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1 Introduction

Constraint qualifications are corner stones to solve the classical convex pro-
gramming problems, which commonly referred to the problem of minimizing a con-
vex function subject to convex inequality constraints, because they guarantee the
existence of Lagrange multipliers for optimality. The best-known constraint quali-
fications are the interior point conditions, also known as the Slater-type constraint
qualifications which commonly used to obtain necessary and sufficient Karush-
Kuhn-Tucker conditions. Nevertheless, the Karush-Kuhn-Tucker conditions may
fail under the Slater-type constraint qualification to characterize optimality of the
following convex optimization:

min
x∈Rn

{f(x) : x ∈ C, gi(x) ≤ 0, i = 1, 2, . . . ,m}, (P)

where C is a nonempty closed convex subset of the Euclidean space Rn, f : Rn → R
is a continuous convex function, the functions gi : Rn → R, i = 1, 2, . . . ,m, are
differentiable functions, and the set {x ∈ Rn : gi(x) ≤ 0, i = 1, 2, . . . ,m}, is a
nonempty convex subset of Rn. For a simple example, as shown in [1, Example
3.4], it can be observed that the following set in R, {x ∈ R : x3 ≤ 0} = −R+

is convex and the constraint function x3 is not convex but differentiable and the
Slater constraint qualification is satisfied. Moreover, x̄ := 0 is a global minimizer
of the problem (P) with C := R while the KarushKuhnTucker condition does not
hold at x̄. In fact, Slaters condition along with an additional condition on the
constraints has been shown to ensure that the KarushKuhnTucker conditions are
necessary and sufficient for optimality of the problem (P) in the case of C = Rn

[2, 3, 4, 5], where apart from [2, 5] in other references inequality constraints are
not assumed to be differentiable. Recent reviews of constraint qualifications and
all relations among those constraint qualifications can be found in [6].

Recently, new links among various known constraint qualifications that guar-
antee necessary KarushKuhnTucker conditions for the problem (P) was discussed
in [1], where each gi, i = 1, 2, . . . ,m, was assumed to be continuously differen-
tiable. Consequently, the authors presented Lagrange multiplier characterizations
for the the best approximation to any x in Rn from the set C ∩ {x ∈ Rn : gi(x) ≤
0, i = 1, 2, . . . ,m}, which commonly assume accurate values for the data or pa-
rameters in the constraints gi(x) ≤ 0, i = 1, 2, . . . ,m. Unfortunately, in reality,
such precise information is rarely available because of forecasting errors or lack of
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complete information [7, 8]. In addition, this problem (P) in the face of constraint
data uncertainty can be captured by the following optimization problem:

min
x∈Rn

{f(x) : x ∈ C, gi(x, vi) ≤ 0, i = 1, 2, . . . ,m}, (UP)

where vi is the uncertain parameter which belongs to an uncertainty set Vi ⊆ Rqi

and gi : Rn × Vi → R, i = 1, 2, . . . ,m, are given functions.
The computationally powerful approach to dealing with the data uncertainty

is to treat uncertainty as deterministic and is known as robust optimization [7, 8,
9, 10]. Following the robust optimization approach [7], one usually associates the
so-called robust (or worst-case) counterpart of (UP)

min
x∈Rn

{f(x) : x ∈ C, gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, 2, . . . ,m}, (RP)

where the uncertain constraint are enforced for every possible value of the param-
eters within their prescribed uncertainty and the global minimizer of the problem
(RP) is known as robust optimal solution of the problem (UP). In almost all ex-
isting literature on robust convex optimization [11, 12, 13, 14, 15, 16, 17, 18, 19]
and other references therein, the convexity assumption on the functions gi(·, vi),
i = 1, 2, . . . ,m, for all vi ∈ Vi, is principle and restrictive. In fact, even if gi(·, vi),
i = 1, 2, . . . ,m, are not convex for all vi ∈ Vi, it may happen that the so-called
robust feasible set {x ∈ Rn : x ∈ C, gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, 2, . . . ,m} is
convex (see Example 4.4).

In this article, we aim to investigate constraint qualifications for Lagrange mul-
tiplier characterizations of the robust constrained convex optimization (RP) by just
imposing the robust feasible set to be convex while gi(·, vi), i = 1, 2, . . . ,m, are not
assumed to be convex functions for all vi ∈ Vi, and to establish relations among
various known constraint qualifications for Lagrange multiplier characterizations
of the problem (RP), such as an extended nonsmooth MangasarianFromovitz con-
straint qualification [20] and the strong conical hull intersection property [21]. We
also present a new constraint qualification which completely characterizes the ro-
bust optimal solution of (UP) in the sense that the constraint qualification holds if
and only if for each robust optimal solution of (UP), there exist Lagrange multipli-
ers satisfying the KarushKuhnTucker conditions. As an application, we establish
the robust constrained best approximation in terms of Lagrange multipliers under
a new constraint qualification.

The layout of the paper is as follows. Section 2 collects definitions, notations
and preliminary results that will be used later in the paper. Section 3 discuss
the relations among various known constraint qualifications of robust convex op-
timization. Section 4 establishes the weakest constraint qualification, and then
obtains some complete characterizations of robust forms of Karush-Kuhn-Tucker
conditions to be necessary and sufficient for robust optimal solutions of an un-
certain convex optimization problem (UP). Section 5 provides Lagrange mul-
tiplier characterizations for the robust best approximation from the convex set
C ∩ {x ∈ Rn : gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, 2, . . . ,m}.
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2 Preliminaries

We begin this section by fixing certain notations, definitions and preliminary
results that will be used throughout the paper. We denote by Rn the Euclidean
space with dimension n whose norm is denoted by ∥ · ∥ and ⟨x, y⟩ denotes the
usual inner product between two vectors x, y in Rn, that is, ⟨x, y⟩ = xT y. Let
Rn

+ := {x := (x1, x2, . . . , xn) ∈ Rn : xi ≥ 0, i = 1, . . . , n} be non-negative
orthant of Rn. Given a nonempty set A ⊆ Rn, we denote the interior of the
set A by intA. We recall that a set A is convex whenever λx + (1 − λ)y ∈ A
for all λ ∈ [0, 1], x, y ∈ A. A set A is said to be a cone if λA ⊆ A for all
λ ≥ 0. The polar cone of A is defined by A◦ := {u ∈ Rn : ⟨ξ, x⟩ ≤ 0, ∀x ∈ A}.
The normal cone at x to a closed convex set A, denoted by NA(x), is defined by
NA(x) := {ξ ∈ Rn : ⟨ξ, y − x⟩ ≤ 0, ∀y ∈ A}. Furthermore, the indicator function
δA : Rn → R ∪ {+∞} of A is defined by

δA(x) :=

{
0, if x ∈ A,
+∞, elsewhere.

