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1 Introduction

The vector equilibrium problems contain many problems as special cases, in-
cluding vector variational inequality problems, vector optimization problems, vec-
tor complementarity problems, vector Nash equilibrium problems, etc. Because
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Painlevé-Kuratowski Convergence of Solution Sets 397

of the general form of this problem, in fact it was investigated earlier under other
terminologies (see, [4, 8, 20]). Recently, there has been an increasing interest in
the study to stability of vector equilibrium problems see, e.g., [1, 2, 24, 25, 26].

As for the stable results investigated on the convergence of the sequence of
mappings, there are some results for the vector optimization, vector variational
inequality problems and vector equilibrium problems with a sequence of sets con-
verging in the sense of Painlevé-Kuratowski (see e.g., [9, 10, 13, 16, 21]. In [13],
Huang discussed the convergence of the approximate efficient sets to the efficient
sets of vector-valued and set-valued optimization problems in the sense of Painlevé-
Kuratowski and Mosco. In [10], Fang et al. investigated the Painlevé-Kuratowski
convergence of the solution sets of the perturbed set-valued weak vector variational
inequality problems. In [16], Lalitha and Chatterjee investigated the Painlevé-
Kuratowski set convergence of the solution sets of a nonconvex vector optimization
problem. In [21], Peng and Yang investigated the Painlevé-Kuratowski set conver-
gence of the solution sets of the perturbed vector equilibrium problems without
monotonicity in real linear metric spaces. Very recently, Li et al. [17] concerned
with the stability for a generalized Ky Fan inequality when it is perturbed by
vector-valued bifunction sequence and set sequence. By continuous convergence of
the bifunction sequence and Painlevé-Kuratowski convergence of the set sequence,
they established the Painlevé-Kuratowski convergence of the approximate solu-
tion mappings of a family of perturbed problems to the corresponding solution
mapping of the original problem.

On the other hand, J.Y. Fu et al. in [11] presented a generalized strong vec-
tor quasi-equilibrium problem with set-valued mapping and domination structure
(GSVQEP). It is better than other solutions, such as weak efficient solution, effi-
cient solution, and proper efficient solution. Therefore, it is interesting to discuss
the (GSVQEP) and the properties of its solution set.

Motivated by the work reported in above, this paper aims to establish some
results for the solution set of a generalized strong vector quasi-equilibrium problem
with set-valued mapping and domination structure. We first discuss the Painlevé-
Kuratowski upper convergence of the solution sets. We consider a generalized
nonlinear scalarization function, which will be used to construct a gap function
for such problem on set-valued mapping concerning with set-valued mapping and
domination structure and we also introduce a key assumption (Hg). Thus, the
Painlevé-Kuratowski lower convergence of the solution set is established under the
main assumption (Hg).

The rest of the paper is organized as follows. In section 2, we introduce the
generalized strong vector quasi-equilibrium problem with domination structure
(for short, GSVQEP) and (GSVQEP)n, recall some definitions and important
properties. In section 3, we establish Painlevé-Kuratowski convergence of the
solution sets, and provide some examples to illustrate that our main results are
new and different from the existing ones in literature.
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2 Preliminaries

Throughout this paper, unless specified otherwise, we always suppose that
X,Y and Z are metric linear spaces. Let A ⊂ X be a nonempty, compact, closed
convex subset, K : A → 2A be a set-valued mapping, E ⊂ Y be a nonempty
compact subset, and set-valued mapping P : A → 2Z be a closed mapping such
that for all x ∈ A,P (x) ⊂ Z be a proper, closed convex cone with the apex at the
origin 0 of Z. The family {P (x) : x ∈ A} is called a domination structure on Z.
Let set-valued mappings f : E ×A×A → 2Z and closed mapping T : A → 2E .

We consider the following generalized strong vector quasi-equilibrium problem
with set-valued mapping and domination structure:

(GSVQEP)

{
Find x ∈ K(x) such that for each y ∈ K(x), there is some t ∈ T (x)
such that f(t, x, y) ⊂ P (x).

For each n ∈ N, let fn : E × A × A → 2Z , Kn : A → 2A and Tn : A → 2E be
three set-valued mappings. We consider the following sequence of the generalized
strong vector quasi-equilibrium problems :

(GSVQEP)n

{
Find xn ∈ Kn(xn) such that for each y ∈ Kn(xn), there is some
tn ∈ Tn(xn) such that fn(tn, xn, y) ⊂ P (xn).

We denote the solution sets of problems (GSVQEP) by S(T,K, f) and (GSVQEP)n
by S(Tn,Kn, fn). We mainly analyze the behavior of S(T,K, f) and S(Tn,Kn, fn).
Thus, we always assume that S(T,K, f) and S(Tn,Kn, fn) are not equal empty
sets.

Remark 2.1. If K(x) ≡ K where K be a nonempty, closed convex subset of X,
then the problem (GSVQEP) reduces to the generalized strong vector quasiequi-
librium problem with set-valued mapping and domination structure (for short,
GSVQEP) studied in [11].

Definition 2.1. Let X and Y be two metric spaces and G : X → 2Y be a
set-valued mapping.

(i) G is said to be lower semicontinuous at x0 ∈ X, if G(x0) ∩ U ̸= ∅ for some
open set U ⊂ Y implies the existence of a neighborhood N of x0 such that
G(x) ∩ U ̸= ∅,∀x ∈ N . G is said to be lower semicontinuous in X if it is
lower semicontinuous at each x0 ∈ X.

