Thai Journal of Mathematics : (2018) 430-436 Special Issue (ACFPTO2018) on : Advances in fixed point theory towards real world optimization problems

http://thaijmath.in.cmu.ac.th Online ISSN 1686-0209

Minimal S_{β} -open sets and Maximal S_{β} -closed sets in topological spaces

Ardoon Jongrak¹

Mathematics Program, Faculty of Science and Technology Phechabun Rajabhat University, Thailand. e-mail: Ardulaya@gmail.com

Abstract : In this work, new classes of sets called minimal S_{β} -open set and maximal S_{β} -closed set in topological spaces which were subclasses of S_{β} -open and S_{β} -closed sets respectively are introduced. We proved that the complement of minimal S_{β} -open set was maximal S_{β} -closed set. Some properties of the new concept of both sets were studied.

Keywords : S_{β} -open sets, S_{β} -closed sets, minimal S_{β} -open sets, maximal S_{β} -closed sets.

1 Introduction and preliminaries

In the year 2001 and 2003 [1,2], Nakaoka and Oda initiated minimal open (rep. closed) sets which are subclass of open (resp. closed) sets in topological spaces. In the year 1963 [3], Levine introduced semi open sets. In the year 1983 [4], E-Moonsef, El-Deeb and Mahmoud formilated β - open sets. In the year 2013 [5], Khalaf Moonsef and Ahmed created and S_{β} -open sets.

In the present paper, the author presents minimal S_{β} -open sets and maximal S_{β} -closed sets in topological spaces and some of their basic properties obtain form the study. Throughout this paper, a space X represent the topological space on which no separation axioms are assumed unles explicitly stated. For a subset A of topological space X, cl(A) and int(A) denote the closure of A and interior of A repectively. The complement of A in X denoted by $X \setminus A$. Now, we recall the following definitions and characterizations.

 $^{^{1}}$ Copyright © 2018 by the Mathematical Association of Thailand. All rights reserved.

Minimal S_{eta} -open sets and Maximal S_{eta} -closed sets in topological spaces 431

Definition 1.1. A proper nonempty open subset U of a topological space X is said to be: (i) a minimal open set [1] if any open set contained in U is \emptyset or U, and (ii) a maximal open set [1] if any open set containing U is X or U.

Definition 1.2. A proper nonempty closed subset F of a topological space X is said to be: (i) a minimal closed set [2] if any closed set contained in F is \emptyset or F, and (ii) a maximal closed set [2] if any closed set containing F is X or F.

Definition 1.3. A subset A of a topological space X is called: (i) a semi-open [3] if $A \subseteq cl(int(A))$, and (ii) a β -open [4] if $A \subseteq cl(int(cl(A)))$. The complement of semi-open (resp. β -open) set is semi-closed (resp. β -closed).

Definition 1.4. A semi-open subset A of a topological space X is called a S_{β} -open set [5] if each $x \in A$ there exists β -closed set F such that $x \in F \subseteq A$. A subset B of a topological space X is called β -closed if $X \setminus B$ is S_{β} -open.

Definition 1.5. A subset A of a topological space X is said to be a regular open set [7] if A = int(cl(A)). It is called a regular closed if $X \setminus A$ is regular open.

2 Minimal S_{β} -open sets

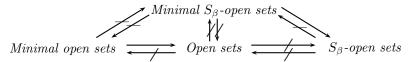
Definition 2.1. A proper nonempty S_{β} -open subset G of a topological space X is said to be a minimal S_{β} -open set if any S_{β} -open set contained in G is \emptyset or G.

Example 2.2. Let $X = \{a, b, c\}$ with the topology $\tau = \{\emptyset, \{b, c\}, X\}$, we have: Open sets are \emptyset, X and $\{b, c\}$; Minimal open set is $\{b, c\}$; and S_{β} -open sets are \emptyset and X, resulting in no existing of minimal S_{β} -open set.

Example 2.3. Let $X = \{a, b, c\}$ with the topology $\sigma = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$, we have: Open sets are $\emptyset, X, \{a\}, \{b\}, \{a, b\}$, and $\{a, c\}$; Minimal open sets are $\{a\}$, and $\{b\}$;

 S_{β} -open sets are $\emptyset, X, \{b\}$ and $\{a, c\}$; and Minimal S_{β} -open sets are $\{b\}$ and $\{a, c\}$.

Remark 2.4. From the findings and by the above two examples, we have the following implication.



