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Abstract : In this paper, a modified ratio estimator for estimating population
total in the presence of nonresponse under unequal probability sampling without
replacement are proposed under the conditions of with or without response prob-
ability. The modified estimator is investigated under a reverse framework with a
uniform nonresponse mechanism where the overall sampling fraction is negligible.
Theoretical studies show that the proposed estimator is asymptotically unbiased
and more efficient than the existing one. We compared the efficiency of the pro-
posed estimator with other estimator through a simulation study. The results
showed that for all levels of response probability the proposed estimator had a
smaller relative bias and relative root mean square error than other estimator.
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proach.
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1 Introduction

The problem of constructing efficient estimators for the population total by using
auxiliary variables has been widely discussed by various authors. Cochran [1]
proposed a ratio estimator under simple random sampling without replacement
when the population total of an auxiliary variable is known. Sisodia and Dwivedi
[2], Singh and Kakran [3], Upadhyaya and Singh [4] also suggested ratio-type
estimators for estimating the population total when the population coefficient
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of variation and the kurtosis of the auxiliary variable are known under simple
random sampling without replacement. Later, Bacanli and Kadilar [5] extended
the estimators of Sisodia and Dwivedi [2], Singh and Kakran [3], and Upadhyaya
and Singh [4] to unequal probability sampling without replacement. They also
showed that their proposed estimators are more efficient than the classical ratio
estimator by using mean square error calculations to compare them.

The ratio estimator has a form of nonlinear function, therefore properties such
as mean, variance and mean square error can be obtained by using the Taylor
linearization approach. This method was first discussed by Tepping [6] who ap-
plied it to an investigation into the variance of nonlinear function. Later, the
Taylor linearization approach has been widely discussed by various authors such
as Woodruff [7], Wolter [8], Demnati and Rao [9]. Under the Taylor linearization
approach, a linear approximation of the nonlinear function is obtained by using
Taylor series approximation. Therefore a variance of nonlinear function can be
calculated by deriving the variance of the linear approximation.

In the presence of nonresponse the traditional estimators can not be used
to estimate population total because a selected sample set is divided between
a response and nonresponse set. Therefore Bethlehem [10] proposed a modified
Horvitz and Thompson [11]’s estimator which is in a more general form for a
random response approach. Srndal and Lundstrm [12] proposed an estimator for
estimating the population total under a two-phase framework with an assumption
that the response probability is known under unequal probability sampling without
replacement. This estimator is like Horvitz and Thompson [11] ’ s estimator
but uses sample units of study variables in response sets instead of sample sets.
Later, Lawson [13] proposed an estimator for estimating population totals under a
reverse framework when the overall sampling fraction is negligible under a uniform
nonresponse mechanism.

This paper aims to estimate a population total by using a ratio estimator
to improve the estimation efficiency under unequal probability sampling without
replacement when nonresponse occurs in the study variable only. We proposed to
modify the Bacanli and Kadilar [5] ’s estimator by using the estimator of Srndal
and Lundstrm [12]under a reverse framework with an overall negligible sampling
fraction and uniform nonresponse. We discuss notation and framework in section
2. In section 3, we introduce Srndal and Lundstrm [12]’s estimator and associated
variance under reverse framework. In section 4, the proposed new ratio estimator
and associated variance are discussed. In section 5, we compare the efficiency of
the proposed estimator with Srndal and Lundstrm [12]’s estimator. Finally some
conclusions are given in section 6.

2 Notation and framework

Consider a finite population U = { 1, 2, ..., N}. Let yi be the value of random
variable y for the ith population unit. Assume that a sample s of size n was
selected under unequal probability sampling without replacement. Our aim is
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to estimate the population total of y defined by Y =
∑

i∈U yi . Let x be an
auxiliary variable that is highly correlated with the study variable. We assume the
population total X =

∑
i∈U xi is known. Let πi and πij denote the first and second

order of inclusion probabilities defined by πi = P (i ∈ s) and πij = P (i ∧ j ∈ s)
respectively. Let us define a random variable Ii where Ii = 1 if i ∈ s otherwise
Ii = 0.

Under nonresponse, let ri denote the response indicator variable of yi and
be defined by ri = 1 if yi is observed otherwise ri = 0 . Let R = (r1, r2, ..., rN )′

denoted be the vector of response indicators. Let pi denote the response probability
as defined by pi = P (ri = 1) . We also assume that (A) Nonresponse mechanism
has uniform nonresponse and (B) that the overall sampling fraction is negligible.