(ii) G is said to be upper semicontinuous at x0 ∈ X, if for each open set U ⊇
G(x0), there is a neighborhood N of x0 such that U ⊇ G(x),∀x ∈ N . G is
said to be upper semicontinuous in X if it is upper semicontinuous at each
x0 ∈ X.

(iii) G is said to be continuous at x0 ∈ X, if it is both lower semicontinuous and
upper semicontinuous at x0. G is said to be continuous in X if it is both
lower semicontinuous and upper semicontinuous at each x0 ∈ X.
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(vi) G is said to be closed at x0, if for each sequence {(xn, yn)} ⊂ graphG :=
{(x, y)|y ∈ G(x)}, (xn, yn) → (x0, y0), it follows that (x0, y0) ∈ graphG. G
is said to be closed in X if it is closed at each x0 ∈ X.

Lemma 2.2. ([3]) Let X and Y be two metric spaces and G : X → 2Y be a
set-valued mapping. If G has compact values, then G is upper semicontinuous at
x0 if and only if, for each sequence {xn} ⊂ X which converges to x0 and for each
sequence {yn} ⊂ G(xn), there are y ∈ G(x) and a subsequence {ym} of {yn} such
that ym → y.

Lemma 2.3. ([3]) Let X and Y be topological spaces. If a set-valued mapping
T : X → 2Y is upper semicontinuous with compact values, then for every compact
set K ⊂ X, the set T (K) = ∪x∈KT (x) is compact.

Definition 2.2. ([22]) Let {Cn} be a sequence of sets of Rm and C be a subset
of Rm.

(i) lim supn→∞ Cn := {x ∈ Rm|∃xnk
∈ Cnk

, xnk
→ x} is its outer limit;

(ii) lim infn→∞ Cn := {x ∈ Rm|∃xn ∈ Cn, xn → x} is its inner limit;

(iii) {Cn} is said to be Painlevé-Kuratowski convergent to C, denoted by Cn
P.K.−−−→

C, if and only if lim supn→∞ Cn ⊂ C ⊂ lim infn→∞ Cn.

The relations lim supn→∞ Cn ⊂ C and C ⊂ lim infn→∞ Cn are, respectively,
referred as the upper part and the lower part of the convergence. Clearly,

lim inf
n→∞

Cn ⊂ lim sup
n→∞

Cn.

Definition 2.3. ([22]) Let S : X → 2Y be a set-valued mapping.

(i) S is said to be outer semicontinuous (osc) at x̄ if lim supx→x̄ S(x) ⊂ S(x̄)
with
lim supx→x̄ S(x) := ∪xn→x̄ lim supn→∞ S(xn).

(ii) S is said to be inner semicontinuous (isc) at x̄ if S(x̄) ⊂ lim infx→x̄ S(x)
with
lim infx→x̄ S(x) := ∩xn→x̄ lim infn→∞ S(xn).

(iii) S is said to be continuous at x̄, written as S(x) → S(x̄) as x → x̄
if it is both outer semicontinuous and inner semicontinuous.

Definition 2.4. ([22]) Let fn : X → 2Y be a sequence of set-valued mappings
and
f : X → 2Y be a set-valued mapping.

(i) {fn} is said to be outer converges continuously to f at x0 if

lim sup
n→∞

fn(xn) ⊂ f(x0),∀xn → x0;
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(ii) {fn} is said to be inner converges continuously to f at x0 if

f(x0) ⊂ lim inf
n→∞

fn(xn)),∀xn → x0;

(iii) {fn} is said to be converges continuously to f at x0 if

lim sup
n→∞

fn(xn) ⊂ f(x0) ⊂ lim inf
n→∞

fn(xn), ∀xn → x0.

(iv) {fn} is said to be converges continuously to f on X
if {fn} converges continuously to f at every x0 ∈ X.

Next, we recall the concept of the nonlinear scalarization function which can
be found in [6, 7, 28].

Definition 2.5. [6, 7, 28] Let e : X → Y be a vector-valued mapping and for any
x ∈ X, e(x) ∈ intC(x). The nonlinear scalarization function ξe : X × Y → R
defined by

ξe(x, y) = inf{r ∈ R : y ∈ re(x)− C(x)}.

In the special case where Y = Rp and for any x ∈ X,P (x) ≡ Rp
+ and e(x) =

e, let e = (1, 1, 1, . . . , 1)T ∈ intRp
+, the nonlinear scalarization function can be

expressed in the following equivalent form [7]:

ξe(y) = max
1≤i≤p

{yi}, ∀y := (y1, y2, . . . , yp)
T ∈ Rp. (2.1)

Proposition 2.6. For each r ∈ R and x, y ∈ X, the following statements are
satisfied.

(i) ξe(x, y) < r ⇔ y ∈ re(x)− intC(x);

(ii) ξe(x, y) ≤ r ⇔ y ∈ re(x)− C(x);

(iii) ξe(x, y) ≥ r ⇔ y /∈ re(x)− intC(x);

(iv) ξe(x, y) > r ⇔ y /∈ re(x)− C(x);

(v) ξe(x, y) = r ⇔ y ∈ re(x)−∂C(x), where ∂C(x) is the topological boundary of
C(x).

