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The Banach contraction principle is a one of the superior results in Nonlinear
Analysis; and has always been at the forefront of creating and supplying out-
standing generalizations for its researchers. Many authors generalized and utilized
Banach contraction principle in their pertinent research. Thus we can easily con-
clude that, the largest part of the fixed point theory was occupied by various
generalizations of Banach contraction principle.

Below are the some of the well known generalizations of Banach contraction
principle.

Cyclic contraction by Kirk et al. [1] ⇔ there exists k ∈ (0, 1) such that

d(T x, T y) ≤ kd(x, y) for all x ∈ A and y ∈ B.

(Note that, a mapping T : A ∪B → A ∪B is called cyclic if T (A) ⊆ B and
T (B) ⊆ A, where A,B are nonempty subsets of a metric space (X, d).)

Cyclic orbital contraction by Karpagam [2]⇔ d(T 2nx, T y) ≤ γd(T 2n−1x, y);
for all x ∈ A, γ ∈ (0, 1); where A and B are non-empty closed subsets of X
and T : A ∪B → A ∪B is a cyclic map.

F-contraction by Wardowski [3] ⇔ there exists τ > 0 such that for all x, y ∈
X,

d(T x, T y) > 0 ⇒ τ + F (d(T x, T y)) ≤ F (d(x, y)),

F-Expanding by Gornicki [4]⇔ there exists τ > 0 such that for all x, y ∈ X,

d(x, y) > 0 ⇒ F (d(T x, T y)) ≥ F (d(x, y)) + τ.

where F : R+
0 → R is a mapping satisfying,

(F1). F is strictly increasing, i.e for all α, β ∈ R+
0 such that if α < β then

F (α) < F (β);
(F2). For each sequence {αn}n∈N of positive numbers

lim
n→∞

αn = 0 if and only if lim
n→∞

F (αn) = −∞;

(F3). There exists k ∈ (0, 1) such that lim
α→0+

αkF (α) = 0.

Let F denote the set of all functions satisfying the conditions (F1)-(F3).
For more generalizations of Banach contraction principle, the reader can refer

to [5, 6, 7, 8]. Recently, a new kind of generalized metric space was introduced by
T. Kamran et al. [9].

Definition 1.1. [9] Let X be a non-empty set and s : X×X → [1,∞). A function
Eb : X ×X → [0,∞) is called an Eb-metric if, for all x, y, z ∈ X, if it satisfies

(i) Eb(x, y) = 0 if and only if x = y;

(ii) Eb(x, y) = Eb(y, x);
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(iii) Eb(x, y) ≤ s(x, y)[Eb(x, z) + Eb(z, y)].

The pair (X,Eb) is called an Eb-metric space.

It is clear that, if s(x, y), in Definition 1.1, is a constant in [1,∞), the pair
(X,Eb) coincides with a b-metric space.

Example 1.2. [10] Let X = [0, 1] and s : X × X → [1,∞), s(x, y) = xy+1
x+y .

Define Eb : X ×X → [0,∞) by

Eb(x, y) =

{
1
xy , for x, y ∈ (0, 1], x ̸= y

0, for x, y ∈ [0, 1], x = y

Then (X,Eb) is an Eb-metric space.

Definition 1.3. [9] Let (X,Eb) be an Eb-metric space and {xn} be a sequence in
X. Then

(a) {xn} converges to x if and only if for every ϵ > 0 there exists N = N(ϵ) ∈ N
such that Eb(xn, x) < ϵ, for all n ≥ N. For this particular case, we write
lim
n→∞

xn = x.

(b) {xn} is called Cauchy if and only if for every ϵ > 0 there exists N = N(ϵ) ∈
N such that Eb(xm, xn) < ϵ, for all m,n ≥ N.

Definition 1.4. [9] An Eb-metric space (X,Eb) is complete if and only if every
Cauchy sequence in X is convergent.

Note that, usually a b-metric is not a continuous functional. Analogously,
Eb-metric is also not necessarily a continuous functional.