3 Srndal and Lundstrm [12]’s estimator and asso-
ciated variance under reverse framewrok

In the full response, Horvitz and Thompson [11] proposed an unbiased estima-
tor for estimating population total based on sample element. In the presence of
nonresponse, the Horvitz and Thompson [11]’s estimator does not work because
some units of the study variable cannot be observed. Therefore Srndal and Lund-
strm [12] proposed an estimator based on Horvitz and Thompson [11]’s estimator
under a two-phase framework. In this section, we extended Srndal and Lund-
strm’s [12] estimator to include a reverse framework and defined in Definition 3.1.

Definition 3.1. Assume that (A) holds. Under a reverse framework with unequal
probability sampling without replacement where p is known. The Srndal and
Lundstrm [12]’s estimator for Y is defined by,

Ŷ (1)
r =

∑
i∈s

riyi
πip

. (3.1)

Lemma 3.2. Assume that (A) holds. Under a reverse framework with unequal
probability sampling without replacement where p is unknown. The Srndal and
Lundstrm [12] ’s estimator for Y is defined by,

Ŷ (2)
r =

∑
i∈s

riyi
πip̂

, (3.2)

where p̂ =
(∑

i∈s

ri
πi

)(∑
i∈s

1
πi

)−1

.

Theorem 3.3. Assume that (A) holds. Under a reverse framework with unequal
probability sampling without replacement, the Srndal and Lundstrm [12]’s estima-
tor is asymptotically unbiased estimators of Y .

Theorem 3.4. Assume that (A) and (B) remain correct. Under a reverse frame-
work with unequal probability sampling without replacement.
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(i) If p is known then the variance of Ŷ
(1)
r is defined by,

V (Ŷ (1)
r ) ≈

∑
i∈U

D2iy
2
i +

∑
i∈U

∑
j ̸=i∈U

Dijyiyj , (3.3)

where D2i =
1−πi

πip
and Dij =

πij−πiπj

πiπj
.

(ii) If p is unknown then the variance of Ŷ
(2)
r is given by,

V (Ŷ (2)
r ) ≈

∑
i∈U

D2i(yi − Ȳ )2 +
∑
i∈U

Di(2yi − Ȳ )Ȳ +
∑
i∈U

∑
j ̸=i∈U

Dijyiyj ,

(3.4)

where D2i, Dij are defined in (3.3) and Di =
1−πi

πi
.

4 The proposed estimator and associated vari-
ance

4.1 The proposed estimator

In this section, we proposed a new ratio estimator for estimating the population
total when nonresponse occurs only in the study variable. Cochran [1] first pro-
posed a ratio estimator under simple random sampling without replacement when
the population totals of an auxiliary variable is known to increase the efficiency
of the population total estimator. Later Bacanli and Kadilar [5] also discussed a
ratio estimator based on Horvitz and Thompson [11]’s estimator under unequal
probability sampling without replacement and defined by,

ŶR =
ŶHT

X̂HT

X =

∑
i∈s

yi

πi∑
i∈s

xi

πi

X, (4.1)

where ŶHT =
∑

i∈s
yi

πi
, X̂HT =

∑
i∈s

xi

πi
and X =

∑
i∈U xi.

From (4.1) we see that
∑

i∈s
yi

πi
is a linear combination of study variable and

sampling weight in selected sample. However, if some units of a study variable
in a selected sample cannot be observed then ŶHT does not work. Therefore in
this section we aim to propose a new ratio estimator for estimating population
total in the presence of nonresponse. Recall from Definition 3.1, we introduced
Srndal and Lundstrm [12]s estimator for Y under reverse framework and defined

by Ŷ
(1)
r =

∑
i∈s

riyi

πip
. Substitute Ŷ

(1)
r instead of ŶHT in (4.1) we obtained the

new ratio estimator denoted by Ŷ
(1)
R and define in Definition 4.1.

Definition 4.1. Assuming that assumption (A) is correct under a reverse frame-
work with unequal probability sampling without replacement. If p is known then
the proposed estimator for Y is defined by,

Ŷ
(1)
R =

∑
i∈s

riyi

πip∑
i∈s

xi

πi

X, (4.2)
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where X =
∑

i∈U xi.