Lemma 2.4. ([6]) Let X and Y be two locally convex Hausdorff topological vector
spaces, and let C : X → 2Y be a set-valued mapping such that, for each x ∈ X,C(x)
is a proper, closed, convex cone in Y with intC(x) ̸= ∅. Furthermore, let e : X → Y
be the continuous selection of the set-valued map intC(·). Define a set-valued
mapping V : X → 2Y by V (x) = Y \intC(x) for x ∈ X. We have

(i) If V (·) is usc in X, then ξe(·, ·) is upper semicontinuous in X × Y ;

(ii) If C(·) is usc in X, then ξe(·, ·) is lower semicontinuous in X × Y .
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Remark 2.5. From Lemma 2.4, we know that if V (·) and C(·) are both usc in
X, then ξe(·, ·) is continuous in X × Y .

A subset B ⊂ X is said to be balanced if αB ⊂ B for every α ∈ R with |α| ≤ 1.
The following result is a well-known fact.

Lemma 2.6. For each neighborhood U of 0X , there exists a balanced open neigh-
borhood V of 0X such that V + V + V ⊂ U.

3 Main Results

In this section, we investigate the upper Painlevé-Kuratowski convergence of
the sequence sets S(Tn,Kn, fn). In this section, our focus is on the Painlevé-
Kuratowski upper convergence of the solution sets for (GSVQEP)n.

Theorem 3.1. For (GSVQEP)n, assume the following conditions are satisfied:

1. {Kn} converges continuously to K;

2. {Tn} outer converges continuously to T ;

3. {fn} converges continuously to f ;

4. P is closed.

Then, lim supn→∞ S(Tn,Kn, fn) ⊂ S(T,K, f).

Proof. Let x0 ∈ lim supn→∞ S(Tn,Kn, fn) be any given. So, there exists a subse-
quence {xnk

} in S(Tnk
,Knk

, fnk
) converging to x0. Then, for each y ∈ Knk

(xnk
),

there exists tnk
∈ Tnk

(xnk
) such that

fnk
(tnk

, xnk
, y) ⊂ P (xnk

), for all k ∈ N. (3.1)

Since xnk
∈ Knk

(xnk
) and xnk

→ x0, one implies that x0 ∈ lim supn→∞ Kn(xn).
As {Kn} outer converges continuously to K, we have lim supn→∞ Kn(xn) ⊂
K(x0). Hence, x0 ∈ K(x0). Further, since T (xnk

) ⊂ T (A) and T (A) is com-
pact, thus {tnk

} has a convergent subsequence. Without loss of generality, we can
assume that tnk

→ t0 ∈ T (A). Then,

t0 ∈ lim sup
n→∞

Tn(xn).

By the virtue of (ii), we have t0 ∈ T (x0). Next, we show that, for all y ∈ K(x0),

f(t0, x0, y) ⊂ P (x0).

As {Kn} inner converges continuously to K and xnk
→ x0, for any y ∈ K(x0),

there exists a sequence ynk
∈ Knk

(xnk
) such that ynk

→ y as k → ∞. Applying
(3.1), we have

fnk
(tnk

, xnk
, ynk

) ⊂ P (xnk
), ∀k ∈ N. (3.2)
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Since {fnk
} converges continuously to f at (t0, x0, y) and (tnk

, xnk
, ynk

) → (t0, x0, y),
we can conclude that

lim sup
k→∞

fnk
(tnk

, xnk
, ynk

) ⊂ f(t0, x0, y) ⊂ lim inf
k→∞

fnk
(tnk

, xnk
, ynk

).

Thus, for any fixed w0 ∈ f(t0, x0, y), we have w0 ∈ lim infk→∞ fnk
(tnk

, xnk
, ynk

),
there exists a subsequence {wnk

} of {wn} such that wnk
∈ fnk

(tnk
, xnk

, ynk
), and

wnk
→ w0 as k → ∞. By (3.2), we get wnk

∈ P (xnk
). By the virtue of the

closedness of P , we have (x0, w0) ∈ graph P , that is w0 ∈ P (x0). Thus, we
actually conclude that

f(t0, x0, y) ⊂ P (x0),

which gives that x0 ∈ S(T,K, f). This complete the proof.

The following examples show that none of the assumptions in Theorem (3.1)
can be dropped.

Example 3.1. (Assumption (i) can not be dropped)
LetX = Y = Z = R, P (x) = [0,+∞),K(x) = [−1, 1],Kn(x) = [− 1

n ,
1
n ], T (x), Tn(x) =

[−1, 1]. We define a mappings f, fn : E ×K ×K → R by

f(t, x, y) = y − x and fn(t, x, y) = (1 +
1

n
)(y − x).

Thus, assumptions (ii)-(iv) holds. It follows from a direct computation S(T,K, f) =
{−1} and S(Tn,Kn, fn) = {− 1

n}. However, the result of Theorem 3.1 does not
hold. In fact,

{0} = lim sup
n→∞

S(Tn,Kn, fn) ⊈ S(T,K, f) = {−1}.

The reason is that, {Kn} does not converge in the sense of Painlevé-Kuratowski
to K.

Example 3.2. (Assumption (ii) can not be dropped)
Let X = Y = Z = R, P (x) = [0,+∞). Let K(x),Kn(x) = [−1, 1], T (x) =
[0, 1], Tn(x) = [−1− 1

n , 1]. Define a mappings f, fn : E ×K ×K → R by

f(t, x, y) = t+ y − x and fn(t, x, y) = (t+
1

n
) + (y − x).

