = Y (0, ω)−
∫ t

0

(X(s, ω) + εβY (s, ω))ds− ε
∫ t

0

X(s, ω)dB(s). (5.3)

For (5.2) and (5.3), the functions corresponding to fi and gik (i = 1, 2, k = 1)
in (2.1) and (2.2) are:

f1(t,X, Y ) = Y, f2(t,X, Y ) = −X − εβY,
g11(t,X, Y ) = 0, g21(t,X, Y ) = −εX. (5.4)

The determining equations for this system can then be obtained from (4.1).
We obtain

ξ1,t + yξ1,x − (x+ εβy)ξ1,y +
1

2
ε2x2ξ1,yy − ξ2 − 2yτ = 0,

ξ2,t + yξ2,x − (x+ εβy)ξ2,y +
1

2
ε2x2ξ2,yy + ξ1 + εβξ2 + 2(x+ εβy)τ = 0,

ξ1,y = 0, ξ2,y − τ −
1

x
ξ1 = 0. (5.5)

We have used the Maple program to find the solution of the determining equa-
tions (5.5) and obtained the following solution:

ξ1 = C1x, ξ2 = C1y, τ = 0. (5.6)

From (3.8), ht(t, x) = 2τ(t, x) = 0, and therefore we can choose h(t, x) = 0.
A basis of admitted generators ξ1, ξ2 corresponding to (5.6) can be obtained by
setting C1 = 1. Then, using (3.9), we obtain an infinitesimal generator for the Lie
group as:

h(t, x, y)∂t + ξ1(t, x, y)∂x + ξ2(t, x, y)∂y = x∂x + y∂y. (5.7)
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On integrating the Lie equations (3.3) and (3.4) for the admitted generator in (5.7),
we obtain the following Lie group of transformations.

t = H(t, x(t), y(t), a) = t,

x(β(t)) = ϕ1(t, x(t), y(t), a) = x(t)ea,

y(β(t)) = ϕ2(t, x(t), y(t), a) = y(t)ea, η(t, x(t), a) = 1,

β(t) =

∫ t

0

η2(s, x(s), y(s), a)ds = t = t, α(t) = α(β(t)) = t. (5.8)

We now show that solutions of the transformed Itô equations of (5.2) and (5.3)
have the same solutions as the original equations.

Assume that X(t) = X(β(t)) and Y (t) = Y (β(t)) are solutions of the trans-
formed Itô equations of (5.2) and (5.3), i.e.,

X(t, ω) = X(0, ω) +

∫ t

0

Y (s, ω)ds, (5.9)

Y (t, ω) = Y (0, ω)−
∫ t

0

(εβY (s, ω) +X(s, ω))ds

−ε
∫ t

0

X(s, ω)dB(s). (5.10)

Using the transformations in (5.8), we can transform equation (5.9) into

eaX(t, ω) = eaX(0, ω) + ea
∫ t

0

Y (s, ω)ds, (5.11)

and therefore (5.2) is satisfied.
From Theorem 2.1 and the transformation (5.8) the Brownian motion B(t) is

transformed to the Brownian motion

B(t) =

∫ α(t)

0

η(s,X(s, ω), a)dB(s) =

∫ t

0

1dB(s), (5.12)

and hence dB(t) = dB(t). Therefore the transformations of the terms in (5.10)
are:

Y (t, ω) = Y (t, ω)ea, Y (0, ω) = Y (0, ω)ea,∫ t

0

(εβY (s, ω) +X(s, ω))ds =

∫ t

0

(εβY (s, ω)ea +X(s, ω)ea)ds,

−ε
∫ t

0

X(s, ω)dB(s) = −ε
∫ t

0

X(s, ω)eadB(s). (5.13)

The transformation of (5.10) is then

eaY (t, ω) = eaY (0, ω)− ea
∫ t

0

(εβY (s, ω) +X(s, ω))ds− eaε
∫ t

0

X(s, ω)dB(s),

(5.14)
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and therefore (5.3) is satisfied.
To complete the proof, we note that the transformed Itô equations are equiv-

alent to the transformed stochastic differential equation

Ẍ(t) + εβẊ(t) +X(t) = −εX(t)
dB(t)

dt
,

and therefore the Lie group of transformations (5.8) transforms any solution of
(5.1) into a solution of the same equation.