Considering now a function f : Rn → R, the epigraph of f , epif , is defined as
epif := {(x, r) ∈ Rn × R : f(x) ≤ r}. The function f is said to be convex if for
all µ ∈ [0, 1] and x, y ∈ Rn, f(µx+ (1− µ)y) ≤ µf(x) + (1− µ)f(y). In addition,
the Fenchel conjugate of f , f∗, is defined as f∗(ξ) := supx∈Rn{⟨ξ, x⟩ − f(x)}.
Remember the fact that a convex function need not be differentiable everywhere.
However if f : Rn → R is a convex function then the one-sided or rather right-
sided directional derivative always exists and is finite. The right-sided directional
derivative of f at x ∈ Rn in the direction d ∈ Rn is denoted by denoted by f ′(x, d),
is defined as

f ′(x, d) := lim
t→0+

f(x+ td)− f(x)

t
.

It is important to note that for every fixed x the function f ′(x, .) is a positively
homogeneous convex function. The subdifferential of a convex function f at x is
defined as

∂f(x) := {ξ ∈ Rn : f(y) ≥ f(x) + ⟨ξ, y − x⟩, for all y ∈ Rn}.

Definition 2.1. A function h : Rn → R is said to be locally Lipshitz at x ∈ Rn,
if there exist an open neighborhood U and a constant L and p such that, for all y
and z in U , one has

|h(y)− h(z)| ≤ L∥y − z∥.
If the function h is locally Lipshitz at every point x ∈ Rn, one says that h is a
locally Lipshitz function on Rn.

Definition 2.2. [22] Let h : Rn → R be locally Lipshitz at a given point x ∈ Rn.
The Clarke generalized directional derivative of h at x in the direction d ∈ Rn,
denoted ho(x, d), is defined as

ho(x, d) := lim sup
y→x
t→0+

h(y + td)− h(y)

t
.
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Definition 2.3. [22] Let h : Rn → R be locally Lipshitz at a given point x ∈ Rn.
The Clarke generalized subdifferential of h at x, denoted by ∂oh(x), is defined as

∂oh(x) := {ξ ∈ Rn : ho(x, d) ≥ ⟨ξ, d⟩ for all d ∈ Rn}.

From the definition of the Clarke generalized subdifferential, it follows that

ho(x, d) = max
ξ∈∂oh(x)

⟨ξ, d⟩, ∀d ∈ Rn.

Definition 2.4. Let h : Rn → R be locally Lipshitz at a given point x ∈ Rn. The
function h is said to be regular (in the sense of Clarke) at x ∈ Rn if h′(x, ·) and
ho(x, ·) both exist and coincide.

Assumptions [20, p. 2041] Let V be a compact subset of Rq. Suppose
g : Rn × V → R, is a function satisfying the following conditions:

(A1) g(x, v) is upper semicontinuous in (x, v);

(A2) g is locally Lipschitz in the first argument uniformly in the second argument,
i.e. for all x ∈ Rn, there exist neighborhood U of x and a constant L > 0
such that for all y and z in U , and v ∈ V, one has

|g(y, v)− g(z, v)| ≤ L∥y − z∥;

(A3) g is regular with respect to x;

(A4) The generalized gradient ∂oxg(x, v) with respect to the first component is
upper semicontinuous in (x, v).

Remark 2.5. Note that, if one of the following conditions holds, then the condi-
tions (A2), (A3), and (A4) hold:

(i) The function g is convex in x and continuous in v.

(ii) The derivative ∇xg(x, v) with respect to x exists and is continuous in (x, v).

The following lemmas which will be useful in our later analysis.

Lemma 2.6 (Danskin theorem in nonsmooth setting). [23, Theorem 2](see also
[24, Theorem 2.1]) Let V be a nonempty compact subset of Rq and let g : Rn×V →
R be such that the conditions (A1)-(A4) are fulfilled. Let ψ(x) := supv∈V g(x, v).
Denote V(x) := {v ∈ V : g(x, v) = ψ(x)}. Then the function ψ is locally Lipschitz,
directionally differentiable, regular for each x ∈ Rn and

ψo(x, d) = max{gox(x, v, d) : v ∈ V(x)}
= max{⟨ξ, d⟩ : ξ ∈ ∂oxg(x, v), v ∈ V(x)}, ∀d ∈ Rn.

Lemma 2.7. [25] Let V be a nonempty compact convex subset of Rq and let
g : Rn × V → R be such that the conditions (A1)-(A4) are fulfilled. In addition,
suppose that g(x, ·) is concave on V, for each x ∈ U . Then the following statements
hold:
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(i) The set V(x) is convex and compact.

(ii) The set

∂oxg(x,V(x)) := {ξ ∈ Rn : ∃v ∈ V(x) s.t. ξ ∈ ∂oxg(x, v)}

is convex and compact.

(iii) ∂oψ(x) = ∂oxg(x,V(x)), where ψ is defined in Lemma 2.6.

We conclude this section by recalling the notion of the strong conical hull
intersection property (the strong CHIP, in brief).

Definition 2.8 (Strong CHIP [27, 26]). Let C1 and C2 be closed convex sets in
Rn and let x ∈ C1 ∩ C2. Then, the pair {C1, C2} is said to have the strong CHIP
at x if

(C1 ∩ C2 − x)
◦
= (C1 − x)◦ + (C2 − x)◦.

The pair {C1, C2} is said to have the strong CHIP if it has the strong CHIP at
each x ∈ C1 ∩ C2.

3 Robust type constraint qualifications

In this section, we examine the robust feasible set

Ω := {x ∈ Rn : x ∈ C, gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, 2, . . . ,m}, (3.1)

where C is a closed convex subset of Rn, Vi ⊆ Rqi , i = 1, . . . ,m, are the specified
nonempty convex and compact uncertainty sets,

K := {x ∈ Rn : gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, 2, . . . ,m}, (3.2)

each gi : Rn×Vi → R, i = 1, 2, . . . ,m, is a function satisfying the given assumptions
(A1)-(A4), and gi(x, ·) is a concave function on Vi for each x ∈ Rn. Throughout
this paper, we alway suppose that C ∩K ̸= ∅. For each i = 1, 2, . . . ,m, define a
function ψi by

ψi(x) := max
vi∈Vi

gi(x, vi), x ∈ Rn.

It follows from Lemma 2.6 that, for each i = 1, 2, . . . ,m, ψi is a locally Lipschitz
function on Rn, and so is a continuous function. Consequently, the set K is closed
and for each x ∈ Rn the set, by Lemma 2.7,

Vi(x) := {vi ∈ Vi : gi(x, vi) = ψi(x)}

is a nonempty compact subset of Rqi .
Corresponding to any x̄ ∈ K, for notational simplicity, we denote I := {1, 2, . . . ,m}

and decompose it into two index sets I = I1(x̄) ∪ I2(x̄), where I1(x̄) := {i ∈ I :
∃vi ∈ Vi s.t. gi(x̄, vi) = 0} is the active index set at x̄ ∈ K and I2 := I\I1(x̄). Let
V0
i := {vi ∈ Vi : gi(x̄, vi) = 0} for i ∈ I1(x̄).
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Definition 3.1.