Thus, assumptions (i),(iii), and (iv) holds. It follows from a direct computation
S(T,K, f) = {−1} and S(Tn,Kn, fn) = {−1, 1}. However, the result of Theorem
3.1 does not hold. In fact,

{−1, 1} = lim sup
n→∞

S(Tn,Kn, fn) ⊈ S(T,K, f) = {−1}.

The reason is that, {Tn} does not converge continuously to T .
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Example 3.3. (Assumption (iii) can not be dropped)
Let X = Y = Z,P (x) = R2

+. Let K(x),Kn(x) = [0, 1], T (x), Tn(x) = [1, 1 + x2].
Define a mappings f, fn : E ×K ×K → R2 by

f(t, x, y) = (0, x− y) and fn(t, x, y) =
( 1

n
(y − x), 0

)
.

Thus, assumptions (i),(ii), and (iv) holds. It follows from a direct computation
S(T,K, f) = {1} and S(Tn,Kn, fn) = {0}. However, the result of Theorem 3.1
does not hold. In fact,

{0} = lim sup
n→∞

S(Tn,Kn, fn) ⊈ S(T,K, f) = {1}.

The reason is that, {fn} does not converge continuously to f .

Theorem 3.2. For (GSVQEP), assume the following conditions are satisfied:

(i) K is continuous on A;

(ii) f is isc on E ×A×A;

(iii) T is osc on A;

(iv) A and K(A) are compact sets;

(v) P is closed.

Then, S(T,K, f) is compact.

Proof. First, we prove that S(T,K, f) is a closed set. Take any sequence {xn} ∈
S(T,K, f) with xn → x0. Then, for any y ∈ K(xn), there exists a sequence
tn ∈ T (xn) such that

f(tn, xn, y) ⊂ P (xn). (3.3)

As xn ∈ K(xn) and xn → x0, one has x0 ∈ lim infn→∞ K(xn). Hence, x0 ∈
lim supn→∞ K(xn). By the outer semicontinuity of K at x0, we have

lim sup
n→∞

K(xn) ⊂ K(x0).

Hence, x0 ∈ K(x0). Further, since tn ∈ T (xn) ⊂ T (A) and T (A) is compact,
then {tn} has a convergent subsequence which converges in T (A). Without loss
of generality, we may assume that

tn → t0 ∈ T (A).

Then, t0 ∈ lim supn→∞ T (xn). By (iii), we have t0 ∈ T (x0). Finally, we shall
prove that, for any y ∈ K(x0),

f(t0, x0, y) ⊂ P (x).
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For any y ∈ K(x0), since K is isc at x0, one has y ∈ lim infn→∞ K(xn). Then,
there is a sequence {yn} ⊂ K(xn) such that yn → y. Let z0 ∈ f(t0, x0, y) be
arbitrary. As f is isc on E ×A×A and (tn, xn, yn) → (t0, x0, y), one has

f(t0, x0, y) ⊂ lim inf
n→∞

f(tn, xn, yn).

Hence, z0 ∈ lim infn→∞ f(tn, xn, yn). Then, there exists a sequence {zn} ⊂
f(tn, xn, yn) such that

zn → z0 as n → ∞.

Applying (3.3), we have {zn} ⊂ P (xn). By the closedness of P , (x0, z0) ∈ graphP ,
that is, z0 ∈ P (x0). Thus, we get x0 ∈ S(T,K, f). So, S(T,K, f) is a closed set.
As S(T,K, f) ⊂ K(A) and K(A) be a compact set, we obtain that S(T,K, f) is a
compact set.

Similarly, we have the following result.

Theorem 3.3. For any n, suppose that

(i) {Kn} is continuous on A;

(ii) {fn} is isc on E ×A×A;

(iii) {Tn} is osc on A;

(iv) A and Kn(A) are compact sets;

(v) P is closed.

Then, S(Tn,Kn, fn) is a compact set.

4 Painlevé-Kuratowski lower convergence of the
solution sets.

In this section, we mainly discuss the Painlevé-Kuratowski lower convergence of
the sequence sets S(Tn,Kn, fn). First of all, we give the concept of introduce a
sequence of gap functions based on the nonlinear scalarization for (GSVQEP) and
establish a key assumption (Hg) imposed on the sequence of gap functions. Set

K̃ := {x ∈ A|x ∈ K(x)} and K̃n := {x ∈ A|x ∈ Kn(x)}.

For the set-valued mapping with compact values f : E × A × A → 2Z and fn :
E × A × A → 2Z , we introduce respectively two mappings φ : E × K̃ × K̃ → R
and φn : E × K̃n × K̃n → R as the following :

φ(t, x, y) = max
v∈−f(t,x,y)

ξe(x, v);

and
φn(tn, xn, y) = max

vn∈−fn(tn,xn,y)
ξe(xn, vn),

where ξe : X × Z → R is the nonlinear scalarization function.
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Lemma 4.1. 1. For (GSVQEP), suppose that for every fixed x ∈ K̃, −f(·, x, ·)
is lower semicontinuous with compact values on E × A and K has closed
values on K̃. Then, for any fixed x ∈ K̃, maxy∈K(x) φ(·, x, y) is lower semi-
continuous on E.

2. For (GSVQEP)n, n ∈ N, suppose that, for every fixed x ∈ K̃n, −fn(·, x, ·)
is lower semicontinuous with compact values on E × A and Kn has closed
values on K̃n. Then, for any fixed x ∈ K̃n, maxy∈Kn(x) φn(·, x, y) is lower
semicontinuous on E.