Lemma 4.2. Assuming that assumption (A) is correct under a reverse framework
with unequal probability sampling without replacement. If p is unknown then the

proposed estimator for Y is defined by Ŷ
(2)
R and is given by,

Ŷ
(2)
R =

∑
i∈s

riyi

πip̂∑
i∈s

xi

πi

X =

∑
i∈s

riyi

πi∑
i∈s

xi

πi

∑
i∈s

1
πi∑

i∈s
ri
πi

X, (4.3)

where X is defined in (4.2) and p̂ =
(∑

i∈s

ri
πi

)(∑
i∈s

1
πi

)−1

.

Proof. Under uniform nonresponse if p is unknown we can estimate p by

p̂ =
(∑

i∈s

ri
πi

)(∑
i∈s

1
πi

)−1

and substitute p̂ instead of p in (4.2).

Theorem 4.3. Assuming that assumption (A) is correct under a reverse frame-
work with unequal probability sampling without replacement. The proposed
estimators are asymptotically unbiased estimators of Y .

Proof. (i) Assuming that p is known the new ratio estimator for estimating
population total is defined in (4.2). Under a reverse framework the expec-

tation of Ŷ
(1)
R is obtained by,

E(Ŷ
(1)
R ) = ERES(Ŷ

(1)
R |R). (4.4)

From (4.2) and (4.4) we see that Ŷ
(1)
R has a form of nonlinear function.

Therefore the linear function of Ŷ
(1)
R can be obtained by using the Taylor

linearization approach denoted by Ŷ
(1)
R,lin and defined by,

Ŷ
(1)
R,lin ≈ Y + (T̂1 − T1)−

T1

X
(T̂2 − T2), (4.5)

where T̂1 =
∑

i∈s
riyi

πip
, T1 =

∑
i∈U

riyi

p , T̂2 =
∑

i∈s
xi

πi
, T2 = X. Substitute

(4.5) in (4.4) we have,

E(Ŷ
(1)
R ) ≈ ERES

[
Y + (T̂1 − T1)−

T1

X
(T̂2 − T2)

∣∣∣R]
= Y.

Therefore, Ŷ
(1)
R is an asymptotically unbiased estimator of Y .

(ii) If p is unknown the proof is similar to (i).
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4.2 The variance of the proposed estimator

In the presence of nonresponse, under a reverse framework with uniform non-
response and an overall negligible sampling fraction Lawson and Ponkaew [13]
discussed a method for investigated variance in estimation outcomes defined in
Definition 4.4.

Definition 4.4. Under a reverse framework with an overall negligible sampling
fraction let Ŷ be the estimator of Y . The variance of Ŷ is approximated by
V (Ŷ ) ≈ ERVS(Ŷ |R).

Next, we investigate variance of the proposed estimator. Recall from (4.2) if
p is known we have,

Ŷ
(1)
R =

∑
i∈s

riyi

πip∑
i∈s

xi

πi

X = R̂X, (4.6)

where R̂ =
(∑

i∈s
riyi

πip

)(∑
i∈s

xi

πi

)−1

. Recall from Definition 4.4 and (4.6) the

variance of Ŷ
(1)
R is approximately,

V (Ŷ
(1)
R ) ≈ ERVS

[
Y

(1)
R |R

]
. (4.7)

Similar to Theorem 4.3 under Taylors linearization approach the linear func-

tion of Ŷ
(1)
R is defined in (4.5) and we can rewrite Ŷ

(1)
R,lin as,

Ŷ
(1)
R,lin ≈ Constant+

∑
i∈s

z1i
πi

, (4.8)

where z1i =
riyi

πi
− xiRr and Rr =

∑
i∈U

riyi
p

X .

Substitute Ŷ
(1)
R,lin instead Ŷ

(1)
R in (4.7) we have,

V (Ŷ
(1)
R ) ≈ ERVS

[∑
i∈s

z1i
πi

∣∣∣R]
, (4.9)

where z1i is defined in (4.8).

