
Thai Journal of Mathematics : (2018) 430-436
Special Issue (ACFPTO2018) on : Advances in fixed
point theory towards real world optimization problems

http://thaijmath.in.cmu.ac.th
Online ISSN 1686-0209

Minimal Sβ-open sets and Maximal Sβ-closed sets

in topological spaces

Ardoon Jongrak1

Mathematics Program , Faculty of Science and Technology
Phechabun Rajabhat University, Thailand.

e-mail : Ardulaya@gmail.com

Abstract : In this work, new classes of sets called minimal Sβ-open set and
maximal Sβ-closed set in topological spaces which were subclasses of Sβ-open and
Sβ-closed sets respectively are introduced. We proved that the complement of
minimal Sβ-open set was maximal Sβ-closed set. Some properties of the new
concept of both sets were studied.
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1 Introduction and preliminaries

In the year 2001 and 2003 [1,2], Nakaoka and Oda initiated minimal open (rep.
closed) sets which are subclass of open (resp. closed) sets in topological spaces.
In the year 1963 [3], Levine introduced semi open sets. In the year 1983 [4], E-
Moonsef, El-Deeb and Mahmoud formilated β- open sets. In the year 2013 [5],
Khalaf Moonsef and Ahmed created and Sβ-open sets.

In the present paper, the author presents minimal Sβ-open sets and maximal
Sβ-closed sets in topological spaces and some of their basic properties obtain form
the study. Throughout this paper, a space X represent the topological space on
which no separation axioms are assumed unles explicitly stated. For a subset A
of topological space X, cl(A) and int(A) denote the closure of A and interior of
A repectively. The complement of A in X denoted by X\A. Now, we recall the
following definitions and characterizations.

1Copyright c⃝ 2018 by the Mathematical Association of Thailand.
All rights reserved.
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Definition 1.1. A proper nonempty open subset U of a topological space X is
said to be: (i) a minimal open set [1] if any open set contained in U is ∅ or U , and
(ii) a maximal open set [1] if any open set containing U is X or U .

Definition 1.2. A proper nonempty closed subset F of a topological space X is
said to be: (i) a minimal closed set [2] if any closed set contained in F is ∅ or F ,
and (ii) a maximal closed set [2] if any closed set containing F is X or F .

Definition 1.3. A subset A of a topological space X is called: (i) a semi-open [3]
if A ⊆ cl(int(A)) , and (ii) a β-open [4] if A ⊆ cl(int(cl(A))). The complement of
semi-open (resp. β-open) set is semi-closed (resp.β-closed).

Definition 1.4. A semi-open subset A of a topological space X is called a Sβ-
open set [5] if each x ∈ A there exists β-closed set F such that x ∈ F ⊆ A. A
subset B of a topological space X is called β-closed if X\B is Sβ-open.

Definition 1.5. A subset A of a topological space X is said to be a regular open
set [7] if A = int(cl(A)). It is called a regular closed if X\A is regular open.

2 Minimal Sβ-open sets

Definition 2.1. A proper nonempty Sβ-open subset G of a topological space X
is said to be a minimal Sβ-open set if any Sβ-open set contained in G is ∅ or G.

Example 2.2. Let X = {a, b, c} with the topology τ = {∅, {b, c}, X}, we have:
Open sets are ∅, X and {b, c}; Minimal open set is {b, c}; and
Sβ-open sets are ∅ and X, resulting in no existing of minimal Sβ-open set.

Example 2.3. LetX = {a, b, c} with the topology σ = {∅, {a}, {b}, {a, b}, {a, c}, X},
we have: Open sets are ∅, X, {a}, {b}, {a, b}, and {a, c}; Minimal open sets

are {a}, and {b};
Sβ-open sets are ∅, X, {b} and {a, c}; and Minimal Sβ-open sets are {b} and

{a, c}.

Remark 2.4. From the findings and by the above two examples, we have the
following implication.
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Lemma 2.5. (i) Let G be a minimal Sβ-open set and H be a Sβ-open set which
G ∩H is an Sβ-open set. Then G ∩H = ∅ or G ⊆ H.

(ii) Let G and H be minimal Sβ-open sets such that G ∩H be an Sβ-open set.
Then G ∩H = ∅ or G = H.
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Proof. (i) Let G be a minimal Sβ-open set, H be a Sβ-open set, and G ∩ H
be an Sβ-open set. If G ∩H ̸= ∅ then we have to show that G ⊆ H. Since
G ∩H ̸= ∅ then G ∩H ⊆ G and G ∩H ⊆ H. But G be a minimal Sβ-open
set, so we have G ∩H = ∅ or G ∩H = G. Thus G ∩H = G. So G ⊆ H.