(i) (An extended nonsmooth MangasarianFromovitz constraint qual-
ification [20]). The set K is said to satisfy an extended nonsmooth Man-
gasarianFromovitz constraint qualification (ENMFCQ, briefly) at x̄ ∈ K for
(RP) (with respect to the given representation) if there exists d ∈ Rn such
that for each i ∈ I1(x̄), it holds

goix(x̄, vi, d) < 0, ∀vi ∈ V0
i .

(ii) (Robust nondegeneracy condition). One says thatK satisfies the robust
nondegeneracy condition at x̄ ∈ K if for each i ∈ I1(x̄), it holds

0 /∈ ∂oxgi(x̄, vi), ∀vi ∈ V0
i .

If the robust nondegeneracy condition holds at every point x ∈ K, one says
that K satisfies the robust nondegeneracy condition.

(iii) (Robust Slater constraint qualification [11]). The set Ω := C ∩K is
said to satisfy the robust Slater constraint qualification (RSCQ for short) if
there exists x0 ∈ C such that for each i ∈ I, it holds

gi(x0, vi) < 0, ∀vi ∈ Vi.

In [3], the following characterization of a convex set in terms of the Clarke
directional derivative in the absent of data uncertainty were proved.

Lemma 3.2. [3, Proposition 2.2] Let hi : Rn → R, i = 1, 2, . . . ,m, be locally

Lipshitz and regular in the sense of Clarke. Let K̃ := {x ∈ Rn : hi(x) ≤ 0, i =

1, 2, . . . ,m} be nonempty. If K̃ is convex, then, for each i = 1, 2, . . . ,m,

hoi (x, y − x) ≤ 0, ∀x, y ∈ K̃ with hi(x) = 0. (3.3)

Moreover, if there exists x0 ∈ Rn such that hi(x0) < 0 for all i = 1, 2, . . . ,m

(Slater’s constraint qualification), and 0 /∈ ∂ohi(x) whenever x ∈ K̃ and hi(x) = 0

(nondegeneracy condition), then, (3.3) implies that K̃ is convex.

Lemma 3.3 (Characterizing convexity of robust feasible set). Let K be defined
as in (3.2) and C = Rn. If K is convex, then, for each x̄ ∈ K,

goix(x̄, vi, x− x̄) ≤ 0, ∀x ∈ K, ∀i ∈ I1(x̄), ∀vi ∈ V0
i , (3.4)

equivalently,

ψo
i (x̄, x− x̄) ≤ 0, ∀x ∈ K, ∀i ∈ I1(x̄).

Furthermore, if (RSCQ) holds and the robust nondegeneracy condition is satisfied,
then (3.4) implies that K is convex.
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Proof. The conclusion will follow from Lemma 3.2 if we show that ψi, i ∈ I, are
regular in the sense of Clarke, for any x̄ ∈ K the nondegeneracy condition is
satisfied, and the Slater’s constraint qualification holds. The first and the second
requirements will follow from Lemma 2.6 and Lemma 2.7 that for each x̄ ∈ K and
i ∈ I1(x̄), one has V0

i = Vi(x̄),

ψ′
i(x̄, d) = ψo

i (x̄, d) = max{goix(x̄, vi, d) : vi ∈ Vi(x̄)}, ∀d ∈ Rn, (3.5)

and

0 ∈
∩

vi∈V0
i

Rn\
(
∂oxgi(x̄, vi)

)
= Rn\

( ∪
vi∈Vi(x̄)

∂oxgi(x̄, vi)
)
= Rn\∂oψi(x̄).

Finally, the robust Slater constraint qualification (RSCQ) leads us to the following
strict inequality

ψi(x0) = max{gi(x0, vi) : vi ∈ Vi} < 0, ∀i ∈ I for some x0 ∈ Rn,

which means that the system x ∈ Rn, ψi(x) ≤ 0 (i ∈ I) satisfies the Slater’s
constraint qualification. Taking into account Lemma 3.2, the proof is complete.

Remark 3.4. In Lemma 3.3 without the validity of (RSCQ) and robust nonde-
generacy condition, we easily obtain that if K is convex, then

K ⊆ {x ∈ Rn : goix(x̄, vi, x− x̄) ≤ 0, ∀x̄ ∈ K, ∀i ∈ I1(x̄), ∀vi ∈ V0
i },

and consequently, for every x̄ ∈ K one has

∂oxgi(x̄, vi) ⊆ NK(x̄) whenever i ∈ I1(x̄) and vi ∈ V0
i .

Now we turn our attention to the comparison of robust type constraint quali-
fications.

Theorem 3.5. Let K be defined as in (3.2), C a closed convex subset of Rn, and
x̄ ∈ C ∩K. Consider the following assertions:

(a) there exists x ∈ C such that, for each i ∈ I1(x̄),

goix(x̄, vi, x− x̄) < 0, vi ∈ V0
i .

(b) Robust nondegeneracy condition holds at x̄.

(c) For each i ∈ I1(x̄), vi ∈ V0
i , and ξi ∈ ∂oxgi(x̄, vi), one has

⟨ξi, x− x̄⟩ ̸= 0 for some x ∈ K.

Then,
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(i) If (a) is satisfied, then (RSCQ) holds. Furthermore, the robust nondegener-
acy condition is satisfied at x̄, that is (b) is true.

(ii) If K is convex and (RSCQ) holds, then (a), (b) and (c) are equivalent.

Proof. (i) Suppose that (a) holds, that is there exists x ∈ C such that, for each
vi ∈ V0

i ,
goix(x̄, vi, x− x̄) < 0, i ∈ I1(x̄).

It follows easily from Lemma 2.6 that, for each i ∈ I1(x̄), Vi(x̄) = V0
i and

ψo
i (x̄, x− x̄) < 0, ∀i ∈ I1(x̄). (3.6)

This together with the regularity of ψi, i ∈ I1(x̄), at x̄ implies that, for each
i ∈ I1(x̄),

−ψ′
i(x̄, x− x̄) > 0.

So, x ̸= x̄ and for some δi > 0, it holds

ψi(x̄+ ti(x− x̄))− ψi(x̄)

ti
− ψ′

i(x̄, x− x̄) < −ψ′
i(x̄, x− x̄), ∀ti ∈ (0, δi).

On the one hand, the continuity of ψi, i ∈ I2(x̄) implies that there exists ri > 0
such that ψi(u) < 0 for all i ∈ I2(x̄), and u ∈ Bri(x̄) := {w ∈ Rn : ∥w − x̄∥ < ri}.
Denote

δ := min

{
min

i∈I1(x̄)
δi, min

i∈I2(x̄)

ri
∥x− x̄∥

, 1

}
.

Thus, by taking t0 ∈ (0, δ), one has

ψi(x̄+ t0(x− x̄)) < 0, ∀i ∈ I.

Put x0 := x̄+ t0(x− x̄) ∈ C. Then ψi(x0) < 0, ∀i ∈ I, which actually means that
there exists x0 ∈ C such that gi(x0, vi) < 0 for all vi ∈ Vi, i ∈ I, that is (RSCQ)
is satisfied. Furthermore, clearly, (a) implies (b).

