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1 Introduction

The random fixed point theorems for random operators on polish spaces were
first studied by Spacek [2] and Hans [3, 4]. In addition, many mathematicians
studied various topics of random fixed point on various mappings and various
spaces, see in [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Recently, Saha and Ganguly
[17] proved a random fixed point theorem in a separable Banach space for some
class of random operators.

On the other hand, Banach’s contraction [19] is the most important result in
some fields of mathematical analysis, especially nonlinear analysis. It has been
the source of metric fixed point theory and its importance rests in its various
enforcement in many fields of mathematics. For a complete metric space, this
result runs as follows (in [20, 21]).

Theorem 1.1. (Banach’s contraction principle) If (X, d) be a complete metric
space and T : X → X be a self-mapping such that,

d(Tx, Ty) ≤ αd(x, y), (1.1)

for each x, y ∈ X for some α ∈ [0, 1), then T has a unique fixed point.

Sometime, the mappings are not necessarily continuous property. In 2000,
Ciric [22] dealt with a class of mappings which are imposed on a complete convex
metric space and shown the existence of a unique fixed point on this space which
is a double generalization of Gregus [23] as follows:

Theorem 1.2. Let C be a closed convex subset of a complete convex metric space
X and T : C → C be a mapping satisfying

d(Tx, Ty) ≤ ad(x, y) + bmax{d(x, Tx), d(y, Ty)} (1.2)

+c[d(x, Ty) + d(y, Tx)]

where a ∈ (0, 1), a+ b = 1, c ≤ 4−a
8−b ∀x, y ∈ C. Then T has a unique fixed point.

Also, Berinde [24] extended the Zamfirescu fixed point theorem to almost con-
tractions, a class of contractive type mappings which shows new property with
respect to the ones of the specific results incorporated as follows:

Theorem 1.3. Let (X, d) be a complete metric space and T : X → X an almost
contraction, that is, a mapping for which there exist a constant δ ∈ [0, 1) and some
L ≥ 0 such that

d(Tx, Ty) ≤ δd(x, y) + Ld(y, Tx) for all x, y ∈ X. (1.3)

Then
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1. F (T ) = {x ∈ X : Tx = x} ̸= ∅;

2. For any x0 ∈ X, the Picard iteration {xn}∞n=0 given by

xn+1 = Txn, n = 0, 1, 2, ...

converges to some x∗ ∈ F (T );

3. The following estimate holds

d(xn+i−1, x
∗) ≤ δi

1− δ
d(xn, xn−1), n = 0, 1, 2, ..., i = 1, 2, 3, ....

Later, in 2008, Berinde [25] stated and proved some results in a metric space
as follows:

Theorem 1.4. Let (X, d) be a complete metric space and T : X → X be a Ciric
almost contraction, that is, a mapping for which there exist a constant α ∈ [0, 1)
and some L ≥ 0 such that

d(Tx, Ty) ≤ αM(x, y) + Ld(y, Tx) for all x, y ∈ X, (1.4)

where

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.
Then

1. (1) F (T ) = {x ∈ X : Tx = x} ̸= ∅;

2. (2) For any x0 = x ∈ X, the Picard iteration {xn}∞n=0 given by

xn+1 = Txn, n = 0, 1, 2, ...

converges to some x∗ ∈ F (T );

3. (3) The following estimate holds

d(xn, x
∗) ≤ αn

(1− α)2
d(x, Tx), n = 1, 2, ....

Also recently, in the sense of random fixed points, Saha and Ganguly [17]
proved a theorem of random fixed point in a separable Banach space for some
class of contractive mappings as follows.

Theorem 1.5. Let X be a separable Banach space and (Ω, β, µ) be a complete
probability measure space. Let T : Ω ×X → X be a continuous random operator
such that for ω ∈ Ω, T satisfies
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∥T (ω, x1)− T (ω, x2)∥ (1.5)

≤ a(ω)max{∥x1 − x2∥, c(ω)[∥x1 − T (ω, x1)∥+ ∥x2 − T (ω, x1)∥]}
+b(ω)max{∥x1 − T (ω, x1)∥, ∥x2 − T (ω, x2)∥}

for all random variables x1, x2 ∈ X where a(ω), b(ω), c(ω) are real-valued ran-

dom variables such that a(ω) ∈ (0, 1), a(ω) + b(ω) = 1, c(ω) ≤ 4−a(ω)
8−a(ω) almost

surely. Then there exist a unique random fixed point of T .