Lemma 2.5. (i) Let G be a minimal S_{β} -open set and H be a S_{β} -open set which $G \cap H$ is an S_{β} -open set. Then $G \cap H = \emptyset$ or $G \subseteq H$.

(ii) Let G and H be minimal S_{β} -open sets such that $G \cap H$ be an S_{β} -open set. Then $G \cap H = \emptyset$ or G = H.

- *Proof.* (i) Let G be a minimal S_{β} -open set, H be a S_{β} -open set, and $G \cap H$ be an S_{β} -open set. If $G \cap H \neq \emptyset$ then we have to show that $G \subseteq H$. Since $G \cap H \neq \emptyset$ then $G \cap H \subseteq G$ and $G \cap H \subseteq H$. But G be a minimal S_{β} -open set, so we have $G \cap H = \emptyset$ or $G \cap H = G$. Thus $G \cap H = G$. So $G \subseteq H$.
 - (ii) Let G and H be minimal S_{β} -open sets which $G \cap H$ is an S_{β} -open set. If $G \cap H = \emptyset$, then the proof is complete. If $G \cap H \neq \emptyset$ then we have to prove that G = H. Suppose $G \cap H \neq \emptyset$ then by (i), we see that $G \subseteq H$ and $H \subseteq G$. Therefore G = H.

Proposition 2.6. Let G be a minimal S_{β} -open set. If x is an element of G, and N is an S_{β} -open neighborhood of x which $G \cap H$ is an S_{β} -open, then $G \subseteq N$.

Proof. Let G be a minimal S_{β} -open set containing an element x, and let N be an S_{β} -open neighborhood of x. Then we have an $G \cap N \neq \emptyset$. So by Lemma 2.5(i) therefore $G \subseteq N$.

Proposition 2.7. Let G be a minimal S_{β} -open set,

 $\bigcap \{N|N \text{ is an } S_{\beta}\text{-open neighborhood of } x\}$ is an $S_{\beta}\text{-open.}$

Then $G = \bigcap \{N | N \text{ is an } S_{\beta} \text{-open neighborhood of } x \}$ for any x of N.

Proof. Let $x \in G$ and G be a minimal S_{β} -open set. So G is an S_{β} -open neighborhood of x. Then we have $\bigcap \{N|N \text{ is an } S_{\beta}$ -open neighborhood of $x\} \subseteq G$. So by Proposition 2.6 we see that $G \subseteq \bigcap \{N|N \text{ is an } S_{\beta}$ -open neighborhood of $x\}$. Therefore $G = \bigcap \{N|N \text{ is an } S_{\beta}$ -open neighborhood of $x\}$.

Theorem 2.8. Let X be a topological space and the intersection of two S_{β} -open sets in X be an S_{β} -open set. If G be a nonempty S_{β} -open subset in X, then the following three conditions are equivalent.

- (i) G is a minimal S_{β} -open set.
- (ii) $G \subseteq S_{\beta}cl(H)$ for any nonempty subset H of G.
- (iii) $S_{\beta}cl(G) = S_{\beta}cl(H)$ for any nonempty subset H of G.

Proof. (i) \Rightarrow (ii) Let G be a minimal S_{β} -open set and H be a nonempty S_{β} -open subset of G. Let $x \in G$ by Proposition 2.6 for any S_{β} -open N containing $x, H \subseteq G \subseteq N$, which implies $H \subseteq G$. Now $H = H \cap G \subseteq H \cap N$. Since $N \neq \emptyset$, therefore $H \cap N \neq \emptyset$ implies $x \in S_{\beta}cl(H)$. It follows that $G \subseteq S_{\beta}cl(H)$.

(ii) \Rightarrow (iii) Let H be a nonempty subset of G that is $H \subseteq G$ which implies $S_{\beta}cl(H) \subseteq S_{\beta}cl(G)$. By assumtion we have $S_{\beta}cl(G) \subseteq S_{\beta}cl(S_{\beta}cl(H)) = S_{\beta}cl(H)$. Therefore $S_{\beta}cl(G) = S_{\beta}cl(H)$.