Recall from (4.3) if p is unknown we have,

Ŷ
(2)
R =

∑
i∈s

riyi

πip̂∑
i∈s

xi

πi

X =

∑
i∈s

riyi

πi∑
i∈s

xi

πi

∑
i∈s

1
πi∑

i∈s
ri
πi

X, (4.10)

where X is defined in (4.2) and p̂ =
(∑

i∈s

ri
πi

)(∑
i∈s

1
πi

)−1

.
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Recall from definition 4.4 and (4.10) the variance of Ŷ
(2)
R is approximately,

V (Ŷ
(2)
R ) ≈ ERVS

[
Ŷ

(2)
R

∣∣∣R]
. (4.11)

Similar to equation (4.7) under Taylor linearization approach the linear func-

tion of Ŷ
(2)
R is denoted by Ŷ

(2)
R,lin and defined by,

Ŷ
(2)
R,lin ≈ Constant+

∑
i∈s

z2i
πi

, (4.12)

where z2i =
N∑

i∈U ri
(yi − ȲR)− ȲR

X̄
(xi − X̄) and ȲR =

∑
i∈U riyi∑
i∈U ri

.

Substitute Ŷ
(2)
R,lin instead of Ŷ

(2)
R in (4.11) we have,

V (Ŷ
(2)
R ) ≈ ERVS

[∑
i∈s

z2i
πi

∣∣∣R]
, (4.13)

where z2i defined in (4.12).
From (4.9) and (4.13) the general form of variance of the proposed ratio esti-

mator may be written as,

V (Ŷ
(m)
R ) ≈ ERVS

[∑
i∈s

zmi

πi

∣∣∣R]
, (4.14)

where m = 1, 2, z1i is defined in (4.8) and z2i id defined in (4.12).

Theorem 4.5. Assuming that assumption (A) and (B) are correct under a re-
verse framework with unequal probability sampling without replacement.

(i) The variance of the proposed estimators can be derived from,

V (Ŷ
(m)
R ) ≈

∑
i∈U

DiER(z
2
mi) +

∑
i∈U

∑
j ̸=i∈U

DijER(zmi)ER(zmi), (4.15)

where m = 1, 2, z1i is defined in (4.8) and z2i id defined in (4.12).

(ii) If p is known then the variance of the proposed estimator is given by,

V (Ŷ
(1)
R ) ≈

∑
i∈U

D2iy
2
i +

∑
i∈U

∑
j ̸=i∈U

Dijeiej −
∑
i∈U

Di(2yi −Rxi)Rxi, (4.16)

where Di =
1−πi

πi
, D2i =

1−πi

πip
, Dij =

πij−πiπj

πiπj
and ei = yi −Rxi.

(iii) If p is unknown then the variance of the proposed estimator is given by,

V (Ŷ
(2)
R ) ≈

∑
i∈U

D2i(yi − Ȳ )2 +
∑
i∈U

Diτ +
∑
i∈U

∑
j ̸=i∈U

Dijeiej , (4.17)

where D2i, Dij and ei are defined in (4.16) and τ =
[
(yi − Ȳ ) + (yi −

Rxi)
]
(xi − X̄)R.
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Proof. The proof of Theorem 4.5 is given in Appendix.

5 Efficiency comparison

5.1 Theoretical analysis

In this section we compare the efficiency of the proposed estimator with Srndal
and Lundstrm [12]’s estimator by comparing variance as discussed in Theorem 5.1.

Theorem 5.1. Assuming that assumption (A) and (B) are correct under a re-
verse framework with unequal probability sampling without replacement. Let T1ij =

yixj + yjxi − xixjR and T1i =
[
(yi − Ȳ ) + (yi −Rxi)

]
(xi − X̄) + 2(yi − Ȳ )Ȳ .

(i) Assume that p is known. V (Y
(1)
R ) < V (Ŷ

(1)
r ) if and only if

∑
i∈U

∑
j∈U DijT1ij >

0.

(ii) Assume that p is unknown. V (Y
(2)
R ) < V (Ŷ

(2)
r ) if and only if

∑
i∈U DiT1i+∑

i∈U

∑
j ̸=i∈U DijT1ij > 0

Proof. (i) Let T1ij = yixj + yjxi − xixjR and assume that p is known.

V (Ŷ
(1)
R ) < V (Ŷ (1)

r )

⇔
∑
i∈s

D2iy
2
i +

∑
i∈U

∑
j ̸=i∈U

Dijeiej −
∑
i∈U

Di(2yi −Rxi)Rxi

<
∑
i∈U

D2iy
2
i +

∑
i∈U

∑
j ̸=i∈U

Dijyiyj

⇔ −
∑
i∈s

Di(2yixi −Rx2
i )R

−
∑
i∈U

∑
j ̸=i∈U

Dij(yixj + yjxi − xixjR)R < 0

⇔ −
∑
i∈U

∑
j∈U

Dij(yixj + yjxi − xixjR)R < 0

⇔
∑
i∈U

∑
j∈U

Dij(yixj + yjxi − xixjR)R > 0

⇔
∑
i∈U

∑
j∈U

Dij(yixj + yjxi − xixjR) > 0

⇔
∑
i∈U

∑
j∈U

DijT1ij > 0. (5.1)

Therefore when the condition (5.1) is satisfied, the proposed estimator is
more efficient than Srndal and Lundstrm [12]s estimator.