Very recently, Saipara et al. [18] defined the random Hardy-Roger contrac-
tion and proved some random fixed point theorems for Hardy-Roger self-random
mappings in separable Banach spaces as follows:

Definition 1.6. Let T : Ω × X → X be a continuous random mapping. The
random mapping T is called Hardy-Roger contraction if, for any ω ∈ Ω,

∥T (ω, x1)− T (ω, x2)∥
≤ α1(ω)∥x1 − x2∥+ α2(ω)∥x1 − T (ω, x1)∥ (1.6)

+α3(ω)∥x2 − T (ω, x2)∥+ α4(ω)∥x1 − T (ω, x2)∥
+α5(ω)∥x2 − T (ω, x1)∥

for all x1, x2 ∈ X and αi : Ω → R+∪{0} for i = 1, 2, 3, 4, 5 such that
∑5

i=1 αi(ω) <
1.

Theorem 1.7. Let X be a separable Banach space and (Ω, β, µ) be a complete
probability measure space. Let T : Ω ×X → X be a continuous random mapping
satisfying Hardy-Roger contraction. Then there exists a unique random fixed point
of T in X.

Motivated and inspired by Theorem 1.3, 1.4, 1.5, Definition 1.6 and Theorem
1.7, we proposed the definition of Hardy-Roger almost contraction as follows:

Definition 1.8. Let T : Ω × X → X be a continuous random mapping. The
random mapping T is called Hardy-Roger almost contraction if, for any ω ∈ Ω,
there exists a constant δ ∈ [0, 1) such that

∥T (ω, x1)− T (ω, x2)∥ ≤ δM(x1, x2) + L(ω)∥x2 − T (ω, x1)∥ (1.7)

where

M(x1, x2) = α1(ω)∥x1 − x2∥+ α2(ω)∥x1 − T (ω, x1)∥
+α3(ω)∥x2 − T (ω, x2)∥+ α4(ω)∥x1 − T (ω, x2)∥
+α5(ω)∥x2 − T (ω, x1)∥

for all x1, x2 ∈ X and αi, L : Ω → R+ ∪ {0} for i = 1, 2, 3, 4, 5 such that∑5
i=1 αi(ω) + L(ω) < 1.
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The objective of this article is to prove a random fixed point theorem for a
random Hardy-Roger almost contraction operator. The article is organized as fol-
lows. Sections 1 and 2 contains Introduction and Preliminaries, respectively. The
main results are presented in section 3. The last section contains some application
to a random nonlinear integral equations.

2 Preliminaries

Let (X,βX) be a separable Banach space, where βX is a σ-algebra of Borel
subsets of X, (Ω, β, µ) be a complete probability measure space. More details can
be seen the article of Joshi et.al. [26].

Definition 2.1. (1) The mapping x : Ω → X is called an X-valued random
variable if x−1(X) ∈ β for any B ∈ βX .

(2) The mapping x : Ω → X is called a finitely valued random variable if it
is constant on any finite number of disjoint sets Ai ∈ β and is equal to 0 over
Ω\ (

∪n
i=1 Ai). The mapping x is said to be a simple random variable if it’s finitely

valued and µ{ω : ∥x(ω)∥ > 0} < ∞.
(3) The mapping x : Ω → X is called a strong random variable if there is a

simple random variables sequence {xn(ω)} converges to x(ω) almost surely, that
is, there is a set A0 ∈ β with µ(A0) = 0 so that limn→∞ xn(ω) = x(ω) for any
ω ∈ Ω \A0.

(4) The mapping x : Ω → X is called a weak random variable if the function
x∗(x(·)) is a real valued random variable for any x∗ ∈ X∗, where X∗ denotes the
first normed dual space of X.

In a separable Banach space X, the notions of strong and weak random vari-
ables coincide ([26]).

Theorem 2.2. ([26]) Assume that the mapping x, y : Ω → X be strong random
variables and α, β be constants. Then the following assumption hold:

(1) αx+ βy is a strong random variable.
(2) If f : Ω → R is a real valued random variable, then fx is a strong random

variable.
(3) If xn is a sequence of strong random variables converges strongly to x

almost surely, then x(ω) is a strong random variable.

Let Y be another Banach space.

Definition 2.3. (1) The mapping F : Ω×X → Y is called a random mapping if
F (ω, x) = Y (ω) is a Y -valued random variable ∀x ∈ X.