Example 5.2. Consider the stochastic Liénard equation in (5.15) ( [21], p.158).
This equation is a model for random vibrations in a spring-mass system. We let
X(t) be the displacement of the mass from its equilibrium position, Y (t) = dX

dt =

Ẋ(t) be the velocity, m be the mass, b be a damping factor, k a spring constant
and γ and λ be constants associated with the stochastic disturbance.

mẌ(t) + bẊ(t) + kX(t) =
√

2γ2λ
dB(t)

dt
. (5.15)

The corresponding Itô integral equations are:

X(t, ω) = X(0, ω) +

∫ t

0

Y (s, ω)ds, (5.16)

Y (t, ω) = Y (0, ω)−
∫ t

0

(
k

m
X(s, ω) +

b

m
Y (s, ω))ds+

√
2γ2λ

m

∫ t

0

dB(s).

(5.17)

For (5.16) and (5.17), the functions corresponding to fi and gik (i = 1, 2, k = 1)
in (2.1) and (2.2) are:

f1(t,X, Y ) = Y, f2(t,X, Y ) = − k
m
X − b

m
Y,

g11(t,X, Y ) = 0, g21(t,X, Y ) =

√
2γ2λ

m
. (5.18)

The system of determining equations (4.1) thus becomes

ξ1,t + yξ1,x − (
k

m
x+

b

m
y)ξ1,y +

γ2λ

m2
ξ1,yy − ξ2 − 2yτ = 0,

ξ2,t + yξ2,x − (
k

m
x+

b

m
y)ξ2,y +

γ2λ

m2
ξ2,yy +

k

m
ξ1 +

b

m
ξ2

+2(
k

m
x+

b

m
y)τ = 0,

ξ1,y = 0, ξ2,y − τ = 0. (5.19)

We have used the Maple program to find the solutions of the determining
equations (5.19) and obtained the following solutions:

ξ1 = C1e
r1t + C2e

r2t, ξ2 = C1r1e
r1t + C2r2e

r2t, τ = 0, (5.20)
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where r1 = 1
2 (−b+(b2−4km)

1
2

m ) and r2 = 1
2 (−b−(b

2−4km)
1
2

m ). Since τ = 0 for these so-
lutions, we can choose h(t, x) = 0. A basis of the admitted generators correspond-
ing to (5.20) can be obtained by setting (C1, C2) = (1, 0) and (C1, C2) = (0, 1).
Then, on substituting for h, ξ1, ξ2 into (3.9), we obtain the following two admitted
generators.

er1t∂x + r1e
r1t∂y, er2t∂x + r2e

r2t∂y. (5.21)

On integrating the Lie equations (3.3) and (3.4) for the first admitted generator
in (5.21), we obtain the following Lie group of transformations.

t = H(t, x(t), y(t), a) = t,

x(β(t)) = ϕ1(t, x(t), y(t), a) = x(t) + aer1t,

y(β(t)) = ϕ2(t, x(t), y(t), a) = y(t) + ar1e
r1t,

η(t, x(t), y(t), a) = 1,

β(t) =

∫ t

0

η2(s, x(s), y(s), a)ds = t = t, α(t) = α(β(t)) = t, (5.22)

and, from Theorem 2.1, dB(t) = dB(t). The equations for the second admitted
generator in (5.21) are similar, but with r1 replaced by r2.

The proof that the Lie group transformations in (5.22) transforms solutions
of (5.15) into solutions of the same equation is similar to the proof given in Ex-
ample 5.1, and therefore we will not give the details here (for details, see [22]).

Examples 5.1 and 5.2 are both fiber-preserving transformations since the trans-
formation of t is not a function of the independent variables. The following example
shows the application of the theory to a non-fiber-preserving transformation.

Example 5.3. (Non-Fiber-Preserving Transformation). Consider the equation
(5.23) [23],

Ẍ(t) = F (x)− µG2(x)Ẋ(t) + εG(x)
dB

dt
. (5.23)

This second-order stochastic differential equation (5.23) describes the posi-
tion of a particle subject to a deterministic forcing term F (x), a damping term

−µG2(x)Ẋ(t) and a random forcing term εG(x)
dB

dt
. In (5.23), −µG2(x) is the

coefficient of the damping term and εG(x) is the amplitude of the random forcing
term.