(ii) Next, suppose that K is convex and (RSCQ) is satisfied. We shall prove
that (a), (b) and (c) are all equivalent. It is sufficient to prove the following cases.

[(b)⇒(a)]. Suppose that (b) holds. Assume by contradiction that for any
x ∈ C there exists i0 ∈ I1(x̄) such that

ψo
i0(x̄, x− x̄) ≥ 0. (3.7)

On the other hand, by the assumption, there exists x0 ∈ C such that gi(x0, vi) < 0
for all vi ∈ Vi, i ∈ I. That is, ψi(x0) < 0 for all i ∈ I. Then, since ψi, i ∈ I is
continuous at x0, there exists r > 0 such that ψi(x0 + ru) < 0 for all i ∈ I, and
u ∈ B := {w ∈ Rn : ∥w∥ < 1}. That is, x0+ ru ∈ K for all u ∈ B. So, since x̄ ∈ K
and K is convex, we conclude from Lemma 3.3 that

ψo
i (x̄, x0 + ru− x̄) ≤ 0, ∀u ∈ B, ∀i ∈ I1(x̄). (3.8)
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In particular, taking u = 0 ∈ B, it leads to

ψo
i (x̄, x0 − x̄) ≤ 0, ∀i ∈ I1(x̄). (3.9)

This together with the fact that x0 ∈ C and (3.7) in turn gives us the following
equality ψo

i0
(x̄, x0 − x̄) = 0. Thus, by Lemma 2.6 and the assertion (b), we can

find v̄i0 ∈ Vi0(x̄) = V0
i0

and ξi0 ∈ ∂oxgi0(x̄, v̄i0)\{0} such that

⟨ξi0 , x0 − x̄⟩ = 0.

It then follows from (3.8) that for every u ∈ B,

r⟨ξi0 , u⟩ = ⟨ξi0 , ru⟩+ ⟨ξi0 , x0 − x̄⟩ = ⟨ξi0 , x0 + ru− x̄⟩ ≤ ψo
i0(x̄, x0 + ru− x̄) ≤ 0.

(3.10)
By taking u := 1

∥ξi0∥
ξi0 in (3.10), we get 0 ≥ ⟨ξi0 , 1

∥ξi0∥
ξi0⟩ = 1

∥ξi0∥
∥ξi0∥2 = ∥ξi0∥,

which implies that ξi0 = 0. This contradicts the fact that ξi0 ̸= 0, and completes
the proof the implication (b) ⇒ (a).

[(b)⇒(c)]. The proof is done by contradiction. Assume assertion (b) holds
true and there exist i0 ∈ I1(x̄), vi0 ∈ V0

i0
and ξi0 ∈ ∂oxgi0(x̄, vi0) such that

⟨ξi0 , x− x̄⟩ = 0, ∀x ∈ K. (3.11)

As 0 /∈ ∂oxgi0(x̄, vi0), we have ξi0 ̸= 0. Since, Ω satisfies (RSCQ), there exists
x0 ∈ C such that ψi(x0) < 0 for all i ∈ I. Then, by continuity of ψi, i ∈ I, there
exists r > 0 such that ψi(x0 + ru) < 0 for all i ∈ I, and all u ∈ B. This implies
that x0 + ru ∈ K for all u ∈ B. In view of (3.11), one has

⟨ξi0 , x0 + ru− x̄⟩ = 0, ∀u ∈ B. (3.12)

Taking u = 0 in relation (3.12), we conclude that ⟨ξi0 , x0 − x̄⟩ = 0. This together
with (3.12) yields ⟨ξi0 , u⟩ = 0, ∀u ∈ B. It follows that 0 = ⟨ξi0 , 1

∥ξi0∥
ξi0⟩ = ∥ξi0∥,

that is, ξi0 = 0. This contradicts the fact that ξi0 ̸= 0. So, (c) holds.
Clearly, (c) implies (b) without the validity of (RSCQ) and the convexity of

K.

Remark 3.6. Note that in Theorem 3.5, if each function gi(·, vi), i ∈ I, is
convex for all vi ∈ Vi and (RSCQ) holds, then the robust nondegeneracy con-
dition is satisfied at x̄. Indeed, if there exist i ∈ I1(x̄) and v̄i ∈ V0

i such that
0 ∈ ∂0xgi(x̄, v̄i) = ∂xgi(x̄, v̄i), then, by the convexity of the function gi(·, v̄i), one
has 0 = gi(x̄, v̄i) ≤ gi(x, v̄i) for all x ∈ Rn. So, the robust Slater constraint
qualification (RSCQ) does not hold, which is a contradiction.

Also, even in the case where gi(·, vi), i ∈ I, are convex for each vi ∈ Vi,
it may happen that 0 /∈ ∂oxgi(x̄, vi) whenever x̄ ∈ K, i ∈ I1(x̄) and vi ∈ V0

i ,
while there is no x0 ∈ Rn such that gi(x0, vi) < 0 for all vi ∈ Vi and all i ∈
I. For example, let x := (x1, x2) ∈ R2, C := R2, V1 := [0, 1], V2 := [−1, 0],
g1(x, v1) := x1 + v1x2, g2(x, v2) := −x1 + v2 and x̄ := (0, 0). Then I1(x̄) = {1, 2},
V0
1 = [0, 1], V0

2 = {0}, ∂oxg1(x̄, v1) = {(1, v1)} and ∂oxg2(x̄, v2) = {(−1, 0)}. We see
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that (0, 0) /∈ ∂oxg1(x̄, v1) for all v1 ∈ V0
1 and (0, 0) /∈ ∂oxg2(x̄, v2) for all v2 ∈ V0

2 .
On the other hand, assume if possible that there exists x̂ := (x̂1x̂2) ∈ R2 such that
x̂1 + v1x̂2 < 0 for all v1 ∈ V1 and −x̂1 + v2 < 0 for all v2 ∈ V2. It follows that
x̂1 < 0 and −x̂1 < 0, a contradiction.

Remark 3.7. From the proof of Theorem 3.5, we see that the implications (a)⇒(b)
and the equivalence (b)⇔(c) do not require the convexity of K. However, it is worth
noting that the the implication (b)⇒(a) is not valid without the convexity of K.
This fact will demonstrate in Example 3.10.

Corollary 3.8. If K is a convex set given by (3.2), and (RSCQ) holds, then the
following assertions are equivalent:

(i) K satisfies (ENMFCQ) at x̄.

(ii) The condition (a) in Theorem 3.5 is satisfied at x̄.

Proof. It is clear that the implication (ii)⇒(i) holds. Conversely, if K satisfies
(ENMFCQ) at x̄, then, by the definition of Clarke generalized subdifferential,
0 /∈ ∂oxgi(x̄, vi) for all vi ∈ V0

i and i ∈ I1(x̄). Thus, the robust nondegeneracy
condition is satisfied at x̄, and so the condition (a) will follow from Theorem 3.5
(the equivalence (a)⇔(b)).