(2) The mapping F : Ω × X → Y is called a continuous random mapping if
µ({ω ∈ Ω : F (ω, x) is a continuous function of x}) = 1.

(3) The mapping F : Ω×X → Y is called a demi-continuous at the x ∈ X if
∥xn − x∥ → 0 implies F (ω, xn) ⇀ F (ω, x) almost surely.
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Theorem 2.4. ([26]) Let the mapping F : Ω × X → Y be a demi-continuous
random mapping where a Banach space Y is separable. Then, for any X-valued
random variable x, the function F (ω, x(ω)) is a Y -valued random variable.

Following Joshi et.al. [26], we recall some necessary Definitions and results:

Definition 2.5. (1) F (ω, x(ω)) = x(ω) is said to be a random fixed point equation,
where F is a random mapping.

(2) For each the mapping x : Ω → X which satisfies the random fixed point
equation almost surely is called a wide sense solution of the fixed point equation.

(3) For each X-valued random variable x(ω) which satisfies µ{ω : F (ω, x(ω)) =
x(ω)} = 1 is called a random fixed point of F : Ω → X.

3 Main Results

Now, we prove the random fixed point theorem for a random Hardy-Roger almost
contraction as follows:

Theorem 3.1. Let X be a separable Banach space and (Ω, β, µ) be a complete
probability measure space. Let T : Ω ×X → X be a continuous random mapping
satisfying Hardy-Roger almost contraction in Definition 1.8. Then there exists a
unique random fixed point of T in X.

Proof. Let

A = {ω ∈ Ω : T (ω, x) is a continuous function of x},

B =
{
ω ∈ Ω :

5∑
i=1

(αi(ω) + L(ω)) < 1
}

and

Cx1,x2 = {ω ∈ Ω : ∥T (ω, x1)− T (ω, x2))∥ ≤ δM(x1, x2)

+L(ω)∥x2 − T (ω, x1)∥}.

Let S be a countable dense set which S ⊆ X. Now, we show that∩
x1,x2∈X(Cx1,x2

∩A ∩B) =
∩

s1,s2∈S(Cs1,s2 ∩A ∩B).
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Now, for all s1, s2 ∈ S, we have

∥T (ω, s1)− T (ω, s2)∥
≤ δM(s1, s2) + L(ω)∥s2 − T (ω, s1)∥

= δ
(
α1(ω)∥s1 − s2∥+ α2(ω)∥s1 − T (ω, s1)∥ (3.1)

+α3(ω)∥s2 − T (ω, s2)∥+ α4(ω)∥s1 − T (ω, s2)∥

+α5(ω)∥s2 − T (ω, s1)∥
)
+ L(ω)∥s2 − T (ω, s1)∥.

Since S is dense subset of X, for any δi(xi) > 0, there exist s1, s2 ∈ S such that
∥xi − si∥ < δi(xi) for each i = 1, 2. Note that, for any x1, x2 ∈ X,

∥s1 − s2∥ ≤ ∥s1 − x1∥+ ∥x1 − x2∥+ ∥x2 − s2∥, (3.2)

∥s1 − T (ω, s1)∥ ≤ ∥s1 − x1∥+ ∥x1 − T (ω, x1)∥ (3.3)

+∥T (ω, x1)− T (ω, s1)∥,

∥s2 − T (ω, s2)∥ ≤ ∥s2 − x2∥+ ∥x2 − T (ω, x2)∥ (3.4)

+∥T (ω, x2)− T (ω, s2)∥,

∥s1 − T (ω, s2)∥ ≤ ∥s1 − x1∥+ ∥x1 − T (ω, x2)∥ (3.5)

+∥T (ω, x2)− T (ω, s2)∥

and

∥s2 − T (ω, s1)∥ ≤ ∥s2 − x2∥+ ∥x2 − T (ω, x1)∥ (3.6)

+∥T (ω, x1 − T (ω, s1)∥.