We consider the special case F (x) = X2(t) and G(x) = X(t). Then equa-
tion (5.23) becomes

Ẍ(t) = X2(t)− µX2(t)Ẋ(t) + εX(t)
dB(t)

dt
. (5.24)

The corresponding Itô integral equations for the system of first-order equations
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are then

X(t, ω) = X(0, ω) +

∫ t

0

Y (s, ω)ds, (5.25)

Y (t, ω) = Y (0, ω) +

∫ t

0

(X2(s, ω)− µX2(s, ω)Y (s, ω))ds+ ε

∫ t

0

X(s, ω)dB(s).

(5.26)

For (5.25) and (5.26), the functions corresponding to fi and gik (i = 1, 2, k = 1)
in (2.1) and (2.2) are:

f1(t,X, Y ) = Y, f2(t,X, Y ) = X2 − µX2Y,

g11(t,X, Y ) = 0, g21(t,X, Y ) = εX. (5.27)

The system of determining equations (4.1) therefore becomes

ξ1,t + yξ1,x + (x2 − µx2y)ξ1,y +
1

2
ε2x2ξ1,yy − ξ2 − 2yτ = 0,

ξ2,t + yξ2,x + (x2 − µx2y)ξ2,y +
1

2
ε2x2ξ2,yy

− (2x− 2µxy)ξ1 + µx2ξ2 − 2(x2 − µx2y)τ = 0,

ξ1,y = 0, xξ2,y − xτ − ξ1 = 0. (5.28)

We have used the Maple program to find the solution of the determining equa-
tions (5.28) and obtained the following solution:

ξ1 =
C1

x2
, ξ2 = 0, τ = −C1

x3
. (5.29)

For this solution ht(t, x) = 2τ(t, x) = −2
C1

x3
and therefore h(t, x) = −2C1t

x3
. Then,

on substituting for h, ξ1, ξ2 into (3.9) and choosing C1 = 1, we obtain the following
admitted generator

− 2t

x3
∂t +

1

x2
∂x.

To find the Lie group of transformations corresponding to this generator, we sub-
stitute the generator into the Lie equations (3.3) and (3.4) to obtain

∂H

∂a
=
−2H

ϕ3
1

,
∂ϕ1

∂a
=

1

ϕ2
1

,
∂ϕ2

∂a
= 0, (5.30)

with the initial conditions at a = 0 of H = t, ϕ1 = x, ϕ2 = y.
Then, solving (5.30), we obtain the Lie group of transformations:

t = H(t, x(t), y(t), a) = t(1 + 3ax(t)−3)−
2
3 ,

x(β(t)) = ϕ1(t, x(t), y(t), a) = (x(t)3 + 3a)
1
3 ,

y(β(t)) = ϕ2(t, x(t), y(t), a) = y(t),

η(t, x(t), y(t), a) = (1 + 3ax−3)−
1
3 ,

β(t) =

∫ t

0

η2(s, x(s), y(s), a)ds, α(β(t)) = t, t ≥ 0. (5.31)
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We now show that the Lie group of transformations (5.31) transforms a solu-
tion of the Itô equations (5.25) and (5.26) into a solution of the same equations.
For ease of writing, we define a time variable T = β(t). Then, we have α(T ) = t
and

dT =
d(β(t))

dt
dt = η2(t, x(t), y(t), a)dt = (1 + 3ax(t)−3)−

2
3 dt. (5.32)

From Theorem 2.1, the transformation for the Brownian motion is

B(T ) = B(β(t)) =

∫ α(β(t))

0

η(s, x(s), y(s), ω)dB(s, x(s), y(s), ω)

=

∫ t

0

(1 + 3aX−3(s, ω))−
1
3 dB(s), (5.33)

and therefore dB(T ) = (1 + 3aX−3(t, ω))−
1
3 dB(t).