(ii) The proof of (ii) is similar to the proof (i).
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5.2 Simulation study

In this subsection, the efficiency of the proposed estimator is compared with the
Srndal and Lundstrm [12]s estimator by using their simulated relative biases (RB)
and relative root mean square errors (RRMSE) and defined by,

RB(Ŷ (m)) =

1
B

B∑
i=1

Ŷ
(m)
[b] − Y

Y
, (5.2)

RRMSE(Ŷ (m)) =

√
1
B

B∑
i=1

(Ŷ
(m)
[b] − Y )2

Y
, (5.3)

where Ŷ (m) = Ŷ
(m)
r or Ŷ

(m)
R . Ŷ

(m)
r is the Srndal and Lundstrm [12]s estimator

and Ŷ
(m)
r[b] is the value of Srndal and Lundstrm [12]s estimator in iteration b, for

m = 1, 2. Ŷ
(m)
R is the proposed estimator and Ŷ

(m)
R[b] is the value of proposed

estimator in iteration b, for m = 1, 2. We use the Midzuno [15] scheme for selecting
a sample s of size n from population U of size N . Under this scheme, the first and
second order inclusion probabilities are given as follows,

πi =
ki
K

N − n

N − 1
+

n− 1

N − 1
, (5.4)

πij =
ki + kj

K

N − n

N − 1

n− 1

N − 1
+

n− 1

N − 1

n− 2

N − 2
, (5.5)

whereK =
∑

i∈U ki. The real population data of size N = 299 namely agstrat.dat
was used in the simulation study (see, Lohr [16]). We used three variables from this
data: the number of acres devoted to farms during 1992 (ACRES92), number of
acres devoted to farms during 1982 (ACRES82) and number of farms (FARMS92).
Let y = ACRES92, x =ACRES82, and k = FARMS92. The simulation steps
to compare the efficiency of the Srndal and Lundstrm [12]s estimator with the
proposed estimator are as follows.
Step1. Select a sample of 5 % from population U size N = 299.
Step 2. Generate a response indicator from the uniform nonresponse mechanism
with different levels of response probability.

Step 3. Compute Ŷ
(m)
r and Ŷ

(m)
R , where m = 1, 2 .

Step 4. Repeat steps (1) to (3) 10,000 times.

Step 5. Compute RB(Ŷ (m)) and RRMSE(Ŷ (m)) , where Ŷ (m) = Ŷ
(m)
r or Ŷ

(m)
R

and m = 1, 2 .
Table 1 gives the empirical RB of the proposed estimator and Srndal and

Lundstrm [12]s estimator for different response probability. The results show that
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for all levels of response probability the proposed estimator has a smaller value of
RB than Srndal and Lundstrm [12]s estimator. Moreover, the RB of the proposed
estimator and Srndal and Lundstrm [12]s estimator are very close to zero except
where in the case that response probability is known and is less than 0.5. In
addition, we present the simulated values of RRMSE in table 2. The results
show that the proposed estimator has a smaller value of RRMSE than Srndal
and Lundstrm [12]s estimator for all levels of response probability.

Table 1: The simulated RB of the Srndal and Lundstrm [12]s estimator
and proposed estimator

p Simulated relative biases
p is known p is unknown

RB(Ŷ
(1)
r ) RB(Ŷ

(1)
R ) RB(Ŷ

(2)
r ) RB(Ŷ

(2)
R )

0.3 0.3412 0.3360 0.0087 0.0056

0.4 0.1141 0.1161 -0.0037 -0.0013

0.5 0.0086 0.0010 0.0051 -0.0020

0.6 0.0094 0.0041 0.0040 -0.0010

0.7 -0.0017 -0.0013 -0.0021 -0.0015

0.8 0.0040 -0.0011 0.0055 0.0002

0.9 -0.0027 -0.0005 -0.0031 -0.0007

Table 2: The simulated RRMSE of the Srndal and Lundstrm [12]s esti-
mator and proposed estimator
p Simulated relative root mean square errors

p is known p is unknown

RRMSE(Ŷ
(1)
r ) RRMSE(Ŷ

(1)
R ) RRMSE(Ŷ

(2)
r ) RRMSE(Ŷ

(2)
R )