Suppose that

∥T (ω, s1)− T (ω, s2)∥
≤ δα1(ω)∥s1 − s2∥+ δα2(ω)∥s1 − T (ω, s1)∥ (3.7)

+δα3(ω)∥s2 − T (ω, s2)∥+ δα4(ω)∥s1 − T (ω, s2)∥
+δα5(ω)∥s2 − T (ω, s1)∥+ L(ω)∥s2 − T (ω, s1)∥

Since

∥T (ω, x1)− T (ω, x2)∥
≤ ∥T (ω, x1)− T (ω, s1)∥+ ∥T (ω, s1)− T (ω, s2)∥ (3.8)

+∥T (ω, s2)− T (ω, x2)∥,
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substituting (3.7) in (3.8), we have

∥T (ω, x1)− T (ω, x2)∥
≤ ∥T (ω, x1)− T (ω, s1)∥+ ∥T (ω, s2)− T (ω, x2)∥ (3.9)

+δα1(ω)∥s1 − s2∥+ δα2(ω)∥s1 − T (ω, s1)∥
+δα3(ω)∥s2 − T (ω, s2)∥+ δα4(ω)∥s1 − T (ω, s2)∥
+(δα5(ω) + L(ω))∥s2 − T (ω, s1)∥.

Thus, from (3.2), (3.3), (3.4), (3.5), (3.6), (3.9), it follows that

∥T (ω, x1(ω))− T (ω, x2(ω))∥
≤ δα1(ω)∥x1(ω)− x2(ω)∥+ δα2(ω)∥x1(ω)− T (ω, x1(ω))∥ (3.10)

+δα3(ω)∥x2 − T (ω, x2)∥+ δα4(ω)∥x1 − T (ω, x2)∥

+(δα5(ω) + L(ω))∥x2 − T (ω, x1)∥+
ε

4
+δα1(ω)∥s1 − x2∥+ δα1(ω)∥x2 − s2∥
+δα2(ω)∥s1 − x1∥+ δα2(ω)∥T (ω, x1)− T (ω, s1)∥
+δα3(ω)∥s2 − x2∥+ δα3(ω)∥T (ω, x2)− T (ω, s2)∥
+δα4(ω)∥s1 − x2∥+ δα4(ω)∥T (ω, x2)− T (ω, s2)∥
+(δα5(ω) + L(ω))∥s2 − x2∥+ (δα5(ω) + L(ω))∥T (ω, x1)− T (ω, s1)∥.

For any ω ∈ Ω, since T (ω, x) is a continuous function of x(ω), for any ε > 0, there
exists δi(xi) > 0 (i = 1, 2) such that

∥T (ω, x1)− T (ω, s1)∥ <
ε

8
(3.11)

whenever ∥x1 − s1∥ < δ1(x1) and

∥T (ω, x2)− T (ω, s2)∥ <
ε

8
(3.12)

whenever ∥x2 − s2∥ < δ1(x2). Now, choosing

δ1 = min
{
δ1(x1),

ε

8

}
(3.13)

and

δ2 = min
{
δ2(x2),

ε

8

}
, (3.14)
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by (3.10), we have

∥T (ω, x1)− T (ω, x2)∥
≤ δα1(ω)∥x1 − x2∥+ δα2(ω)∥x1 − T (ω, x1)∥

+δα3(ω)∥x2 − T (ω, x2)∥+ δα4(ω)∥x1 − T (ω, x2)∥

+(δα5(ω) + L(ω))∥x2 − T (ω, x1)∥+
ε

4

+δα1(ω)
ε

8
+ δα1(ω)

ε

8
+ δα2(ω)

ε

8
+ δα2(ω)

ε

8

+δα3(ω)
ε

8
+ δα3(ω)

ε

8
+ δα4(ω)

ε

8
+ δα4(ω)

ε

8

+(δα5(ω) + L(ω))
ε

8
+ (δα5(ω) + L(ω))

ε

8
= δα1(ω)∥x1 − x2∥+ δα2(ω)∥x1 − T (ω, x1)∥

+δα3(ω)∥x2 − T (ω, x2)∥+ δα4(ω)∥x1 − T (ω, x2∥
+(δα5(ω) + L(ω))∥x2 − T (ω, x1)∥

+(2 + 2δ

5∑
i=1

(αi(ω) + L(ω)))
ε

8
.

Since ε > 0 is arbitrary, it follows that

∥T (ω, x1)− T (ω, x2)∥
≤ δα1(ω)∥x1 − x2∥+ δα2(ω)∥x1 − T (ω, x1)∥ (3.15)

+δα3(ω)∥x2 − T (ω, x2)∥+ δα4(ω)∥x1 − T (ω, x2)∥
+(δα5(ω) + L(ω))∥x2 − T (ω, x1)∥

= δ
(
α1(ω)∥x1 − x2∥+ α2(ω)∥x1 − T (ω, x1)∥

+α3(ω)∥x2 − T (ω, x2)∥+ α4(ω)∥x1 − T (ω, x2)∥

+α5(ω)∥x2 − T (ω, x1)∥
)
+ L(ω)∥x2 − T (ω, x1)∥

= δM(x1, x2) + L(ω)∥x2 − T (ω, x1)∥.