Applying Itô’s formula to the function ϕ1(t, x, y, a) = (x3 + 3a)
1
3 and using

the transformations (5.31) and (5.32), we have

X(T, ω) = ϕ1(t,X(t, ω), Y (t, ω), a)

= ϕ1(0, X(0, ω), Y (0, ω), a) +

∫ t

0

Y (s, ω)X2(s, ω)(X3(s, ω) + 3a)−
2
3 ds

= X(0, ω) +

∫ t

0

Y (s, ω)(1 + 3aX−3(s, ω))−
2
3 ds

= X(0) +

∫ T

0

Y (s, ω)ds, (5.34)

and therefore equation (5.25) transforms correctly.
Applying Itô’s formula to the function ϕ2(t,X(t, ω), Y (t, ω), a), we have

Y (T, ω) = ϕ2(t,X(t, ω), Y (t, ω), a)

= ϕ2(0, X(0, ω), Y (0, ω), a) +

∫ t

0

(X2(s, ω)− µX2(s, ω)Y (s, ω))ds

+

∫ t

0

εX(s, ω)dB(s). (5.35)

Using the transformations in equations (5.31) and (5.32), we have Y (T, ω) =
Y (t, ω) and

X
2
(T, ω)dT = (X(t, ω)3 + 3a)

2
3 (1 + 3aX(t, ω)−3)−

2
3 dt = X(t, ω)2dt. (5.36)

Also, from (5.33), we have

X(T )dB(T ) = (X(t)3 + 3a)
1
3 (1 + 3aX−3(t))−

1
3 dB(t) = X(t)dB(t). (5.37)
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Then substituting the above equations into (5.35), we have

Y (T, ω) = Y (0, ω) +

∫ T

0

(X
2
(s, ω)− µX2

(s, ω)Y (s, ω))ds+

∫ T

0

εX(s, ω)dB(s),

(5.38)
and therefore (5.26) transforms correctly.

The transformed Itô equations (5.34) and (5.38) are equivalent to the trans-
formed differential equation

Ẍ(β(t), ω) = X
2
(β(t), ω)− µX2

(β(t), ω)Ẋ(β(t), ω) + εX(β(t), ω)
dB

dβ(t)
. (5.39)

Therefore, the transformations (5.31) transform any solution of (5.24) into a
solution of the same equation.

5.2 Third-Order Stochastic Differential Equations

We consider a non-autonomous oscillating problem which can be modeled by
the following third-order stochastic differential equation [24].

...
X(t) + γẌ(t) + b2Ẋ(t) + γb2X(t) =

εk0f0(µ0t,X(t), Ẋ(t), Ẍ(t)) + fε(µ0t,X(t), Ẋ(t), Ẍ(t), ε)
dB(t)

dt
,

(5.40)

where γ, b, k0, ε, (ε 6= 0) and µ0 are constants. We will consider two examples of
this model.

Example 5.4. As the first example of (5.40), we assume that γ = b = 0 and
f0 = 0, fε = εx2. The third order equation is then:

...
X(t) = εX2 dB(t)

dt
. (5.41)

The corresponding Itô integral equations for (5.41) are:

X(t, ω) = X(0, ω) +

∫ t

0

Y (s, ω)ds, (5.42)

Y (t, ω) = Y (0, ω) +

∫ t

0

Z(s, ω)ds, (5.43)

Z(t, ω) = Z(0, ω) + ε

∫ t

0

X2(s, ω)dB(s). (5.44)

Comparing (5.44) with (2.1) and (2.2), we have n = 3, r = 1 and

f1(t,X, Y, Z) = Y, f2(t,X, Y, Z) = Z, f3(t,X, Y, Z) = 0,

g11(t,X, Y, Z) = g21(t,X, Y, Z) = 0, g31(t,X, Y, Z) = εX2. (5.45)
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The system of determining equations (4.1) thus becomes

ξ1,t + yξ1,x + zξ1,y +
1

2
ε2x4ξ1,zz − ξ2 − 2yτ = 0,

ξ2,t + yξ2,x + zξ2,y +
1

2
ε2x4ξ2,zz − ξ3 − 2zτ = 0,

ξ3,t + yξ3,x + zξ3,y +
1

2
ε2x4ξ3,zz = 0,

ξ1,z = 0, ξ2,z = 0, xξ3,y + xξ3,z − xτ − 2ξ1 = 0. (5.46)

We have used the Maple program to find the solution of the determining equa-
tions (5.46) and obtained the following solution:

ξ1 = 5C1x, ξ2 = 7C1y, ξ3 = 9C1z, τ = −C1. (5.47)

For this solution, h(t, x, y, z) = −2
∫ t
0
C1ds = −2C1t. Then, substituting (5.47)

into (3.9) and choosing C1 = 1, we obtain the following admitted generator.