Proof. (i) Since, for every fixed x ∈ K̃, −f(·, x, ·) is a lower semicontinuous set-
valued mapping on E×K̃, it follows from [3] that φ(·, x, ·) is lower semicontinuous
on E × K̃, for any fixed x ∈ K̃. Thus, we have that maxy∈K(x) φ(·, x, y) is lower
semicontinuous on E.

Similarly, we can show that (ii) holds.

For (GSVQEP) and (GSVQEP)n, n ∈ N, suppose that K(x), T (x),Kn(x) and
Tn(x) are compact for all x ∈ A. Then, from Lemma 4.1, we define the following
two real-valued functions g : K̃ → R and gn : K̃n → R by

g(x) = − min
t∈T (x)

max
y∈K(x)

φ(t, x, y), ∀x ∈ K̃, (4.1)

and
gn(x) = − min

t∈Tn(x)
max

y∈Kn(x)
φn(t, x, y), ∀x ∈ K̃n. (4.2)

Lemma 4.2. 1. Suppose that, for every fixed x ∈ K̃, −f(·, ·, x) is a lower
semi-continuous set-valued mapping with compact values on E × K̃, K and
T have closed values on K̃. If −f(t, x, x) ∩ −∂P (x) ̸= ∅, ∀x ∈ K̃ and
t ∈ T (x), then g defined by (4.1) is a gap function for (GSVQEP).

2. Suppose that, for every fixed x ∈ K̃n, −fn(·, ·, x) is a lower semi-continuous
set-valued mapping with compact values on E× K̃n, Kn and Tn have closed
values on K̃n. If −fn(t, x, x) ∩ −∂P (x) ̸= ∅, ∀x ∈ K̃n and t ∈ Tn(x), then
gn defined by (4.1) is a gap function for (GSVQEP)n.

Proof. (i) (a) We first show that, for all x ∈ K̃, g(x) ≤ 0. Since −f(t, x, x) ∩
−∂P (x) ̸= ∅, ∀x ∈ K̃ and t ∈ T (x), there exists wxt ∈ −f(t, x, y) such that
wxt ∈ −∂P (x). It follows from Proposition 2.6 (v) that

ξe(x,wxt) = 0.

Then, for all x ∈ K̃ and t ∈ T (x),

max ξe(x,−f(t, x, x)) ≥ 0.

Naturally, for all x ∈ K̃,

g(x) = − min
t∈T (x)

max
y∈K(x)

max ξe(x,−f(t, x, y)) ≤ 0. (4.3)
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(b) Next, we want to prove that g(x̄) = 0 if and only if x̄ is a solution of
(GSVQEP). Firstly, we suppose that there is x̄ ∈ K̃ such that g(x̄) = 0. Applying
Lemma 4.1, there exists a point t̄ ∈ T (x̄) such that

g(x̄) = − max
y∈K(x̄)

max ξe(x,−f(t̄, x̄, y)) = 0.

which gives that,

max ξe(x,−f(t̄, x̄, y)) ≤ 0, ∀y ∈ K(x̄).

By the virtue of Proposition 2.6 (ii), we have

−f(t̄, x̄, y) ⊂ −P (x̄), for all y ∈ K(x̄);

that is, for all y ∈ K(x̄),

f(t̄, x̄, y) ⊂ P (x̄).

Then, we can conclude that x̄ is a solution of (GSVQEP).

Conversely, suppose that x̄ is a solution of (GSVQEP). Then, there is t̄ ∈ T (x̄)
such that

f(t̄, x̄, y) ⊂ P (x̄), ∀y ∈ K(x̄),

i.e.,

−f(t̄, x̄, y) ⊂ −P (x̄), ∀y ∈ K(x̄).

Using the Proposition 2.6 (ii), we get that

ξe(x, v) ≤ 0, ∀v ∈ −f(t̄, x̄, y) and y ∈ K(x̄).

It follows that

g(x̄) ≥ 0. (4.4)

From (4.3) and (4.4), we get g(x̄) = 0. Hence, the mapping g be a gap function
for (GSVQEP).

Similarly, we can show that (ii) holds.

Proposition 4.3. Assume for the problem (GSVQEP) that

1. For every fixed x ∈ K̃, −f(·, ·, x) is a lower semi-continuous set-valued
mapping with compact values on E × K̃;

2. K is continuous with compact values in A;

3. T is continuous with compact values in A;

4. P is upper semicontinuous in A.

Then, g is continuous in K̃.
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Proof. (a) First, for any r ∈ R, we prove that the level set L := {x ∈ K̃ : g(x) ≤ r}
is closed. To this end, suppose that {xn} ⊂ L satisfying xn → x0 as n → ∞. It
follows that, for each n ∈ N,

g(xn) = − min
t∈T (xn)

max
y∈K(xn)

φ(t, xn, y) ≤ r,

which gives that
max

t∈T (xn)
(− max

y∈K(xn)
φ(t, xn, y)) ≤ r,

For any t0 ∈ T (x0), the lower semicontimuity of T implies that there exists a
sequence {tn} with tn ∈ T (xn) such that tn → t0 and so, we have

(− max
y∈K(xn)

φ(tn, xn, y)) ≤ r,

By the compactness of K(xn), there exists a sequence {yn} with yn ∈ K(xn) such
that

− φ(tn, xn, yn)) ≤ r, for all n ∈ N. (4.5)

Since K is upper semicontinuous with compact values, there exists a subsequence
{ynk

} of {yn} such that ynk
→ y0 for some y0 ∈ K(x0). From (4.5), it is clear that

− φ(tnk
, xnk

, ynk
)) ≤ r, for all k ∈ N. (4.6)

On taking the limit (as k → ∞) in the last inequality, we obtain

− φ(t0, x0, y0) ≤ r. (4.7)

It follows from (4.7) that

− max
y∈K(x0)

{φ(t0, x0, y)} ≤ r.