0.3 0.7461 0.6011 0.4708 0.3401

0.4 0.5415 0.4177 0.4308 0.3083

0.5 0.4901 0.3653 0.4266 0.2904

0.6 0.4278 0.2916 0.3830 0.2290

0.7 0.3807 0.2398 0.3479 0.1877

0.8 0.3478 0.1869 0.3260 0.1448

0.9 0.3111 0.1243 0.3005 0.0983
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6 Conclusions

In this paper we proposed a new ratio estimator for estimating population total
using Srndal and Lundstrm [12]s estimator modified with Bacanli and Kadilar [5]s
estimator with uniform nonresponse under unequal probability sampling without
replacement. We investigated the variance of the proposed estimator under a re-
verse framework with an overall negligible sampling fraction. In theoretical analy-
sis under some conditions we showed that the proposed estimator is more efficient
than Srndal and Lundstrm [12]s estimator. The simulation study shows that the
proposed estimator had RB and RRMSE lower than Srndal and Lundstrm [12]s
estimator for all levels of response probability.
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Appendix:Proof of Theorme 4.5.

Assuming that (A) and (B) hold true.

Proof. (i) From (4.14) we have,

V (Ŷ
(m)
R ) ≈ ERVS

[∑
i∈s

zmi

πi

∣∣∣R]
, (A1)

where z1i =
riyi
p

−xiRr , Rr =
∑

i∈s
riyi
p

X
and z2i =

N∑
i∈U ri

ri(yi−ȲR)− ȲR
X̄

(xi−X̄).

First of all we consider VS

[∑
i∈s

zmi
πi

∣∣∣R]
in (A1) since

∑
i∈s

zmi
πi

has the form of

Horvitz and Thompson [11]’s estimator therefore,

VS

[∑
i∈s

zmi

πi

∣∣∣R]
=

∑
i∈U

Diz
2
mi +

∑
i∈U

∑
j ̸=i∈U

Dijzmizmj . (A2)

Substituting (A2) into (A1) one has,

V (Ŷ
(m)
R ) ≈ ER

[∑
i∈U

Diz
2
mi +

∑
i∈U

∑
j ̸=i∈U

Dijzmizmj

]
=

∑
i∈U

DiER(z
2
mi) +

∑
i∈U

∑
j ̸=i∈U

DijER(zmi)ER(zmj).

Therefore,

V (Ŷ
(m)
R ) ≈

∑
i∈U

DiER(z
2
mi) +

∑
i∈U

∑
j ̸=i∈U

DijER(zmi)ER(zmj), (A3)

where z1i =
riyi
p

−xiRr , Rr =
∑

i∈s
riyi
p

X
and z2i =

N∑
i∈U ri

ri(yi−ȲR)− ȲR
X̄

(xi−X̄).
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(ii) From (A3) if m = 1 we have,

V (Ŷ
(1)
R ) ≈

∑
i∈U

DiER(z
2
1i) +

∑
i∈U

∑
j ̸=i∈U

DijER(z1i)ER(z1j). (A4)

Next, we investigate ER(z1i) and ER(z
2
1i) . Recall from (A3) we have z1i =

riyi
p

− xiRr therefore,

ER(z1i) = ER

[riyi
p

− xiRr

]
= yi −Rxi = ei, (A5)

where ei = yi −Rxi and R =
∑

i∈U yi∑
i∈U xi

.

Then,

z21i =
riy

2
i

p2
− 2riyixiRr

p
+ x2

iR
2
r. (A6)

From (A6) the expectation of z21i is obtained by,

ER(z
2
1i) = ER

[riy2
i

p2
− 2riyixiRr

p
+ x2

iR
2
r

]
≈ y2

i

p2
− (2yi −Rxi)Rxi. (A7)

Substitute (A5) and (A7) in (A4) we have,

V (Ŷ
(1)
R ) ≈

∑
i∈s

D2iy
2
i +

∑
i∈U

∑
j ̸=i∈U

Dijeiej −
∑
i∈U

Di(2yi −Rxi)Rxi, (A7)

where Di =
1−πi
πi

, D2i =
1−πi
πip

and Dij =
πij−πiπj

πiπj
.

(iii) The proof of (iii) is similar to (ii).
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