Corollary 3.9. If C = Rn, K is a convex set given by (3.2), and x̄ ∈ K, then the
following assertions are equivalent:

(i) K satisfies (ENMFCQ) at x̄.

(ii) The condition (RSCQ) holds and the robust nondegeneracy condition is sat-
isfied at x̄.

Proof. We see, in the case of C = Rn, that (ENMFCQ) is equivalent to (a) in Theo-
rem 3.5, and so the result follows from Theorem 3.5 (the equivalence (a)⇔(b)).

Example 3.10. Let x := (x1, x2) ∈ R2, K := {x ∈ R2 : gi(x, vi) ≤ 0, ∀vi ∈
Vi, i = 1, 2}, where g1(x, v1) := x31 − v1x2 + v1 − 1, g2(x, v2) := −x21 + x2 + v2,
V1 := [0, 1] and V2 := [−1, 0]. We see that g1((−1, 0), v1) = −2 < 0 for all v1 ∈ V1

and g2((−1, 0), v2) = −1 + v2 < 0 for all v2 ∈ V2, that is, robust Slater constraint
qualification (RSCQ) holds. Also, for x̄ := (0, 0), one has I1(x̄) = {1, 2}, V0

1 = {1}
V0
2 = {0}, (0, 0) /∈ ∂oxg1(x̄, 1) = {(0,−1)} and (0, 0) /∈ ∂oxg2(x̄, 0) = {(0, 1)}, which

implies that the robust nondegeneracy holds at x̄. It should be observed that
K is not convex, and moreover (ENMFCQ) is invalid at x̄. In fact, there is no
x̂ := (x̂1, x̂2) ∈ R2 such that 0 > go1x(x̄, 1, x̂) = −x̂2 and 0 > go2x(x̄, 0, x̂) =
x̂2. So, in the absence of the convexity of K, the validity of both the robust
Slater constraint qualification (RSCQ) and the robust nondegeneracy condition at
x̄ does not guarantee the validity of (ENMFCQ) at x̄ ∈ K, and consequently, the
condition (a) as well.
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4 Weakest CQ: multiplier characterization

Along the lines of [1, 13], in this section, we present a new robust type con-
straint qualification characterizing the robust optimal solution of the problem (UP)
where each gi, i ∈ I, is satisfied the condition (A1)-(A4) and additionally gi(x, ·)
is a concave function on Vi for all x ∈ Rn, and K is a convex set given by (3.2).

Definition 4.1 (G-RS Strong CHIP). The pair {C,K} is said to have the gener-
alized robust sharpened strong conical hull intersection property (the G-RS Strong
CHIP) at x ∈ C ∩K if

(C ∩K − x)◦ =
∪

λ∈Rm
+

v∈Πi∈IVi

{∑
i∈I

λi∂
o
xgi(x, vi) : λigi(x, vi) = 0, i ∈ I

}

+ (C − x)◦, (4.1)

where λ := (λ1, λ2, . . . , λm) and v := (v1, v2, . . . , vm). The pair {C,K} is said to
have the G-RS strong CHIP if it has the G-RS strong CHIP at every x ∈ C ∩K.

Remark 4.2. In the special case when all Vi, i ∈ I, are singletons and all the
functions gi, i ∈ I, are continuously differentiable, the G-RS strong CHIP becomes
the generalized sharpened strong conical hull intersection property (the G-S strong
CHIP), which was introduced in [1, Definition 3.1].

Remark 4.3. In the case of gi(·, vi), i ∈ I, are convex for each vi ∈ Vi, the
G-RS Strong CHIP becomes the following robust type subdifferential constraint
qualification,

∂δC∩K(x) = ∂δC(x) +
∪

λ∈Rm
+

v∈Πi∈IVi

{∑
i∈I

λi∂xgi(x, vi) : λigi(x, vi) = 0, i ∈ I

}
,

which was introduced in [18, Definition 3.3].

We point out that the above definition of the G-RS strong CHIP generalized
the following notion the so-called robust sharpened strong conical hull intersection
property, which states an analogous manner as in [21] that

(C ∩K − x)◦ = M̃(x) + (C − x)◦, (4.2)

where

M̃(x) :=

u ∈ Rn : (u, ⟨u, x⟩) ∈
∪

λ∈Rm
+

v∈Πi∈IVi

epi

(∑
i∈I

λigi(·, vi)

)∗

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and gi(·, vi), i ∈ I, are convex for all vi ∈ Vi. In the case where gi(·, vi), i ∈ I,
are convex for each vi ∈ Vi, with the similar methods in [13, Theorem 3.1, p. 289]
together with [28, Proposition 2.1.], we can easily obtain that

∪
λ∈Rm

+

v∈Πi∈IVi

{∑
i∈I

λi∂
o
xgi(x, vi) : λigi(x, vi) = 0, i ∈ I

}
= M̃(x).

However, it is worth to mention that the above equality fails to be true if gi(·, vi),
i ∈ I, are not convex for all vi ∈ Vi, even in the case of K is convex, as the next
example illustrates.

Example 4.4. Let V := [0, 1]. For any v ∈ V, we define g(x, v) := x− vx3 for all
x ∈ R. Then K := {x ∈ R : g(x, v) ≤ 0, ∀v ∈ V} = [−1, 0], which is convex, while
g(·, v) are not convex for each v ∈ V. We see that, for each λ ∈ R+, v ∈ V, and
each ξ ∈ R,

(λg(·, v))∗(ξ) =
{

0, if λ = 0, ξ = 0,
+∞, elsewhere.

This implies that
∪

λ∈R+

v∈V
epi(λg(·, v))∗ = {0} × R+, and thus, M̃(0) = {0}. On

the other hand,
∪

λ∈R+

v∈V
{λ∂oxg(0, v) : λg(0, v) = 0} = R+. So,

∪
λ∈R+

v∈V
{λ∂oxg(0, v) :

λg(0, v) = 0} ̸= M̃(0).

In the sequel, we turn our attention to define for simplicity,

M(x) :=
∪

λ∈Rm
+

v∈Πi∈IVi

{∑
i∈I

λi∂
o
xgi(x, vi) : λigi(x, vi) = 0, i ∈ I

}
, (4.3)

where λ := (λ1, λ2, . . . , λm), and v := (v1, v2, . . . , vm).
From now on, for each continuous convex function f : Rn → R, denote by

(RPf ) the following optimization problem:

min
x∈Rn

f(x),

subject to x ∈ C ∩K, (4.4)

where the robust feasible set K is convex, given by (3.2), and C is closed convex
subset of Rn such that C ∩K ̸= ∅.

In what follows, we now show that the G-RS strong CHIP of {C,K} is neces-
sary and sufficient for the Lagrange multiplier characterization for the case where
K is convex while gi(·, vi), i ∈ I, are not necessarily convex for all vi ∈ Vi.