Since t0 ∈ T (x0) is arbitrary, it follows from the last inequality that

g(x0) = − min
t0∈T (x0)

max
y∈K(x0)

φ(t0, x0, y) ≤ r.

This proves that, for r ∈ R, the level set {x ∈ K̃ : g(x) ≤ r} is closed. Hence, g is
lower semicontinuous in K̃.

(b) Using the same argument as in the proof of (a), we can prove that for
r ∈ R, the level set {x ∈ K̃ : g(x) ≥ r} is closed. Hence, g is upper semicontinuous
in K̃.

Similarly, we have the following result.

Proposition 4.4. Assume for the problem (GSVQEP)n that, for each n ∈ N,

1. For every fixed x ∈ K̃, −fn(·, ·, x) is a lower semi-continuous set-valued
mapping with compact values on E × K̃n;
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2. Kn is continuous with compact values in A;

3. Tn is continuous with compact values in A;

4. P is upper semicontinuous in A.

Then, for each n ∈ N, gn is continuous in K̃n.

Lemma 4.5. Assume for the problem (GSVQEP)n that, for each n ∈ N,

1. For every fixed x ∈ K̃, −fn(·, ·, x) is a lower semi-continuous set-valued
mapping with compact values on E × K̃n;

2. Kn is continuous with compact values in A;

3. Tn is continuous with compact values in A;

4. P is upper semicontinuous in A.

Then, for any δ > 0, x0 ∈ K̃ and a sequence {xn} ⊂ K̃n satisfying xn → x0, there
exists a subsequence {xnj} of {xn} and N̄ ∈ N such that

gnj
(xnj

) ≥ g(x0)− δ, for all j ≥ N̄ .

Next, we establish that the condition (Hg) is a sufficient and necessary con-
dition for the lower Painleavé-Kuratowski convergence of the solution sets for
generalized strong vector quasi-equilibrium problem with domination structure
(GSVQEP). In view of hypothesis (Hg) of [5, 10, 12, 15, 27], we introduce the
following key assumption:

(Hg) : For any open neighborhood U of the origin in X, there exists α > 0

and an n0 ∈ N such that, for each n ≥ n0 with xn ∈ K̃n\(S(Tn,Kn, fn) +U), one
has gn(xn) ≤ −α.

Remark 4.6. Geometrically, the hypothesis (Hg) means that, given a small open
neighborhood U of 0X , we can find a small positive number α and a large enough
positive number n0 such that for all n ≥ n0, if a feasible point xn is not in the set
S(Tn,Kn, fn) + U , then a ”gap” by an amount of at least −α will be yielded.

We now need the following result to establish the Painlevé-Kuratowski lower
convergence of the sequence sets S(Tn,Kn, fn).

Lemma 4.7. Suppose that all the conditions in Theorem 3.2 are satisfied. Then,
S(T,K, f) ⊂ lim infn→∞ S(Tn,Kn, fn) if and only if for each open neighborhood
U of the origin in X, there is N > 0 such that

S(T,K, f) ⊂ S(Tn,Kn, fn) + U,

for all n ≥ N .
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Proof. Suppose that S(T,K, f) ⊂ lim infn→∞ S(Tn,Kn, fn) and there is an open
neighborhood U of the origin in X such that, for each n > 0, there exists Nn ≥ n
such that

S(T,K, f) ⊈ S(TNn
,KNn

, fNn
) + U.

Without loss of generality, we assume that {Nn} is strictly increasing. Hence,
there exists a sequence {xn} such that, for each n ∈ N,

xn ∈ S(T,K, f)\(S(TNn
,KNn

, fNn
) + U).

Hence, for each x ∈ S(TNn ,KNn , fNn), we have

xn − x /∈ U. (4.8)

Since S(T,K, f) is compact, without loss of generality, we can assume xn → x0 ∈
S(T,K, f). Since S(T,K, f) ⊂ lim infn→∞ S(Tn,Kn, fn), there is a sequence
zn ∈ S(Tn,Kn, fn) such that zn → x0 as n → ∞. For each n ∈ N, denote wn :=
xn − zn. Applying (4.8), we see that wNn

:= xNn
− zNn

∈ U c, the complement of
U . Since U c is closed and wNn

→ 0, we have 0 ∈ U c. This is a contradiction to
the given definition of U .

Conversely, suppose that for each open neighborhood U of the origin in X,
there is N > 0 such that

S(T,K, f) ⊂ (S(Tn,Kn, fn) + U),

for all n ≥ N . We will prove that, S(T,K, f) ⊂ lim infn→∞ S(Tn,Kn, fn). Let x0 ∈
S(T,K, f) be arbitrary. For each k ∈ N, Uk := B(0, 1

k ) is an open neighborhood
of the origin in X, and hence there exists Nk > 0 such that

x0 ∈ S(Tn,Kn, fn) + Uk, ∀n ≥ Nk.

Thus, for any n ≥ Nk, there exists a sequence {xk
n}∞k=1 in S(Tn,Kn, fn) such that

x0 − xk
n ∈ Uk.