Motivated by the above facts, we introduce and establish the concepts of an
extended cyclic Banach contraction and an extended cyclic orbital F-expanding
contraction. Thereby, we prove pertinent fixed point theorems in Eb-metric space.
Moreover, we present the characterization of the Hardy and Rogers mapping the-
orem for (a pair of) non-self maps, which gives a positive answer to the question
raised by C. B. Ampadu [12](Fixed Point Theory, 19(2018), No.2, 449-452, DOI:
10.24193/fpt-ro.2018.2.35).

2 Fixed point theorems in Eb-metric spaces

Now, we start this section by introducing the following definition.

Definition 2.1. Let A and B be non-empty subsets of a Eb-metric space (X,Eb).
A cyclic map T : A∪B → A∪B is said to be an extended cyclic Banach contraction,
if

Eb(T x, T y) ≤ kEb(x, y); ∀x ∈ A, y ∈ B and k ∈ [0, 1) (2.1)
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Theorem 2.2. Let A and B be non-empty closed subsets of a complete Eb-metric
space (X,Eb) such that Eb is a continuous functional. Let T be an extended cyclic
Banach contraction such that for each x0 ∈ A, limn,m→∞ s(xn, xm) < 1

k , here
xn = T nx0;n = 1, 2, 3.... Then T has unique fixed point in A ∩ B.

Proof. Let us suppose x0 = x ∈ A(fixed). Define the iterative sequence

x0 = T x0 = x1, x2 = T x1 = T (T x0) = T 2(x0), ..., xn = T n(x0).

Using the extended cyclic Banach contraction, we get,

Eb(T x, T 2x) = Eb(T x, T (T x))

≤ kEb(x, T x)
(2.2)

Similarly,

Eb(T 2x, T 3x) = Eb(T (T x), T (T 2x))

≤ kEb(T x, T 2x)

≤ k2Eb(x, T x)

(2.3)

Then by successively applying extended cyclic Banach contraction condition, we
get,

Eb(T nx, T n+1x) ≤ knEb(x, T x); (2.4)

By triangle inequality and (4), for m > n we have,

Eb(T nx, T mx) = Eb(xn, xm)

≤ s(xn, xm)knEb(x0, x1) + s(xn, xm)s(xn+1, xm)kn+1Eb(x0, x1)

+ s(xn, xm)s(xn+1, xm)s(xn+2, xm)...s(xm−2, xm)s(xm−1, xm)km−1Eb(x0, x1)

≤ Eb(x0, x1)[s(x1, xm)s(x2, xm) . . . s(xn−1, xm)s(xn, xm)kn

+ s(x1, xm)s(x2, xm) . . . s(xn, xm)s(xn+1, xm)kn+1

...

+ s(x1, xm)s(x2, xm) . . . s(xm−2, xm)s(xm−1, xm)km−1].

Since limn,m→∞ s(xn+1, xm)k < 1, so that the series
∑∞

n=1 k
n
∏n

i=1 s(xi, xm) con-
verges by ratio test for each m ∈ N.
Let,

S =

∞∑
n=1

kn
n∏

i=1

s(xi, xm)

Sn =

n∑
j=1

kj
j∏

i=1

s(xi, xm)
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Thus for m > n above inequality implies Eb(T nx, T mx) ≤ Eb(x0, x1)[Sm−1 −
Sn−1]. Letting n → ∞, we conclude that {xn} is a Cauchy sequence. Since X is
complete, we see that {T nx} converges to some υ ∈ X.

We note that {T 2nx} is a sequence in A and {T 2n−1x} is a sequence in B such
a way that both sequences tend to the same limit υ.

Since A and B are closed, we have υ ∈ A ∩ B, and then A ∩ B ̸= ∅.
Now we will prove that υ is a fixed point of T .
Consider,

Eb(T nx, T υ) ≤ s(x, υ)[Eb(T nx, T n+1x) + Eb(T n+1x, T υ)]. (2.5)

Since T is continuous, limn→∞ Eb(T n+1x, T υ) = 0 and Eb(T nx, T n+1x) ≤ knEb(x, T x).
Letting n → ∞, (5) yields Eb(υ, T υ) = 0, since 0 ≤ k < 1. Thus υ = T υ.