Theorem 4.5 (Weakest CQ for necessary optimality conditions). Let x̄ ∈ C ∩K.
Then the following assertions are equivalent:

(i) {C,K} has the G-RS strong CHIP at x̄;
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(ii) For each continuous convex function f : Rn → R attaining its global mini-
mizer over C ∩K at x̄, one has

0 ∈ ∂f(x̄) +M(x̄) + (C − x̄)◦. (4.5)

Proof. [(i)⇒(ii)]. Suppose that (i) holds. Let f be any continuous convex function
such that x̄ ∈ C ∩K is a global minimizer of (RPf ). Using the Fermat rule and
the Moreau-Rockafellar theorem [29, Theorem 23.8, p. 223], we get

0 ∈ ∂f(x̄) + (C ∩K − x̄)◦.

So, in view of (4.1), it follows that (4.5) holds.
[(ii)⇒(i)]. Suppose that (ii) holds. Let u ∈ (C ∩K − x̄)◦ be arbitrary. Then,

by the definition of the polar cone, ⟨u, x− x̄⟩ ≤ 0 for all x ∈ C∩K. So, noting that
x̄ ∈ C ∩K, we see that f(x) := −⟨u, x⟩, x ∈ Rn, is a continuous convex function
attaining its global minimizer over C ∩K at x̄. By (4.5), it gets

0 ∈ {−u}+M(x̄) + (C − x̄)◦,

whence u ∈M(x̄) + (C − x̄)◦. This shows that

(C ∩K − x̄)◦ ⊆M(x̄) + (C − x̄)◦. (4.6)

To show the reverse inclusion, let us take any u ∈ M(x̄) + (C − x̄)◦. Then there
exist λ̄ := (λ̄1, λ̄2, . . . , λ̄m) ∈ Rm

+ , v̄i ∈ Vi, li ∈ ∂oxgi(x̄, v̄i), i ∈ I, and x∗ ∈ (C− x̄)◦
such that λ̄igi(x̄, v̄i) = 0 for all i ∈ I and u =

∑
i∈I λ̄ili+x

∗. If λ̄i = 0 for all i ∈ I,
then ⟨u, x − x̄⟩ = ⟨x∗, x − x̄⟩ ≤ 0 for every x ∈ C ∩K, and so u ∈ (C ∩K − x̄)◦.

Otherwise, suppose that Ĩ := {i ∈ I : λ̄i > 0} ̸= ∅. Let x ∈ C ∩K be arbitrary.

As λ̄igi(x̄, v̄i) = 0 for all i ∈ I, we have Ĩ ⊆ I1(x̄) and so, v̄i ∈ V0
i for all i ∈ Ĩ.

Thus, by Lemma 3.3,

⟨li, x− x̄⟩ ≤ goix(x̄, v̄i, x− x̄) ≤ 0, ∀i ∈ Ĩ .

It follows that

⟨u, x− x̄⟩ =

⟨∑
i∈I

λ̄ili + x∗, x− x̄

⟩
=

⟨∑
i∈Ĩ

λ̄ili, x− x̄

⟩
+ ⟨x∗, x− x̄⟩ ≤ 0.

This gives us that, for each x ∈ C ∩K, ⟨u, x− x̄⟩ ≤ 0. So, u ∈ (C ∩K − x̄)◦, and
consequently,

M(x̄) + (C − x̄)◦ ⊆ (C ∩K − x̄)◦. (4.7)

Therefore, (4.6) and (4.7) give to conclusion that the G-RS strong CHIP holds at
x̄.

Definition 4.6 (KKT Condition). Let K be as in (3.2), for the problem (RPf ),
let x̄ ∈ C ∩K. One says that KKT condition holds at x̄ whenever

0 ∈∂f(x̄) +
∑
i∈I

λi∂
o
ixgi(x̄, vi) + (C − x̄)◦,

for some λi ≥ 0, vi ∈ Vi with λigi(x̄, vi) = 0, i ∈ I. (4.8)
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The next theorem presents conditions insuring the G-S strong CHIP to be
valid.

Theorem 4.7 (Conditions for the G-RS strong CHIP). Let K be as in (3.2), and
x̄ ∈ C ∩ K. Suppose that K is a convex set, the condition (RSCQ) holds, and
the robust nondegeneracy condition is satisfied at x̄. Then, {C,K} has the G-RS
strong CHIP at x̄.

Consequently, x̄ ∈ C ∩K is a global minimizer of the problem (RPf ), if and
only if KKT condition holds at x̄ for (RPf ), where the problem (RPf ) is defined
by (4.4).

Proof. In the hypothesis that the robust Slater constraint qualification (RSCQ)
holds, by topological reformulation, it holds C ∩ intK ̸= ∅. Hence, by the Moreau-
Rockafellar theorem [29, Theorem 23.8, p. 223] (see also [30, Proposition 2.3.]),
we have

(C ∩K − x̄)◦ = (C − x̄)◦ +NK(x̄).

So, by Remark 3.4, it is sufficient to show that

NK(x̄) ⊆M(x̄). (4.9)

To see this, let u ∈ NK(x̄) be arbitrary. Then ⟨u, x− x̄⟩ ≤ 0 for all x ∈ K. So, we
see that f(x) := −⟨u, x⟩, x ∈ Rn, is a convex function attaining its global mini-
mizer overK at x̄. In addition, from the proof of Lemma 3.3, we see by assumption
that 0 /∈ ∂oψi(x̄) whenever ψi(x̄) = 0, and the system x ∈ Rn, ψi(x) ≤ 0 (i ∈ I)
satisfies the Slater’s condition. So, [3, Theorem 2.4] gives us the multipliers λ̄i ≥ 0,
i ∈ I, satisfying

0 ∈ {−u}+
∑
i∈I

λ̄i∂
oψi(x̄) and λ̄iψi(x̄) = 0, ∀i ∈ I.

By taking ∂oψi(x̄) = {ξi ∈ Rn : ∃vi ∈ Vi(x̄) s.t. ξi ∈ ∂oxgi(x̄, vi)} for each i ∈ I
into consideration, there exist v̄i ∈ Vi(x̄), i ∈ I, such that

u ∈
∑
i∈I

λ̄i∂
o
xgi(x̄, v̄i).

Moreover, for each i ∈ I, we get λ̄gi(x̄, v̄i) = λ̄iψi(x̄) = 0. It follows that u ∈M(x̄),
and hence, (4.9) has been justified. Therefore, the G-RS strong CHIP holds at x̄.

Finally, if x̄ is a global minimizer of the problem (RPf ), then by Theorem
4.5 (the implication (i)⇒(ii)), there exist λ := (λ1, λ2, . . . , λm) ∈ Rm

+ and v :=
(v1, v2, . . . , vm) ∈ Πi∈IVi with λigi(x̄, vi) = 0 for all i ∈ I such that 0 ∈ ∂f(x̄) +∑

i∈I λi∂
o
xgi(x̄, vi) + (C − x̄)◦. That is, KKT condition holds at x̄.

Conversely, assume that KKT condition holds at x̄. Then, it comes that
there exist λ̄ := (λ̄1, λ̄2, . . . , λ̄m) ∈ Rm

+ and v̄ := (v̄1, v̄2, . . . , v̄m) ∈ Πi∈IVi with
λigi(x̄, v̄i) = 0 for all i ∈ I such that 0 ∈ ∂f(x̄) +

∑
i∈I λ̄i∂

o
xgi(x̄, v̄i) + (C − x̄)◦.