By the compactness of S(Tn,Kn, fn) in Theorem (3.2) and xk
n ∈ S(Tn,Kn, fn),

there exists a subsequence of {xk
n} which converges in S(Tn,Kn, fn). Without loss

of generality, we may assume that

xk
n → xn ∈ S(Tn,Kn, fn) as k → ∞.

We have

d(xn, x0) ≤ d(xn, x
k
n) + d(xk

n, x0)

≤ d(xn, x
k
n) +

1

k
→ 0 as n, k → ∞.

Hence, xn → x0, i.e.,

S(T,K, f) ⊂ lim inf
n→∞

S(Tn,Kn, fn).

This complete the proof.
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Motivated by [15], we also study the characterizating (Hg).

Lemma 4.8. Suppose that all the conditions in Proposition 4.3 are satisfied. For
any open neighborhood U of the origin in X, we let

Θn
U := inf

x∈K̃n\(S(Tn,Kn,fn)+U)
−gn(x).

Then, (Hg) holds if and only if for any open neighborhood U of the origin in X,
one has

lim inf
n→∞

Θn
U > 0.

Proof. If (Hg) holds, then for any open neighborhood U of the origin in X, there

exists α > 0 and n0 ∈ N such that for each n ≥ n0 and x ∈ K̃n\(S(Tn,Kn, fn)+U),
one has gn(x) ≤ −α, that is, −gn(x) ≥ α > 0. It follows that

lim inf
n→∞

Θn
U ≥ α > 0.

Conversely, for any open neighborhood U of the origin in X,

π := lim inf
n→∞

Θn
U > 0.

Then there exists n0 ∈ N such that, for all n ≥ n0 and α := 1
2π, we have

Θn
U = inf

x∈K̃n\(S(Tn,Kn,fn)+U)
−gn(x) ≥ α > 0.

It then follows that, for each n ≥ n0 and xn ∈ K̃n\(S(Tn,Kn, fn) + U), one has

−gn(xn) ≥ α > 0.

Hence, (Hg) is obtained.

Now, we are in a position to state and prove the lower Painlevé-Kuratowski
convergence of the solution sets S(Tn,Kn, fn) in the following theorem.

Theorem 4.9. Suppose that all the conditions in Theorem 3.2 and Theorem 3.3
are satisfied. Suppose that assumption (Hg) holds and assume that K and g are

lsc in A and K̃(A), respectively. Then, (Hg) holds if and only if

S(T,K, f) ⊂ lim inf
n→∞

S(Tn,Kn, fn). (4.9)

Proof. We first prove the sufficient condition. Suppose on the contrary that (Hg)
holds but

S(T,K, f) ⊈ lim inf
n→∞

S(Tn,Kn, fn).
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Then due to Lemma 4.7, there is an open neighborhood U0 of the origin in X such
that for each n > 0, there exists Nn ≥ n such that we get

S(T,K, f) ⊈ S(TNn
,KNn

, fNn
) + U0.

Thus, there is a sequence {xNn
} in S(T,K, f) such that

xNn
/∈ S(TNn

,KNn
, fNn

) + U0, for all n ∈ N. (4.10)

By Theorem 3.2, S(T,K, f) is a compact set. Hence, we can assume without loss
of generality that, as n → ∞,

xNn → x0 ∈ S(T,K, f). (4.11)

For U0, in virtue of Lemma 2.6, there exists a balanced open neighborhood V0 of
0X such that V0 + V0 + V0 ⊂ U0. Furthermore, it is clear that for any given ε > 0,
(x0 + εV0) ∩K(x0) ̸= ∅. Since K is lsc at x0, there exists some k0 such that

(x0 + εV0) ∩K(xNn
) ̸= ∅, ∀n ≥ k0.

For a given ε ∈ (0, 1] and n ≥ k0, suppose that yNn ∈ (x0 + εV0) ∩K(xNn). We
claim that

yNn
/∈ S(TNn

,KNn
, fNn

) + V0. (4.12)

Otherwise, there exists zNn
∈ S(TNn

,KNn
, fNn

) such that yNn
− zNn

∈ V0. By
(4.11), without loss of generality, we may assume that xNn

− x0 ∈ V0, whenever n
is sufficiently large. Consequently, we get

xNn
− zNn

= (xNn
− x0) + (x0 − yNn

) + (yNn
− zNn

)

∈ V0 + (−εV0) + V0

⊂ V0 + V0 + V0

⊂ U0.

Hence, for each n ≥ k0, xNn
∈ S(TNn

,KNn
, fNn

)+U0, which contradicts to (4.10).
Thus, (4.12) is proved. By hypothesis (Hg), there exists a constant α > 0 and

n0 ∈ N with n0 ≥ k0 such that, for each n ≥ n0 with xn ∈ K̃n\(S(Tn,Kn, fn)+U),
one has gn(xn) ≤ −α. In particular, it follows from (4.12) that

gNn
(yNn

) ≤ −α, for n large enough.

Applying Lemma 4.5, for any δ > 0, there exists a subsequence {yNnj
} of {yNn}

and N̄ ∈ N such that

gNnj
(yNnj

) ≥ g(x0)− δ, for all j ≥ N̄ .

We choose an δ with δ < α, and hence

g(x0) ≤ gNnj
(yNnj

) + δ ≤ −α+ δ < 0, for all j ≥ N̄ .
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Therefore,
− min

t∈T (x0)
max

y∈K(x0)
max ξe(x0,−f(t, x0, y)) < 0.