Hence υ is a fixed point of T . Finally, to obtain the uniqueness of a fixed
point, let υ∗ ∈ X be another fixed point of T such that T υ∗ = υ∗.
Then we have,

Eb(υ, υ
∗) = Eb(T υ, T υ∗) ≤ kEb(υ, υ

∗)

which yields Eb(υ, υ
∗) = 0. Thus, υ = υ∗.

Thus υ is a unique fixed point of T . This completes the proof of the theorem.

If we take s(x, y) = 1 a constant function, then above theorem reduces to a
metric space. If s(x, y) = s; s ≥ 1 then we get above theorem for a b-metric
space.

Example 2.3. Let X = R. Define Eb(x, y) : X×X → R+
0 and s : X×X → [1,∞)

as Eb(x, y) = (x− y)2 and s(x, y) = x+ y + 1. Then Eb is a complete Eb-metric
on X. Let A = [−1, 0], B = [0, 1] Define T : A∪B → A∪B by T x = −x

2 . Further
T (A) ⊂ B and T (B) ⊂ A. Thus T is a cyclic map.
Consider

Eb(T x, T y) = Eb(
−x

2
,
−y

2
)

= (
y − x

2
)2

≤ 1

2
(y − x)2

≤ kEb(x, y); for all k,
1

2
≤ k < 1.

Thus all the conditions of above theorem are satisfied and 0 is a unique fixed point.

Definition 2.4. [10] Let A and B be non-empty sub sets of an Eb-metric space
(X,Eb). Let T : A ∪ B → A ∪ B be a cyclic map such that for some x ∈ A there
exists τ > 0 such that ∀x, y ∈ X satisfying Eb(T x, T y) > 0, the following holds:

τ + F (Eb(T 2nx, T y)) ≤ F (Eb(T 2n−1x, y)), (2.6)

where n ∈ N, y ∈ A such that for each x0 ∈ X, lim
n,m→∞

s(xn, xm) < 1, here xn =

T nx0, n = 1, 2, 3....
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Then T is called an extended cyclic orbital F-contraction.

Theorem 2.5. [10] Let (X,Eb) be a complete Eb-metric space such that Eb is
continuous functional and let T : A ∪ B → A ∪ B be an extended cyclic orbital
F-contraction. Then A∩B is non-empty and T has a unique fixed point in A∩B.

Definition 2.6. [11] Let (X,Eb) be an Eb-metric space. A mapping T : X → X
is said to be an extended expanding if

∀ x, y ∈ X, Eb(T x, T y) ≥ κEb(x, y); where κ > 1.

Definition 2.7. [10] Let (X,Eb) be Eb-metric space. Let A and B be non-empty
subsets of Eb-metric space and T : A ∪ B → A ∪ B be a cyclic map such that for
some x ∈ A there exists a kx > 1 such that,

Eb(T 2nx, T y) ≥ kx(Eb(T 2n−1x, y); n ∈ N, y ∈ A. (2.7)

Then T is called an extended expanding cyclic orbital contraction.

Theorem 2.8. [10] Let (X,Eb) be a complete Eb-metric space such that Eb is a
continuous functional. Let A and B be non-empty subsets of an Eb-metric space
(X,Eb) and T : A∪B → A∪B be an extended cyclic orbital contraction. Suppose

that for each x0 ∈ A, lim
n,m→∞

s(xn, xm) <
1

kx0

, here xn = T nx0; n = 1, 2, 3...

Then A ∩ B is non-empty and T has a unique fixed point.

Theorem 2.9. Let (X,Eb) be a complete Eb-metric space such that Eb is a con-
tinuous functional. Let T be a surjective and an extended expanding cyclic orbital
contraction. Then T is bijective and has a unique fixed point in A ∩ B.

Proof. Suppose there exists an x, (say x0),∈ A satisfying (7). Define an iterative
sequence {xn} starting by x0, as follows:

T x0 = x1, x2 = T x1 = T (T x0) = T 2(x0).....xn = T n(x0)....