Thus we have ω ∈
∩

x1,x2∈X(Cx1,x2 ∩A ∩B), which implies that∩
s1,s2∈S(Cs1,s2 ∩A ∩B) ⊂

∩
x1,x2∈X(Cx1,x2

∩A ∩B).

Also, we have∩
x1,x2∈X(Cx1,x2

∩A ∩B) ⊂
∩

s1,s2∈S(Cs1,s2 ∩A ∩B).

Therefore, we have∩
s1,s2∈S(Cs1,s2 ∩A ∩B) =

∩
x1,x2∈X(Cx1,x2

∩A ∩B).

Let N ′ =
∩

s1,s2∈S(Cs1,s2 ∩ A ∩ B). Then µ(N ′) = 1. Next, we prove that
∀ω ∈ N ′, T (ω, x) is a deterministic continuous operators satisfying the mapping
referred in [25].
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Let x : Ω → X be a random variable defined for some x∗ ∈ X by

x(ω) =

 xω, ω ∈ N ′

x∗, ω /∈ N ′.

Next, we show that x(ω) is the random variable. We construct a sequence of
random variable xn(ω) as follows. Let x0(ω) be an arbitrary random variable and
x1(ω) = T (ω, x0(ω)). Thus x1(ω) is a random variable. Next, we get xn+1(ω) =
T (ω, xn(ω)), by repeated generating, it gives that {xn(ω)}n=1,2,... is a random
variables sequence converge to x(ω). So, x(ω) is a random variable.

Finally, we show that x(ω) is a unique. Let y : Ω → X be another random
fixed point. We want to prove that x(ω) = y(ω) almost surely. Let M = {ω ∈
N ′ : x(ω) = y(ω)}. To prove µ(M) = 0. Suppose µ(M) > 0, thus µ(M ∩N ′) > 0
implies M ∩ N ′ ̸= ∅, for all ω ∈ M ∩ N ′. Let ω ∈ M ∩ N ′, thus x(ω) ̸= y(ω).
But x(ω) and y(ω) are fixed point of T (ω, ·) : X → X, thus x(ω) = y(ω). So
µ(M) = 0 which is contradiction. Thus, x(ω) is a unique. Therefore, x(ω) is a
unique random fixed point of T . This completes the proof.

From Theorem 3.1, if L(ω) = 0, then we obtain the following Corollary for
Hardy-Roger contraction:

Corollary 3.2. Let X be a separable Banach space and (Ω, β, µ) be a complete
probability measure space. Let T : Ω ×X → X be a continuous random mapping
satisfying Hardy-Roger contraction. Then there exists a unique random fixed point
of T in X.

From Theorem 3.1, if α4(ω) = α5(ω) = L(ω) = 0, then we obtain the following
Corollary for Reich’s contraction:

Corollary 3.3. Let X be a separable Banach space and (Ω, β, µ) be a complete
probability measure space. Let T : Ω ×X → X be a continuous random mapping
satisfying the following condition: for any ω ∈ Ω,

∥T (ω, x1)− T (ω, x2)∥
≤ α1(ω)∥x1 − x2∥+ α2(ω)∥x1 − T (ω, x1)∥

+α3(ω)∥x2 − T (ω, x2)∥

for all x1, x2 ∈ X and αi : Ω → R+ ∪ {0} for i = 1, 2, 3 such that
∑3

i=1 αi(ω) < 1.
Then there exists a unique random fixed point of T in X.

From Theorem 3.1, if α1(ω) = α4(ω) = α5(ω) = L(ω) = 0, then we obtain the
following Corollary for Kannan’s contraction:
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Corollary 3.4. Let X be a separable Banach space and (Ω, β, µ) be a complete
probability measure space. Let T : Ω ×X → X be a continuous random mapping
satisfying the following condition: for any ω ∈ Ω,

∥T (ω, x1(ω))− T (ω, x2)∥
≤ α2(ω)∥x1 − T (ω, x1)∥+ α3(ω)∥x2 − T (ω, x2)∥

for all x1, x2 ∈ X and αi : Ω → R+∪{0} for i = 2, 3 such that α2(ω)+α3(ω) < 1.
Then there exists a unique random fixed point of T in X.