On the other hand, we have∑
i∈I

λ̄i∂
o
xgi(x̄, v̄i) + (C − x̄)◦ ⊆M(x̄) + (C − x̄)◦ = (C ∩K − x̄)◦.
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Therefore, by using Moreau-Rockafellar’s theorem [29, Theorem 23.8, p. 223], we
get

0 ∈ ∂f(x̄) + (C ∩K − x̄)◦ = ∂f(x̄) + ∂δC∩K(x̄) = ∂(f + δC∩K)(x̄).

The latter, due to the convexity, implies that x̄ is a global minimizer of the problem
(RPf ).

Next let us provide an example illustrating Theorem 4.7.

Example 4.8. Let x := (x1, x2) ∈ R2, v1 := (v1,1, v1,2), v2 := (v2,1, v2,2), V1 :=
{x ∈ R2 : ∥x∥ ≤ 1}, V2 := [2, 3]× [0, 1], K := {x ∈ R2 : gi(x, vi) ≤ 0, ∀vi ∈ Vi, i =
1, 2}, where g1(x, v1) := v1,1x1+v1,2x2−x31−2 and g2(x, v2) := v2,1x1+v2,2x2 for
all x := (x1, x2) ∈ R2. Let C := {x ∈ R2 : x2 ≤ −x1}. Then, it can be verify that
K = {x ∈ R2 :

√
x21 + x22 − x31 − 2 ≤ 0, max{2x1 + x2, x1} ≤ 0}, and so C and K

are closed convex subset of R2 such that C∩K ̸= ∅. Moreover, g1((− 1
2 ,−

1
2 ), v1) =

1
2 (−v1,1 − v1,2) − 15

8 ≤ 1
2 (|v1,1| + |v1,2|) − 15

8 ≤ 1
2 (2
√
x21 + x22) − 15

8 ≤ − 7
8 < 0

for all v1 ∈ V1 and g2((− 1
2 ,−

1
2 ), v2) = − 1

2 (v2,1 + v2,2) < 0 for all v2 ∈ V2.
That is, (RSCQ) holds. Also, for x̄ := (x̄1, x̄2) = (0, 0), we get I1(x̄) = {2},
V0
2 = V2 and (0, 0) /∈ ∂oxg2(x̄, v2) = {(v2,1, v2,2)} for all v2 ∈ V0

2 . Hence, the robust
nondegeneracy condition holds at x̄. So, by Theorem 4.7, {C,K} has the G-RS
strong CHIP at x̄.

In the case where C := Rn, the following result follows from Theorem 4.7.

Corollary 4.9. Consider the problem (Pf ) with K given by (3.2), and C :=
Rn. Let the condition (RSCQ) hold and let the robust nondegeneracy condition be
satisfied at x̄ ∈ K. Suppose that K is a convex set and f is a convex function.
Then, x̄ is a global minimizer of the problem (RPf ) if and only if it is a KKT
point.

Proof. This is an immediate consequence of Theorem 4.7.

It is worth noting that Corollary 4.9 is not valid if the robust Slater constraint
qualification (RSCQ) is removed. The following example illustrates this fact.

Example 4.10. Let x := (x1, x2) ∈ R2, C := R2, f(x) := x1 + x2, V1 := [0, 1],
V2 := [−1, 0], g1(x, v1) := x1 − v1x

3
2, g2(x, v2) := −x1 + v2 for all x ∈ R2, v1 ∈ V1

and v2 ∈ V2. We see that K := {x ∈ R2 : gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, 2} =
{x ∈ R2 : x1 = 0, x2 ≥ 0}, which is convex. Moreover, x̄ := (0, 0) ∈ K is a global
minimizer of the problem (RPf ) at which the robust nondegeneracy condition
is satisfied. However, x̄ is not a KKT point. The reason is that the robust
Slater constraint qualification (RSCQ) does not hold. Otherwise, if there exists
x̂ := (x̂1, x̂2) ∈ R2 such that x̂1 − v1x̂

3
2 < 0 for all v1 ∈ V1 and x̂1 + v2 < 0 for all

v2 ∈ V2. It follows that x̂1 < 0 and −x̂1 < 0, a contradiction.

Also, the following example shows that the robust nondegeneracy condition is
essential for the validity of Corollary 4.9.
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Example 4.11. Let x := (x1, x2) ∈ R2, C := R2, f(x) := −x1 − x2, v1 :=
(v1,1, v1,2), v2 := (v2,1, v2,2), v3 := (v3,1, v3,2), V1 := {x ∈ R2 : ∥x∥ ≤ 1}, V2 :=
[0, 1] × [1, 2], V3 := {x ∈ R2 : ∥x∥ ≤ 1}, K := {x ∈ R2 : gi(x, vi) ≤ 0, ∀vi ∈
Vi, i = 1, 2, 3}, where g1(x, v1) := v1,1x1 + v1,2x2 − x31 − 2, g2(x, v2) := −v2,1x31 +
v2,2 max{−x2,−x22} and g3(x, v3) := v3,1x1 + v3,2x2 for all x ∈ R2. Then, it can

be verify that K = {x ∈ R2 :
√
x21 + x22 ≤ 1, max{−x1, 0} − x2 ≤ 0}, and so

K is closed convex subset of R2. For x̄ := (x̄1, x̄2) = (0, 0), we have ∂f(x̄) =
{(−1,−1)}, I1(x̄) = {2, 3}, V0

2 = V2, V0
3 = V3, ∂

0
xg2(x̄, v2) = {0} × [−v2,2, 0] and

∂0xg3(x̄, v3) = {(v3,1, v3,2)}. Selecting v̄1 := (1, 0), v̄2 := (1, 1), v̄3 := (
√
2
2 ,

√
2
2 ),

λ̄1 := 0, λ̄2 := 1 and λ̄3 :=
√
2, we obtain λ̄igi(x̄, v̄i) = 0 for all i = 1, 2, 3 and

(0, 0) ∈ {(−1,−1)}+ ({0} × [−1, 0]) + {(1, 1)} = ∂f(x̄) +

3∑
i=1

λ̄i∂
o
xgi(x̄, v̄i).

Thus, x̄ is a KKT point. Moreover, it can be check that the robust Slater constraint
qualification is satisfied. However, x̄ is not a global minimizer. In fact, by taking
x̃ := (1, 0) ∈ K, one has f(x̃) = −1 < 0 = f(x̄).

Proposition 4.12. If {C,K} has the G-RS strong CHIP at x̄ ∈ C ∩K, then it
has the strong CHIP at x̄.

Proof. By Remark 3.4, the conclusion will easily follow from the fact that

(C − x̄)◦ +M(x̄) ⊆ (C − x̄)◦ +NK(x̄) = (C − x̄)◦ + (K − x̄)◦ ⊆ (C ∩K − x̄)◦.