If x = T x, then x is a fixed point of T . Hence the proof is completed.
Thus, let us suppose that x ̸= T x.

Eb(T 2x, T x) ≥ kxEb(T x, x) > 0

⇒ Eb(T 2x, T x) > 0

⇒ T 2x ̸= T x.

Hence T is bijective. Since T is bijective, it has an inverse on its range. It can be
noted that T −1 is an extended expanding cyclic orbital contraction.

Since 1
kx

< 1, by using Theorem 2.8, we can easily prove that T −1 has a unique
fixed point in A ∩ B.
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Theorem 2.10. Let (X,Eb) be a complete Eb-metric space such that Eb is con-
tinuous functional. If T : X → X is surjective then there exists a mapping
T ∗ : X → X such that T ◦ T ∗ is the identity map on X.

The proof is omitted as it is easy to prove.

Definition 2.11. Let (X,Eb) be a complete Eb-metric space such that Eb is con-
tinuous functional. Let A and B be non-empty subsets of an Eb-metric space
(X,Eb). A cyclic map T : A ∪ B → A ∪ B is called an extended cyclic orbital
F-expanding contraction if there exists F ∈ F and τ > 0 such that for some
x ∈ A,

Eb(x, y) > 0; F (Eb(T 2nx, T y)) ≥ F (Eb(T 2n−1x, y)) + τ (2.8)

n ∈ N, y ∈ A such that for each x0 ∈ X, limn,m→∞ s(xn, xm) < 1. Here xn =
T nx0; n = 1, 2, 3...

Theorem 2.12. Let (X,Eb) be a complete Eb-metric space such that Eb is con-
tinuous functional and let A and B be non-empty subsets of an Eb-metric space
(X,Eb). Suppose T : A ∪ B → A ∪ B is an extended cyclic orbital F-expanding
contraction and surjective. Then A ∩ B is non-empty and T has a unique fixed
point in A ∩ B.

Proof. Suppose there exists an x ∈ A (say x0) satisfying (8). From Theorem 2.10,
there exists a mapping T ∗ : X → X such that T ◦ T ∗ is the identity mapping on
X. If x0 = T x0, there is nothing to prove. Thus, let us suppose that x0 ̸= T x0

(say (y)) and let η = T ∗x and γ = T ∗y. Obviously, η ̸= γ (since T is injective).
From the definition of an extended cyclic orbital F-expanding contraction, let us
define for n ∈ N

T 2nx = T ∗2n−1x = Ix.

Since

T 2nη = T 2n(T ∗x)

= T 2n−1(T ◦ T ∗x)

= T 2n−1(x)

= T ∗2n−1x

T 2n−1η = T 2n−1(T ∗x)

= T ∗(T 2n−1x)

= T ∗(T ∗2n−1x)

= T ∗2nx

From (8),
F (Eb(T ∗2n−1x, y)) ≥ F (Eb(T ∗2nx, T ∗y)) + τ

Thus T ∗ satisfies an extended cyclic orbital F-expanding contraction. Thus from
the hypothesis, we can prove that T ∗ has a unique fixed point, say δ ∈ X.
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Now we will prove that δ is the fixed point of T .
Consider T δ = T (T ∗δ) = T ◦ T ∗δ = δ. Thus δ is also a fixed point of T .
To prove uniqueness, let us suppose that T has two fixed points say δ1 and
δ2 (δ1 ̸= δ2).
Thus, T δ1 = δ1 and T δ2 = δ2.

F (Eb(δ1, δ2)) = F (Eb(δ1, T δ2))

= F (Eb(T 2nδ1, T δ2))

≥ F (Eb(T 2n−1δ1, δ2)) + τ

= F (Eb(δ1, δ2)) + τ

Hence 0 = F (Eb(δ1, δ2)) − F (Eb(δ1, δ2)) ≥ τ , which is a contradiction. Hence
δ1 = δ2.

3 Characterization of the Hardy and Rogers map-
ping theorem for (a pair of) non-self maps in a
complete metric space

Let A and B be nonempty subsets of a metric space X. We use the following
notations subsequently.