(ii) Let G and H be minimal Sβ-open sets which G ∩H is an Sβ-open set. If
G∩H = ∅, then the proof is complete. If G∩H ̸= ∅ then we have to prove
that G = H. Suppose G ∩ H ̸= ∅ then by (i), we see that G ⊆ H and
H ⊆ G. Therefore G = H.

Proposition 2.6. Let G be a minimal Sβ-open set. If x is an element of G, and
N is an Sβ-open neighborhood of x which G ∩H is an Sβ-open, then G ⊆ N .

Proof. Let G be a minimal Sβ-open set containing an element x, and let N be an
Sβ-open neighborhood of x. Then we have an G ∩ N ̸= ∅. So by Lemma 2.5(i)
therefore G ⊆ N .

Proposition 2.7. Let G be a minimal Sβ-open set,∩
{N |N is an Sβ-open neighborhood of x} is an Sβ-open.

Then G =
∩
{N |N is an Sβ-open neighborhood of x} for any x of N .

Proof. Let x ∈ G and G be a minimal Sβ-open set. So G is an Sβ-open neigh-
borhood of x. Then we have

∩
{N |N is an Sβ-open neighborhood of x} ⊆ G. So

by Proposition 2.6 we see that G ⊆
∩
{N |N is an Sβ-open neighborhood of x}.

Therefore G =
∩
{N |N is an Sβ-open neighborhood of x}.

Theorem 2.8. Let X be a topological space and the intersection of two Sβ-open
sets in X be an Sβ-open set. If G be a nonempty Sβ-open subset in X, then the
following three conditions are equivalent.

(i) G is a minimal Sβ-open set.

(ii) G ⊆ Sβcl(H) for any nonempty subset H of G.

(iii) Sβcl(G) = Sβcl(H) for any nonempty subset H of G.

Proof. (i) ⇒ (ii) Let G be a minimal Sβ-open set and H be a nonempty Sβ-
open subset of G. Let x ∈ G by Proposition 2.6 for any Sβ-open N containing
x, H ⊆ G ⊆ N , which implies H ⊆ G. Now H = H ∩G ⊆ H ∩N . Since N ̸= ∅,
therefore H ∩N ̸= ∅ implies x ∈ Sβcl(H). It follows that G ⊆ Sβcl(H).

(ii) ⇒ (iii) Let H be a nonempty subset of G that is H ⊆ G which implies
Sβcl(H) ⊆ Sβcl(G). By assumtion we have Sβcl(G) ⊆ Sβcl(Sβcl(H)) = Sβcl(H).
Therefore Sβcl(G) = Sβcl(H).

(iii) ⇒ (i) Form (iii) we have Sβcl(G) = Sβcl(H) for any nonempty subset
H of G. Suppose G is not a minimal Sβ-open set then there exist a nonempty
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Sβ-open set U such that U ⊆ G and U ̸= G. Now there exist an element y
in G such that y /∈ U which implies y ∈ X\U . Hence we obtain that Sβcl(y) ⊆
Sβcl(X\U) = X\U , because X\U is a Sβ-closed set in X. Since U ⊆ G ⊆ Sβcl(G)
and Sβcl(y) ⊈ U , there exists an element z in Sβcl(y) such that z /∈ U . It follows
that Sβcl(y) ̸= Sβcl(G).

Definition 2.9 ([7]). A topological space (X, τ) is said to be locally indiscrete if
every open subset of X is closed.

Definition 2.10. A topological space (X, τ) is said to be locally finite Sβ space
if each of its elements is contained in a finite Sβ-open set.

Lemma 2.11 ([5]). Every regular closed sets is Sβ-open set.

Lemma 2.12. A topological space (X, τ) is a locally indiscrete if A is an open set
in X then A is an Sβ-open set in X.

Proof. Let A be an open subset in X. If A = ∅, then there is nothing to prove.
But if A ̸= ∅ then we have to prove that A is an Sβ-open. Since X is locally
indiscrete, this implies that A = clA = cl(intA). So that A is regular closed, by
Lemma 2.11 therefore A ∈ Sβ(O(X)).

Theorem 2.13. Let X be a locally indiscrete space and G be an open subset in
X. If G is a minimal Sβ-open set, then it is a minimal open set.

Proof. Let G is an open set set in a locally indiscrete X, we need to prove that
G is a minimal open set. Suppose that G is not a minimal open set, then G ̸= ∅
and there exist an open set H such that H ⊂ G and H ̸= G. Since X is locally
indiscrete, this implies that H = clH = cl(intH). So that H is regular closed,
therefore, by lemma 2.11 H ∈ Sβ(O(X)). Thus we get that G is an Sβ-open set
containing H and H ̸= G and G ̸= ∅, which is contradiction. Hence G is a minimal
open set.