So, for any t ∈ T (x0), there exists y0 ∈ K(x0) such that

max ξe(x0,−f(t, x0, y0)) > 0.

In other words, there exists v0 ∈ −f(t, x0, y0) such that ξe(x0, v0) > 0. From
Proposition 2.6(iv), one has v0 /∈ −P (x0). This also implies that −f(t, x0, y0) ⊈
−P (x0), i.e.,

f(t, x0, y0) ⊈ P (x0).

This is a contradiction to (4.11). Thus,

S(T,K, f) ⊂ lim inf
n→∞

S(Tn,Kn, fn).

Next, we show the necessary condition. Suppose to the contrary that S(T,K, f) ⊂
lim infn→∞ S(Tn,Kn, fn), but (Hg) does not hold. Then there exists an open
neighborhood U of the origin in X such that

lim inf
n→∞

Θn
U = 0,

where
Θn

U := inf
x∈K̃n\(S(Tn,Kn,fn)+U)

−gn(x).

It then follows that there exists a sequence {Θnj

U } of {Θn
U} such that limj→∞ Θ

nj

U =

lim infn→∞ Θn
U = 0. For each j ∈ N, since K̃nj\(S(Tnj ,Knj , fnj ) + U) is a

compact set and gnj is continuous (from Proposition 4.3), there exists xnj
∈

K̃nj
\(S(Tnj

,Knj
, fnj

) + U) satisfying Θ
nj

U = −gnj
(xnj

). Consequently,

lim
j→∞

gnj
(xnj

) = 0. (4.13)

Since xnj ∈ Knj (xnj ) ⊆ A and A is compact, we may assume that xnj → x0

as j → ∞. Consequently, x0 ∈ lim supn→∞ Kn(xn). As {Kn} outer converges
continuously to K, we have lim supn→∞ Kn(xn) ⊂ K(x0). Hence, x0 ∈ K(x0).

By the compactness of K̃n\(S(Tn,Kn, fn) + U), we may assume that

x′
n → x0 ∈ K̃n\(S(Tn,Kn, fn) + U).

Since x′
n → x0 and g is continuous function , one implies that

g(x′
n) → g(x0) as n → ∞. (4.14)

By the uniqueness of the limits, we get that g(x0) = 0. Since g be a gap function
for (GSVQEP), hence x0 ∈ S(T,K, f).

For any fixed t0 ∈ S(T,K, f), by our assumption, we have

t0 ∈ lim inf
n→∞

S(Tn,Kn, fn).
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This implies that, there exists a sequence {tn} ⊂ S(Tn,Kn, fn) such that tn → t0.
As x′

n ∈ K̃n\(S(Tn,Kn, fn) + U). it follows that

x′
n − tn /∈ U, ∀n.

Let n → ∞, we get that
x0 − t0 /∈ U.

This is a contradiction. Hence, (Hg) is valid. This complete the proof.

Theorem 4.10. Suppose that the conditions of Proposition 4.3 are satisfied and
Kn is u.s.c with closed values in X. Then, S(T,K, f) ⊂ lim infn→∞ S(Tn,Kn, fn)
if and only if (Hg) holds.

Proof. From Theorem (4.9), we only need to prove the necessity. Suppose to
the contrary that S(T,K, f) ⊂ lim infn→∞ S(Tn,Kn, fn), but (Hg) does not hold.
Then there exists an open neighborhood U of the origin in X such that

lim inf
n→∞

ΘU (xn) = 0.

where
ΘU (xn) := inf

xn∈K̃n\(S(Tn,Kn,fn)+U)
−g(xn).

Then, there exists N ∈ N such that

lim
n→∞

ΘU (xn) = lim
n→∞

(
inf

xn∈K̃n\S(Tn,Kn,fn)+U
g(xn)

)
= 0,

for all n ≥ N. Since K̃n\(S(Tn,Kn, fn) + U) is a compact set and g is continu-
ous (from Proposition 4.3), there exists x′

n ∈ K̃n\(S(Tn,Kn, fn) + U) satisfying
ΘU (x

′
n) = g(x′

n). This implies that

lim
n→∞

g(x′
n) = 0. (4.15)

By the compactness of K̃n\(S(Tn,Kn, fn) + U), we may assume that

x′
n → x0 ∈ K̃n\(S(Tn,Kn, fn) + U).

Since x′
n → x0 and g is continuous function , one implies that

g(x′
n) → g(x0) as n → ∞. (4.16)

By the uniqueness of the limits, we get that g(x0) = 0. Since g be a gap function
for (GSVQEP), hence x0 ∈ S(T,K, f).

For any fixed t0 ∈ S(T,K, f), by our assumption, we have t0 ∈ lim infn→∞ S(Tn,Kn, fn).
This implies that, there exists a sequence {tn} ⊂ S(Tn,Kn, fn) such that tn → t0.
As x′

n ∈ K̃n\(S(Tn,Kn, fn) + U). it follows that

x′
n − tn /∈ U, ∀n.
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Let n → ∞, we get that
x0 − t0 /∈ U.

This is a contradiction. Hence, (Hg) is valid.

From Theorems 3.1 and 4.9, we can get the following result.

Corollary 4.11. Suppose that all the assumptions of Theorems 3.1 and 4.9 are
satisfies, then S(Tn,Kn, fn) converges to S(T,K, f) in the sense of Painlevé-
Kuratowski if and only if (Hg) holds.
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