− 2t∂t + 5x∂x + 7y∂y + 9z∂z.

The Lie group of transformations corresponding to this generator are the solutions
of the Lie equations

∂H

∂a
= − 2H,

∂ϕ1

∂a
= 5ϕ1,

∂ϕ2

∂a
= 7ϕ2,

∂ϕ3

∂a
= 9ϕ3,

with the initial conditions at a = 0 of H = t, ϕ1 = x, ϕ2 = y, ϕ3 = z.
The transformations which correspond to this generator are then

t = te−2a, x(t) = x(t)e5a, y(t) = y(t)e7a, z(t) = z(t)e9a,

η(t, x, a) = e−a, β(t) =

∫ t

0

η2(s, x, a)ds = te−2a = t,

α(t) = α(β(t)) = t, t ≥ 0. (5.48)

We now show that if the equations for the transformed variables of the form of
the Itô equations (5.42), (5.43) and (5.44) are satisfied, then the equations (5.42),
(5.43) and (5.44) are also satisfied. Then, since the transformation is invertible,
solutions of the transformed equations will be transformations of the solutions of
the original Itô equations.

Assume that X(t), Y (t) and Z(t) are solutions of the Itô equations (5.42),
(5.43) and (5.44) for the transformed variables, i.e.,

X(t, ω) = X(0, ω) +

∫ t

0

Y (s, ω)ds, (5.49)

Y (t, ω) = Y (0, ω) +

∫ t

0

Z(s, ω)ds, (5.50)

Z(t, ω) = Z(0, ω) + ε

∫ t

0

X
2
(s, ω)dB(s), (5.51)
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and from Theorem 2.1

B(t) =

∫ α(t)

0

e−adB(s) =

∫ t

0

e−adB(s), i.e. dB(t) = e−adB(t). (5.52)

Then, using the transformations in (5.48), we obtain

X(t, ω)e5a = X(0, ω)e5a +

∫ t

0

Y (s, ω)e7ae−2ads, (5.53)

Y (t, ω)e7a = Y (0, ω)e7a +

∫ t

0

Z(s, ω)e9ae−2ads, (5.54)

Z(t, ω)e9a = Z(0, ω)e9a + ε

∫ t

0

X2(s, ω)e10ae−adB(s). (5.55)

Therefore, the Itô equations (5.49), (5.50) and (5.51) for the transformed variables
X, Y and Z transform into the original Itô equations (5.42), (5.43) and (5.44) for
the original variables X, Y , Z.

To complete the proof, we note that the transformed Itô equations (5.49),
(5.50) and (5.51) are equivalent to the transformed stochastic differential equation

...
X(t) = εX

2 dB(t)

dt
, (5.56)

and therefore the Lie group of transformations (5.48) transforms any solution of
(5.41) into a solution of the same equation.

Example 5.5. As a second example of (5.40), we assume that k0 = 1, f0 =
1, fε = ε and then equation (5.40) becomes

...
X(t) + γẌ(t) + b2Ẋ(t) + γb2X(t) = ε+ ε

dB(t)

dt
. (5.57)

For (5.57), the functions corresponding to (4.6) are f = ε − γz − b2y − γb2x and
g = ε. The equivalent system of first-order Itô integral equations is then:

X(t, ω) = X(0, ω) +

∫ t

0

Y (s, ω)ds, (5.58)

Y (t, ω) = Y (0, ω) +

∫ t

0

Z(s, ω)ds, (5.59)

Z(t, ω) = Z(0, ω)−
∫ t

0

(γb2X(s, ω) + b2Y (s, ω) + γZ(s, ω)− ε)ds

+ ε

∫ t

0

dB(s). (5.60)