From Theorem 3.1, if α1(ω) = α2(ω) = α3(ω) = 0, then we obtain the following
Corollary for Chatterjea’s contraction:

Corollary 3.5. Let X be a separable Banach space and (Ω, β, µ) be a complete
probability measure space. Let T : Ω ×X → X be a continuous random mapping
satisfying the following condition: for all ω ∈ Ω,

∥T (ω, x1)− T (ω, x2)∥
≤ α4(ω)∥x1 − T (ω, x2)∥+ α5(ω)∥x2 − T (ω, x1)∥

for all x1, x2 ∈ X and αi : Ω → R+∪{0} for i = 4, 5 such that α4(ω)+α5(ω) < 1.
Then there exists a unique random fixed point of T in X.

Remark 3.6. The random fixed point theorems for Hardy-Roger almost contrac-
tion reduced to the random fixed point theorems for Hardy-Roger contraction and
Ciric’s contraction.

4 Application to random nonlinear operator equa-
tions

Now, we show the existence and uniqueness of a solution of a nonlinear stochastic
integral equation of the Hammerstein type ([15]) by using Theorem 3.1:

x(t;ω) = h(t;ω) +

∫
S

k(t; s;ω)f(s;x(s;ω))dµ(s), (4.1)

where
(a) S is a locally compact metric space with metric d defined on S × S and

µ0 is a complete σ-finite measure defined on the collection of Borel subsets of S;
(b) ω ∈ Ω where ω is the supporting set of the probability measure space

(Ω, β, µ);
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(c) x(t;ω) is the unknown vector-valued random variable for each t ∈ S;
(d) h(t;ω) is the stochastic free term defined for t ∈ S;
(e) k(t, s;ω) is the stochastic kernel defined for t and s in S;
(f) f(t, x) is a vector-valued function of t ∈ S and x.

Note that the integral in the equation (4.1) is interpreted as a Bochner integral
([27]).

Further, we assume that the union of a countable family {Cn} of compact sets
with Cn+1 ⊂ Cn is defined as S such that, for each other compact set in S, there
exists Ci which contains it ([28]).

We define C = C(S,L2(Ω, β, µ)) C = C(S,L2(Ω, β, µ)) as all continuous func-
tions space from S into the space L2(Ω, β, µ) with the topology of uniform con-
vergence on compact sets of S, that is, x(t;ω) is a vector-valued random variable
for each fixed t ∈ S such that

∥x(t;ω)∥2L2(Ω,β,µ) =
∫
Ω
|x(t;ω)|2dµ(ω) < ∞.

Noted that C(S,L2(Ω, β, µ)) is a space of locally convex ([27]) whose topology is
defined by the countable family of semi-norms given by

∥x(t;ω)∥n = supt∈Cn
∥x(t;ω)∥L2(Ω,β,µ)

for each n ≥ 1. Furthermore, since L2(Ω, β, µ) is complete, C(S,L2(Ω, β, µ)) is
complete relative to this topology.

Next, we define BC = BC(S,L2(Ω, β, µ)) as a Banach space of all bounded
continuous functions from S into L2(Ω, β, µ) with the norm

∥x(t;ω)∥BC = supt∈S ∥x(t;ω)∥L2(Ω,β,µ).

The space BC ⊂ C is a space of all second order vector-valued stochastic processes
defined on S which are bounded and continuous in mean-square.

Now, we consider the functions h(t;ω) and f(t, x(t;ω)) to be in the C(S,L2(Ω, β, µ))
space with respect to the stochastic kernel and assume that, for each pair (t, s),
k(t, s;ω) ∈ L∞(Ω, β, µ) and the norm denoted by

∥|k(t, s;ω)|∥ = ∥k(t, s;ω)∥L∞(Ω,β,µ) = µ− ess supω∈Ω |k(t, s;ω)|.

Also, we suppose that k(t, s;ω) ∈ L∞(Ω, β, µ) is such that

∥|k(t, s;ω)|∥ = ∥x(s;ω)∥L2(Ω,β,µ)

is µ-integrable with respect to s for each t ∈ S and x(s;ω) ∈ C(S,L2(Ω, β, µ)) and
there exists a real-valued function G µ-a.e. on S such that G(S)∥x(s;ω)∥L2(Ω,β,µ))

is µ-integrable and, for each pair (t, s) ∈ S × S,

∥|k(t, u;ω)− k(s, u;ω)|∥ · ∥x(u;ω)∥L2(Ω,β,µ) ≤ G(u)∥x(u;ω)∥L2(Ω,β,µ) µ− a.e..
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Forward, assume that, for almost all s ∈ S, k(t, s;ω) is continuous in t from S into
L∞(Ω, β, µ).