(iii) \Rightarrow (i) Form (iii) we have $S_{\beta}cl(G) = S_{\beta}cl(H)$ for any nonempty subset H of G. Suppose G is not a minimal S_{β} -open set then there exist a nonempty

Minimal S_{eta} -open sets and Maximal S_{eta} -closed sets in topological spaces 433

 S_{β} -open set U such that $U \subseteq G$ and $U \neq G$. Now there exist an element yin G such that $y \notin U$ which implies $y \in X \setminus U$. Hence we obtain that $S_{\beta}cl(y) \subseteq$ $S_{\beta}cl(X \setminus U) = X \setminus U$, because $X \setminus U$ is a S_{β} -closed set in X. Since $U \subseteq G \subseteq S_{\beta}cl(G)$ and $S_{\beta}cl(y) \notin U$, there exists an element z in $S_{\beta}cl(y)$ such that $z \notin U$. It follows that $S_{\beta}cl(y) \neq S_{\beta}cl(G)$.

Definition 2.9 ([7]). A topological space (X, τ) is said to be locally indiscrete if every open subset of X is closed.

Definition 2.10. A topological space (X, τ) is said to be locally finite S_{β} space if each of its elements is contained in a finite S_{β} -open set.

Lemma 2.11 ([5]). Every regular closed sets is S_{β} -open set.

Lemma 2.12. A topological space (X, τ) is a locally indiscrete if A is an open set in X then A is an S_{β} -open set in X.

Proof. Let A be an open subset in X. If $A = \emptyset$, then there is nothing to prove. But if $A \neq \emptyset$ then we have to prove that A is an S_{β} -open. Since X is locally indiscrete, this implies that A = clA = cl(intA). So that A is regular closed, by Lemma 2.11 therefore $A \in S_{\beta}(O(X))$.

Theorem 2.13. Let X be a locally indiscrete space and G be an open subset in X. If G is a minimal S_{β} -open set, then it is a minimal open set.

Proof. Let G is an open set set in a locally indiscrete X, we need to prove that G is a minimal open set. Suppose that G is not a minimal open set, then $G \neq \emptyset$ and there exist an open set H such that $H \subset G$ and $H \neq G$. Since X is locally indiscrete, this implies that H = clH = cl(intH). So that H is regular closed, therefore, by lemma 2.11 $H \in S_{\beta}(O(X))$. Thus we get that G is an S_{β} -open set containing H and $H \neq G$ and $G \neq \emptyset$, which is contradiction. Hence G is a minimal open set.

Theorem 2.14. Let G be a minimal S_{β} -open set and x an element of $X \setminus G$. If define $G_x = \bigcap \{N | N \text{ is an } S_{\beta}\text{-open neighborhood of } x\}$ and $G \cap N$ be a minimal S_{β} -open then $G_x \cap N = \emptyset$ or $N \subset G_x$.

Proof. Since N is an S_{β} -open, by Lemma 2.5(i) we have $G \cap N = \emptyset$ or $G \subset N$. If $G \subset N$ for any S_{β} -open neighborhood N of x, then

 $G \subset \cap \{N | N \text{ is an } S_{\beta} \text{-open neighborhood of } x\}.$

Therefore $G \subset G_x$. Otherwise there exists an S_β -open neighborhood N of x such that $G \cap N = \emptyset$. Then we have $G \cap G_x = \emptyset$.

Theorem 2.15. Let G be a nonempty finite S_{β} -open set. Then there exists at least one minimal S_{β} -open set H such that $H \subset G$.

Proof. Let G be a nonempty finite S_{β} -open set. If G is a minimal S_{β} -open set, we may set H = G. If G is not a minimal S_{β} -open set, then there exists an S_{β} -open set G_1 such that $\emptyset \neq G_1 \subset G$. If G_1 is a minimal S_{β} -open set, we may set $H = G_1$. If G_1 is not a minimal S_{β} -open set, then there exists an S_{β} -open set G_2 such that $\emptyset \neq G_2 \subset G_1 \subset G$. Continuing this process, we have a sequence of S_{β} -open sets

$$G \supset G_1 \supset G_2 \supset \ldots \supset G_i \supset \ldots$$

Since G is a finite S_{β} -open set, this process repeats only finitely. Then, finally we get a minimal S_{β} -open set $H = G_n$ for some positive integer n. Therefore $H \subset G$.

Corollary 2.16. Let X be a locally finite S_{β} space and G is a nonempty S_{β} -open set. Then there exists at least one minimal S_{β} -open set H such that $H \subset G$.

Proof. Let G is a nonempty S_{β} -open set. So there exsits an element x of G. Since X be a locally finite S_{β} space, we have a finite S_{β} -open set G_x such that $x \in G_x$. Since $G \cap G_x$ is a finite S_{β} -open set, we get a minimal S_{β} -open set H such that $H \subset G \cap G_x \subset G$ by Theorem 2.15.