Comparing (5.60) with (2.1) and (2.2), we have n = 3, r = 1 and

f1(t,X, Y, Z) = Y, f2(t,X, Y, Z) = Z,

f3(t,X, Y, Z) = −γb2X − b2Y − γZ + ε,

g11(t,X, Y, Z) = g21(t,X, Y, Z) = 0, g31(t,X, Y, Z) = ε. (5.61)
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The system of determining equations (4.1) thus becomes

ξ1,t + yξ1,x + zξ1,y + (ε− γz − b2y − γb2x)ξ1,z +
1

2
ε2ξ1,zz − ξ2 − 2yτ = 0,

ξ2,t + yξ2,x + zξ2,y + (ε− γz − b2y − γb2x)ξ2,z +
1

2
ε2ξ2,zz − ξ3 − 2zτ = 0,

ξ3,t + yξ3,x + zξ3,y + (ε− γz − b2y − γb2x)ξ3,z +
1

2
ε2ξ3,zz + γb2ξ1

+b2ξ2 + γξ3 − 2(ε− γz − b2y − γx)τ = 0,

ξ1,z = 0, ξ2,z = 0, ξ3,y − ξ3,z − τ = 0. (5.62)

We have used the Maple program to find the solutions of the determining equa-
tions (5.62) and obtained the following solutions:

ξ1 = C1 sin(bt) + C2 cos(bt) + C3e
−γt,

ξ2 = C1b cos(bt)− C2b sin(bt)− C3γe
−γt,

ξ3 = −C1b
2 sin(bt)− C2b

2 cos(bt) + C3γ
2e−γt, τ = 0. (5.63)

Three sets of admitted generators corresponding to (5.63) can be obtained by
choosing (C1, C2, C3) = (1, 0, 0), (C1, C2, C3) = (0, 1, 0), (C1, C2, C3) = (0, 0, 1).
The sets are:

1) sin(bt)∂x + b cos(bt)∂y − b2 sin(bt)∂z,

2) cos(bt)∂x − b sin(bt)∂y − b2 cos(bt)∂z,

3) e−γt∂x − γe−γt∂y + γ2e−γt∂z. (5.64)

Then, integrating the Lie equations (3.3) and (3.4) for the three sets of generators,
we obtain the following Lie groups of transformations for the three generators.

1) t = t, x(t) = x(t) + a sin(bt), y(t) = y(t) + ab cos(bt),

z(t) = z(t)− ab2 sin(bt), η(t, x, a) = 1,

β(t) =

∫ t

0

η2(s, x, a)ds = t = t, α(t) = α(β(t)) = t, t ≥ 0. (5.65)

2) t = t, x(t) = x(t) + a cos(bt), y(t) = y(t)− ab sin(bt),

z(t) = z(t)− ab2 cos(bt), η(t, x, a) = 1,

β(t) =

∫ t

0

η2(s, x, a)ds = t = t, α(t) = α(β(t)) = t, t ≥ 0. (5.66)

3) t = t, x(t) = x(t) + ae−γt, y(t) = y(t)− aγe−γt,
z(t) = z(t) + aγ2e−γt, η(t, x, a) = 1,

β(t) =

∫ t

0

η2(s, x, a)ds = t = t, α(t) = α(β(t)) = t, t ≥ 0. (5.67)
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The proofs that the transformations for the three generators transform (5.57)
into a solution of the same equation is similar to the method in Example 5.4 and
will be omitted (for details, see [22]).

6 Conclusion

The definition of an admitted Lie group of transformations for stochastic differ-
ential equations has been applied to second and third-order stochastic differential
equations. A correct approach for generalization of group analysis to higher order
stochastic differential equations has been developed and applied to derive gener-
ators for Lie groups for symmetry transformation of some second and third-order
stochastic differential equations of physical interest. The theory has been applied
to derive generators for three examples of second-order equations and two exam-
ples of third order equations. Examples have been given for both fiber-preserving
and non-fiber-preserving transformations. Proofs have been given to show that for
two fiber-preserving transformations and one non-fiber-preserving transformation,
the transformations transform a solution of a higher-order stochastic differential
equation into a solution of the same equation.
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