Now, we define the random integral operator T on C(S,L2(Ω, β, µ)) by

(Tx)(t;ω) =

∫
S

k(t, s;ω)x(s;ω)dµ(s), (4.2)

where the integral is a Bochner integral. From the conditions on k(t, s;ω), it
follows that, for each t ∈ S, (Tx)(t;ω) ∈ L2(Ω, β, µ) and (Tx)(t;ω) is continuous in
mean square by Lebesgue’s dominated convergence theorem, that is, (Tx)(t;ω) ∈
C(S,L2(Ω, β, µ)).

Lemma 4.1. ([15]) The linear operator T defined by equation (4.2) is continuous
from C(S,L2(Ω, β, µ)) into itself.

Proof. See [15].

Definition 4.2. ([29], [30]) Let B and D be Banach spaces. The pair (B,D) is
said to be admissible with respect to a linear operator T if T (B) ⊂ D.

Lemma 4.3. ([15]) If T is a continuous linear operator from C(S,L2(Ω, β, µ)) into
itself and B,D ⊂ C(S,L2(Ω, β, µ)) are Banach spaces stronger than C(S,L2(Ω, β, µ))
such that (B,D) is admissible with respect to T , then T is continuous from B into
D.

By a random solution of the equation (4.1), we mean a function

x(t;ω) ∈ C(S,L2(Ω, β, µ))

which satisfies the equation (4.1) µ− a.e.

Now, by using Theorem 3.1, we prove the following:

Theorem 4.4. If the stochastic integral equation (4.1) is subject to the following
conditions:

(1) B and D are Banach spaces stronger than C(S,L2(Ω, β, µ)) such that
(B,D) is admissible with respect to the integral operator defined by (4.2);

(2) x(t;ω) 7→ f(t, x(t;ω)) is an operator from the set Q(ρ) = {x(t;ω) :
x(t;ω) ∈ D, ∥x(t;ω)∥D ≤ ρ} into the space B satisfying

∥f(t, x1(t, ω))− f(t, x2(t, ω))∥B
≤ δα1(ω)∥x1(t, ω)− x2(t, ω)∥+ δα2(ω)∥x1(t, ω)− f(t, x1(t, ω))∥

+δα3(ω)∥x2(t, ω)− f(t, x2(t, ω))∥+ δα4(ω)∥x1(t, ω)− f(t, x2(t, ω))∥
+δα5(ω)∥x2(t, ω)− f(t, x1(t, ω))∥+ L(ω)∥x2(t, ω)− f(t, x1(t, ω))∥ (4.3)
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for all x1(t, ω), x2(t, ω) ∈ Q(ρ) and αi, L : Ω → R+ ∪ {0} for i = 1, 2, 3, 4, 5 such

that
∑5

i=1 αi(ω) + L(ω) < 1 almost surely;
(3) h(t;ω) ∈ D,

then there exists a unique random solution of (4.1) in Q(ρ) provided

∥h(t, ω)∥D + l(ω)∥f(t, 0)∥B
( 1 + δα3(ω) + δα4(ω)

1− δα2(ω) + δα5(ω)− L(ω)

)
≤ ρ

(
1− l(ω)

1− δα2(ω)− δα5(ω)− L(ω)

)
,

where the norm of T (ω) denoted by l(ω).

Proof. Let a mapping U(ω) : Q(ρ) → D defined by

(Ux)(t, ω) = h(t, ω) +

∫
S

k(t, s, ω)f(s, x(s, ω))dµ0
(s).

Then we have

∥(Ux)(t, ω)∥D ≤ ∥h(t, ω)∥D + l(ω)∥f(t, x(t, ω))∥B
≤ ∥h(t, ω)∥D + l(ω)∥f(t, 0)∥B + l(ω)∥f(t, x(t, ω))− f(t, 0)∥B .