Theorem 2.17. Let G_{λ} be an S_{β} -open set for any $\lambda \in \Lambda$ and the intersection of two S_{β} -open sets is an S_{β} -open and H be a nonempty finite S_{β} - open set. Then $H \cap (\bigcap_{\lambda \in \Lambda} G_{\lambda})$ is a finite S_{β} - open set.

Proof. Since H is a nonempty finite S_{β} - open set, there exists an integer n such that

 $H \cap (\cap_{\lambda \in \Lambda} G_{\lambda}) = H \cap (\cap_{i=1}^{n} G_{\lambda_{i}}) \text{ and hence we have the result.}$

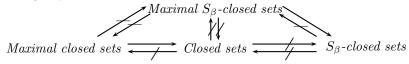
3 Maximal S_{β} -closed sets

Definition 3.1. A proper nonempty S_{β} - closed subset F of a topological space X is said to be a maximal S_{β} -open set if and only if any S_{β} -closed set which contains F is X or F.

Example 3.2. Let $X = \{a, b, c\}$ with the topology $\sigma = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$, therefore,

Closed sets are $\emptyset, X, \{b, c\}, \{a, c\}, \{c\}, \text{ and } \{b\}$. Maximal closed set are $\{a, c\}$ and $\{b, c\}$. S_{β} -closed sets are $\emptyset, X, \{a, c\}$ and $\{b\}$. Maximal S_{β} -closed sets are $\{a, c\}$ and $\{b\}$.

Remark 3.3. From the known results and by the above example 3.2 we have the following implication.



Minimal S_eta -open sets and Maximal S_eta -closed sets in topological spaces 4

Theorem 3.4. Let X be a topological space and G be a subset in X, then G is a minimal S_{β} -open set if and only if $X \setminus G$ is a maximal S_{β} -closed set.

Proof. (\Rightarrow) Let G be a minimal S_{β} -open set. Then by definition it is clear that G is a S_{β} -open. Therefore $X \setminus G$ is a S_{β} -closed. We have to show that $X \setminus G$ is a maximal S_{β} -closed. Suppose $X \setminus G$ is not a maximal S_{β} -closed set, there exist an S_{β} -closed subset F of X such that $X \setminus G \subseteq F$. Hence $X \setminus F$ is an S_{β} -open and $X \setminus F \subseteq G$ and this contradict being G is a minimal S_{β} -open.

 (\Leftarrow) Let $X \setminus G$ be a maximal S_{β} -closed subset of X, then we have G is an S_{β} -open set. Suppose that there is a nonemty S_{β} -open subset H of X such that $H \subseteq G$. So that $X \setminus G \subseteq X \setminus H$ but $X \setminus H$ is a proper S_{β} -closed subset of X. Contradiction to the assumption of being $X \setminus G$ is a maximal S_{β} -closed. Therefore G is a minimal S_{β} -open.

Remark 3.5. The result of theorem 3.4, we have that basic properties of maximal S_{β} -closed sets paralleling to those of the minimal S_{β} -open sets.

ACKNOWLEDGMENTS: The author is grateful to the referees for their careful reading of the manuscript and their useful comments and would like to thank Assoc.Pro.Dr. Issara Inchan for his useful suggestions and the reviewers for their valuable comments and suggestions.

References

- F. Nakaoka and N. Oda : Some applications of minimal open sets, Int.J. Math. Math. Sci., no.8, 471-476 (2001).
- [2] F. Nakaoka and N. Oda : Some properties of maximal open sets, Int.J. Math. Math. Sci., no.21, 1331-1340 (2003).
- [3] N. Levine : Semi open sets and semi continuity in topological spaces, Amer. Math. Monthly, 70, 36-41 (1963).
- [4] Abd. E-Moosef, S. N. El-Deeb, R.A. Mahmoud : β-open sets and β-open continuous mappings, Bull.Fac. Sci. Assiut.Univ.vol.12, 70-90 (1983).
- [5] A.B. Khalaf and N.K. Ahmed : S_{β} -open sets and S_{β} continuity in topological spaces, Thai Journal of Mathematics, 11, 319-335 (2013).
- [6] A.H. Mashhour, M.E. Abd El-monself, S.N.EL. Deeb : On pre-continuous and weak pre-continuous mappings, Proc. Math. Phy. Soc. Egypt. 53, 47-53 (1982).
- [7] M. Stone : Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41, 374-481 (1937).

(Received 27 August 2018) (Accepted 28 December 2018) 435

A. Jongrak