(a) d(A,B) := inf{d(x, y) : x ∈ A, y ∈ B}

(b) A0 = {x ∈ A : d(x, y) = d(A,B) for some y ∈ B}

(c) B0 = {y ∈ B : d(x, y) = d(A,B) for some x ∈ A}

Definition 3.1. Let S : A 7→ B and T : B 7→ A be non-self mappings. The
pair (S, T ) will be said to form a proximal cyclic Hardy and Rogers type mapping
if there exists a nonnegative number k < 1

5 such that d(u, Sx) = d(A,B) and
d(v, Ty) = d(A,B) implies that

d(u, v) ≤ k[d(x, u) + d(y, v) + d(x, v) + d(y, u) + d(x, y)] + (1− 5k)d(A,B)

for all x, u ∈ A and y, v ∈ B.

Remark 3.2. In the above definition, if A = B and S = T then T is a Hardy and
Rogers type mapping.

Definition 3.3. A mapping S : A 7→ B will be called a proximal Hardy and Rogers
type mapping of the first kind if there exists a nonnegative number k < 1

5 such that
d(u1, Sx1) = d(A,B) and d(u2, Sx2) = d(A,B) implies that

d(u1, u2) ≤ k[d(x1, x2) + d(x1, u1) + d(x2, u2) + d(x2, u1) + d(x1, u2)]

for all u1, u2, x1, x2 ∈ A.
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Remark 3.4. In the above definition, if A = B, then S is a self map, and thus a
Hardy and Rogers type mapping.

Definition 3.5. A mapping S : A 7→ B will be called a proximal Hardy and Rogers
type mapping of the second kind if there exists a nonnegative number k < 1

5 such
that d(u1, Sx1) = d(A,B) and d(u2, Sx2) = d(A,B) implies that

d(Su1, Su2) ≤ k[d(Sx1, Sx2)+d(Sx1, Su1)+d(Sx2, Su2)+d(Sx2, Su1)+d(Sx1, Su2)]

for all u1, u2, x1, x2 ∈ A.

Remark 3.6. A self mapping that is a proximal Hardy and Rogers type mapping
of the second kind is a Hardy and Rogers type mapping.

Definition 3.7. Given a mapping S : A 7→ B and an isometry g : A 7→ A, the
mapping S is said to preserve isometric distance with respect to g if

d(Sgx1, Sgx2) = d(Sx1, Sx2)

for all x1, x2 ∈ A.

Definition 3.8. An element x ∈ A is said to be a best proximity point of the
mapping S : A 7→ B if it satisfies the condition d(x, Sx) = d(A,B).

Remark 3.9. If the underlying map in the previous definition is a self-mapping,
then the best proximity point reduces to a fixed point.

Theorem 3.10. Let A and B be non-void closed subsets of a complete metric
space such that A0 and B0 are non-void. Let S : A 7→ B, T : B 7→ A, and
g : A ∪B 7→ A ∪B satisfy the following conditions

(a) S and T are proximal Hardy and Rogers type mappings of the first kind;

(b) S(A0) ⊆ B0 and T (B0) ⊆ A0;

(c) The pair (S, T ) forms a proximal cyclic Hardy and Rogers type mapping;

(d) g is an isometry;

(e) A0 ⊆ g(A0) and B0 ⊆ g(B0).

Then there exists a unique element x ∈ A and a unique element y ∈ B satisfying
the conditions that

d(gx, Sx) = d(A,B)

d(gy, Ty) = d(A,B)

d(x, y) = d(A,B)
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Proof. Let x0 be an element in A0. In view of the fact that S(A0) is contained
in B0 and A0 is contained in g(A0), it follows that there exists an element x1 in
A0 such that d(gx1, Sx0) = d(A,B). Again since S(A0) is contained in B0 and
A0 is contained in g(A0), it follows that there exist an element x2 in A0 such
that d(gx2, Sx1) = d(A,B). Continuing, one has d(gxn+1, Sxn) = d(A,B) for all
n ≥ 0, since S(A0) is contained in B0 and A0 is contained in g(A0). Since g is an
isometry and S is a proximal Hardy and Rogers type mapping of the first kind,
we have,

d(xn, xn+1) = d(gxn, gxn+1)