Theorem 2.14. Let G be a minimal Sβ-open set and x an element of X\G.
If define Gx = ∩{N |N is an Sβ-open neighborhood of x} and G∩N be a minimal
Sβ-open then Gx ∩N = ∅ or N ⊂ Gx.

Proof. Since N is an Sβ-open, by Lemma 2.5(i) we have G ∩N = ∅ or G ⊂ N . If
G ⊂ N for any Sβ-open neighborhood N of x, then

G ⊂ ∩{N |N is an Sβ-open neighborhood of x}.

Therefore G ⊂ Gx. Otherwise there exists an Sβ-open neighborhood N of x such
that G ∩N = ∅. Then we have G ∩Gx = ∅.

Theorem 2.15. Let G be a nonempty finite Sβ-open set. Then there exists at
least one minimal Sβ-open set H such that H ⊂ G.
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Proof. Let G be a nonempty finite Sβ-open set. If G is a minimal Sβ-open set, we
may set H = G. If G is not a minimal Sβ-open set, then there exists an Sβ-open
set G1 such that ∅ ̸= G1 ⊂ G. If G1 is a minimal Sβ-open set, we may set H = G1.
If G1 is not a minimal Sβ-open set, then there exists an Sβ-open set G2 such that
∅ ̸= G2 ⊂ G1 ⊂ G. Continuing this process, we have a sequence of Sβ-open sets

G ⊃ G1 ⊃ G2 ⊃ . . . ⊃ Gi ⊃ . . . .

Since G is a finite Sβ-open set, this process repeats only finitely. Then, finally
we get a minimal Sβ-open set H = Gn for some positive integer n. Therefore
H ⊂ G.

Corollary 2.16. Let X be a locally finite Sβ space and G is a nonempty Sβ-open
set. Then there exsits at least one minimal Sβ-open set H such that H ⊂ G.

Proof. Let G is a nonempty Sβ-open set. So there exsits an element x of G. Since
X be a locally finite Sβ space, we have a finite Sβ-open set Gx such that x ∈ Gx.
Since G ∩ Gx is a finite Sβ-open set, we get a minimal Sβ-open set H such that
H ⊂ G ∩Gx ⊂ G by Theorem 2.15.

Theorem 2.17. Let Gλ be an Sβ-open set for any λ ∈ Λ and the intersection of
two Sβ-open sets is an Sβ-open and H be a nonempty finite Sβ- open set. Then
H ∩ (∩λ∈ΛGλ) is a finite Sβ- open set.

Proof. Since H is a nonempty finite Sβ- open set, there exists an integer n such
that
H ∩ (∩λ∈ΛGλ) = H ∩ (∩n

i=1Gλi) and hence we have the result.

3 Maximal Sβ-closed sets

Definition 3.1. A proper nonempty Sβ- closed subset F of a topological space X
is said to be a maximal Sβ-open set if and only if any Sβ-cloed set which contains
F is X or F .

Example 3.2. LetX = {a, b, c} with the topology σ = {∅, {a}, {b}, {a, b}, {a, c}, X},
therefore,

Closed sets are ∅, X, {b, c}, {a, c}, {c}, and {b}.
Maximal closed set are {a, c} and {b, c}.
Sβ-closed sets are ∅, X, {a, c} and {b}.
Maximal Sβ-closed sets are {a, c} and {b}.

Remark 3.3. From the known results and by the above example 3.2 we have the
following implication.

Closed setsMaximal closed sets Sβ-closed sets

Maximal Sβ-closed sets
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Theorem 3.4. Let X be a topological space and G be a subset in X, then G is a
minimal Sβ-open set if and only if X\G is a maximal Sβ-closed set.

Proof. (⇒) Let G be a minimal Sβ-open set. Then by definition it is clear that
G is a Sβ-open. Therefore X\G is a Sβ-closed. We have to show that X\G is
a maximal Sβ-closed. Suppose X\G is not a maximal Sβ-closed set, there exist
an Sβ-closed subset F of X such that X\G ⊆ F . Hence X\F is an Sβ-open and
X\F ⊆ G and this contradict being G is a minimal Sβ-open.

(⇐) Let X\G be a maximal Sβ-closed subset of X, then we have G is an
Sβ-open set. Suppose that there is a nonemty Sβ-open subset H of X such that
H ⊆ G. So that X\G ⊆ X\H but X\H is a proper Sβ-closed subset of X.
Contradiction to the assumtion of being X\G is a maximal Sβ-closed. Therefore
G is a minimal Sβ-open.

Remark 3.5. The result of theorem 3.4, we have that basic properties of maximal
Sβ-closed sets paralleling to those of the minimal Sβ-open sets.
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