Thus it follows from (4.3) that

∥f(t, x(t, ω))− f(t, 0)∥B
≤ δα1(ω)∥x(t, ω)∥D + δα2(ω)∥x(t, ω)− f(t, x(t, ω))∥D

+δα3(ω)∥f(t, 0)∥D + δα4(ω)∥x(t, ω)− f(t, 0)∥D
+δα5(ω)∥f(t, x(t, ω))∥D + L(ω)∥f(t, x(t, ω))∥D

≤ δα1(ω)∥x(t, ω)∥D + δα2(ω)∥x(t, ω)∥D
+δα2(ω)∥f(t, x(t, ω))− f(t, 0)∥B + δα2(ω)∥f(t, 0)∥D
+δα3(ω)∥f(t, 0)∥D + δα4(ω)∥x(t, ω)∥D + α4(ω)∥f(t, 0)∥D
+δα5(ω)∥f(t, x(t, ω))− f(t, 0)∥B + δα5(ω)∥f(t, 0)∥D
+L(ω)∥f(t, x(t, ω))− f(t, 0)∥B + L(ω)∥f(t, 0)∥D

and so

(1− δα2(ω)− δα5(ω)− L(ω))∥f(t, x(t, ω))− f(t, 0)∥B
≤ (δα1(ω) + δα2(ω) + δα4(ω))ρ

+(δα2(ω) + δα3(ω) + δα4(ω) + δα5(ω) + L(ω))∥f(t, 0)∥D.

Hence we have

∥f(t, x(t, ω))− f(t, 0)∥B ≤
( δα1(ω) + δα2(ω) + δα4(ω)

1− δα2(ω)− δα5(ω)− L(ω)

)
ρ (4.4)

+
(δα2(ω) + δα3(ω) + δα4(ω) + δα5(ω)

1− δα2(ω)− δα5(ω)− L(ω)

)
∥f(t, 0)∥D.
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Therefore, by (4.4), we have

∥(Ux)(t, ω)∥D ≤ ∥h(t, ω)∥D + l(ω)∥f(t, 0)∥B +
(δα1(ω) + δα2(ω) + δα4(ω)

1− δα2(ω)− δα5(ω)

)
l(ω)ρ

+
(δα2(ω) + δα3(ω) + δα4(ω) + δα5(ω)

1− δα2(ω)− δα5(ω)

)
l(ω)∥f(t, 0)∥B

≤ ∥h(t, ω)∥D +
( δα1(ω) + δα2(ω) + δα4(ω)

1− δα2(ω)− δα5(ω)− L(ω)

)
l(ω)ρ

+
(
1 +

δα2(ω) + δα3(ω) + δα4(ω) + δα5(ω) + L(ω)

1− δα2(ω)− δα5(ω)− L(ω)

)
l(ω)∥f(t, 0)∥B

≤ ∥h(t, ω)∥D +
( δα1(ω) + δα2(ω) + δα4(ω)

1− δα2(ω)− δα5(ω)− L(ω)

)
l(ω)ρ

+
( 1 + δα3(ω) + δα4(ω)

1− δα2(ω)− δα5(ω)− L(ω)

)
l(ω)∥f(t, 0)∥B (4.5)

< ρ

and so, by (4.5), (Ux)(t, ω) ∈ Q(ρ). Thus, for any x1(t, ω), x2(t, ω) ∈ Q(ρ) and,
by the condition (2), we have

∥(Ux1)(t, ω)− (Ux2)(t, ω)∥D

=
∥∥∥∫

S

k(t, s, ω)[f(s, x1(s, ω))− f(s, x2(s, ω))]dµ0(s)
∥∥∥
D

≤ l(ω)∥f(s, x1(s, ω))− f(s, x2(s, ω))∥B
≤ δα1(ω)∥x1(t, ω)− x2(t, ω)∥D + δα2(ω)∥x1(t, ω)− (Ux1)(t, ω)∥D

+δα3(ω)∥x2(t, ω)− (Ux2)(t, ω)∥D + δα4(ω)∥x1(t, ω)− (Ux2)(t, ω)∥D
+δα5(ω)∥x2(t, ω)− (Ux1)(t, ω)∥D + L(ω)∥x2(t, ω)− (Ux1)(t, ω)∥D

= δM(x1(t, ω), x2(t, ω)) + L(ω)∥x2(t, ω)− (Ux1)(t, ω)∥D.

Consequently, U(ω) is a random contractive mapping on Q(ρ). Hence, by Theorem
3.1, there exists a random fixed point of U(ω), which is the random solution of the
equation (4.1). This completes the proof.
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