≤ k[d(xn, xn+1) + d(xn, xn−1) + d(xn+1, xn) + d(xn+1, xn−1) + d(xn, xn)]

= k[2d(xn, xn+1) + d(xn, xn−1) + d(xn+1, xn−1)]

≤ k[2d(xn, xn+1) + d(xn, xn−1) + d(xn+1, xn) + d(xn, xn−1)]

= 3kd(xn, xn+1) + 2kd(xn−1, xn)

Put α := 2k
1−3k < 1, then from the above it follows that d(xn, xn+1) ≤ αd(xn−1, xn).

Consequently, the sequence {xn} is Cauchy and converges to some element x ∈ A
by completeness of the space. Similarly, since T (B0) is contained in A0 and B0 is
contained in g(B0), it follows that there is a sequence {yn} of elements in B0 such
that d(gyn+1, T yn) = d(A,B). Since g is an isometry and T is a proximal Hardy
and Rogers type mapping of the first kind, we have, d(yn, yn+1) ≤ αd(yn−1, yn)
with α := 2k

1−3k < 1. Consequently, the sequence {yn} is Cauchy and converges to
some element y ∈ B by completeness of the space. Since the pair (S, T ) forms a
proximal cyclic Hardy and Rogers type mapping and g is an isometry, we deduce
the following

d(xn+1, yn+1) = d(gxn+1, gyn+1)

≤ αd(xn, yn) + (1− α)d(A,B)

where α := 2k
1−3k < 1. Now going in the limit of the inequality immediately above,

we deduce that d(x, y) = d(A,B). It follows that x is a member of A0 and y is
a member of B0. Since S(A0) is contained in B0 and T (B0) is contained in A0,
there is an element u ∈ A and an element v ∈ B such that d(u, Sx) = d(A,B) and
d(v, Ty) = d(A,B). Since S is a proximal Hardy and Rogers type mapping of the
first kind, then it follows that

d(u, gxn+1) ≤ αd(x, xn)

where α := 2k
1−3k < 1. Thus in the limit of the inequality immediately above,

we get u = gx and so d(gx, Sx) = d(A,B). Similarly, it can be shown that
v = gy, and so d(gy, Ty) = d(A,B). Finally, we show uniqueness. We suppose
that d(gx∗, Sx∗) = d(A,B) for x∗ ∈ A and d(gy∗, Sy∗) = d(A,B) for y∗ ∈ B.
Since g is an isometry, S and T are proximal Hardy and Rogers type mappings of
the first kind, it follows that with α := 2k

1−3k < 1, one has

d(x, x∗) = d(gx, gx∗)

≤ αd(x, x∗)
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d(y, y∗) = d(gy, gy∗)

≤ αd(y, y∗)

From the above two inequalities we conclude that x = x∗ and y = y∗, and the
proof is finished.

If g is the identity in the above theorem, then we get the following.

Corollary 3.11. Let A and B be non-void closed subsets of a complete metric
space such that A0 and B0 are non-void. Let S : A 7→ B and T : B 7→ A satisfy
the following conditions

(a) S and T are proximal Hardy and Rogers type mappings of the first kind

(b) S(A0) ⊆ B0 and T (B0) ⊆ A0

(c) The pair (S, T ) forms a proximal cyclic Hardy and Rogers type mapping.

Then there exists a unique element x ∈ A and a unique element y ∈ B satisfying
the conditions that

d(x, Sx) = d(A,B)

d(y, Ty) = d(A,B)

d(x, y) = d(A,B)

Remark 3.12. If S = T in the above Corollary or S = T and g is the identity in
Theorem 3.10, then the open problem contained in [12] is solved.

Remark 3.13. If, in addition to the conditions in the previous remark, we take
A = B, then we get Theorem 1(a) contained in [13].

4 Open Problem

How do we characterize the (δ, 1 − 3δ)-weak contraction mapping theorem con-
tained in [14] for a non-self map?
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