We will show that if (ENMFCQ) is satisfied at x̄ ∈ C ∩ K, then the G-RS
strong CHIP of {C,K} at x̄ is equivalent to the strong CHIP of {C,K} at x̄.

Proposition 4.13. If (ENMFCQ) is satisfied at x̄ ∈ C ∩K, then {C,K} has the
G-RS strong CHIP at x̄ if and only if {C,K} has the strong CHIP at x̄.

Proof. As before, if {C,K} has the G-RS strong CHIP at x̄ then, by Proposition
4.12, {C,K} has the strong CHIP at x̄. The converse implication will follow from
the fact, by Corollary 3.9 and Theorem 4.7, that {Rn,K} has the G-RS strong
CHIP at x̄, i.e., (K − x̄)◦ =M(x̄).

The following example illustrates that without the (ENMFCQ) the strong
CHIP does not necessarily imply the G-RS strong CHIP.

Example 4.14. Let x := (x1, x2) ∈ R2, C := R+ × {0}, K := {x ∈ R2 :
gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, 2}, where g1(x, v1) := x31−v1x2+v1−1, g2(x, v2) :=
−v2x1 + x22 + v2, V1 := [0, 1] and V2 := [−1, 0]. Then K = −R+ × {0}, which
is convex. Let x̄ := (0, 0) ∈ C ∩ K = {(0, 0)}. A direct calculation shows that
(C − x̄)◦ = {x ∈ R2 : x1 ≤ 0}, (K − x̄)◦ = {x ∈ R2 : x1 ≥ 0}, M(x̄) = {0}×−R+.
It is now easy to verify that {C,K} has the strong CHIP at x̄; however, {C,K}
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does not have the G-RS strong CHIP at x̄ as R2 = (C∩K−x̄)◦ ̸= (C−x̄)◦+M(x̄) =
{x ∈ R2 : x1 ≤ 0}. Note that I1(x̄) = {1, 2}, V0

1 = {1}, V0
2 = {0}, but there is no

x̂ := (x̂1, x̂2) ∈ R2 such that 0 > go1x(x̄, 1, x̂) = −x̂2 and 0 > go2x(x̄, 0, x̂) = 0. So,
(ENMFCQ) is invalid at x̄.

Now we are ready to state the final result of this section by the global conditions
which ensure the strong CHIP and the G-RS strong CHIP of {C,K}.

Proposition 4.15. Let K be convex, given by (3.2), and C be a closed convex
subset of Rn. Let x̄ ∈ C ∩K. Assume that the condition (a) in Theorem 3.5 holds
at x̄. Then, the following assertions holds:

(i) {C,K} has the strong CHIP at x̄.

(ii) {C,K} has the G-RS strong CHIP at x̄.

(iii) For each convex function f : Rn → R, x̄ is a global minimizer of the problem
(RPf ) if and only if KKT condition holds at x̄, where (RPf ) is defined by
(4.4).

Proof. Suppose that the condition (a) in Theorem 3.5 holds. By Theorem 3.5,
the robust Slater constraint qualification is fulfilled. In particular, C ∩ intK ̸= ∅.
Hence, by the Moreau-Rockafellar theorem [29, Theorem 23.8, p. 223] (see also
[30, Proposition 2.3.]), we have

(C ∩K − x̄)◦ = (C − x̄)◦ + (K − x̄)◦,

that is, {C,K} has the strong CHIP at x̄.
At the same time, since the condition (a) in Theorem 3.5 is satisfied at x̄, then

(ENMFCQ) is satisfied at x̄. From this, by Proposition 4.13, {C,K} has the G-RS
strong CHIP at x̄. Thus, (i) and (ii) hold. Finally, since (ii) holds, (iii) follows
from Theorem 4.7.

5 Robust best approximation without convexity
of constraint data uncertainty

In this section, we give a dual characterization of the robust best approxi-
mation x̄ to x from the convex set C ∩K in terms of the best approximation to
a perturbation (x −

∑
i∈I λili) of x from the set C for some multipliers λi ≥ 0,

vi ∈ Vi, li ∈ ∂oxgi(x̄, vi) with λigi(x̄, vi) = 0 for all i ∈ I whenever {C,K} has the
G-RS strong CHIP at some point x̄ ∈ C ∩K.

Here, for a nonempty subset A of Rn, the distance from a given point x ∈ Rn

to A is defined by d(x,A) := infa∈A ∥x − a∥, We say that a point u ∈ A is a best
approximation of x ∈ Rn if ∥x− u∥ = d(x,A). In the following, the set of all best
approximations of x in A is denoted by PA(x), that is,

PA(x) := {u ∈ A : ∥x− u∥ = d(x,A)}.
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Recall that if A is closed and convex, then for each x ∈ Rn there exists a unique
best approximation u0 ∈ A and we write u0 = PA(x) instead of u0 ∈ PA(x).

In order to establish next theorem, we need the following characterization of
best approximation, which is well known.

Lemma 5.1. [27] Let A be a closed convex subset of Rn, x ∈ Rn, and u ∈ A.
Then, u = PD(x) if and only if x− u ∈ (A− u)◦.

We have the following result, which improves the corresponding known re-
sults in [31] for robust best approximation where the constraint data uncertainty
gi(·, vi), i = 1, 2, . . . ,m are assumed to be convex for each vi ∈ Vi.

Theorem 5.2. Let K be convex, given by (3.2), and C be a nonempty closed
convex subset of Rn. Let x ∈ Rn and x̄ ∈ Ω := C ∩K. Assume that {C,K} has
the G-RS strong CHIP at x̄. Then the following assertions are equivalent:

(i) x̄ = PΩ(x);

(ii) There exist λi ≥ 0, vi ∈ Vi, li ∈ ∂oxgi(x̄, vi) with λigi(x̄, vi) = 0 for all i ∈ I
such that

x̄ = PC

(
x−

∑
i∈I

λili

)
;

(iii) There exist λi ≥ 0, vi ∈ Vi with λigi(x̄, vi) = 0 for all i ∈ I such that

0 ∈ ∂∥x− ·∥(x̄) +
∑
i∈I

λi∂
o
xgi(x̄, vi) + (C − x̄)◦.

Proof. Suppose that {C,K} has the G-RS strong CHIP at x̄.
[(i)⇔(ii)]. This equivalence easily follows from Lemma 5.1 together with the

G-RS strong CHIP at x̄ on noting that the statement (i) is, in turn, equivalent to
the fact that,

x̄ = PΩ(x) ⇔ x− x̄ ∈ (Ω− x̄)◦

⇔ ∃λi ≥ 0, vi ∈ Vi, li ∈ ∂oxgi(x̄, vi) with λigi(x̄, vi) = 0, i ∈ I

such that

[
x−

∑
i∈I

λili

]
− x̄ ∈ (C − x̄)◦

⇔ ∃λi ≥ 0, vi ∈ Vi, li ∈ ∂oxgi(x̄, vi) with λigi(x̄, vi) = 0, i ∈ I

such that x̄ = PC

(
x−

∑
i∈I

λili

)
.

[(i)⇔(iii)]. Let f(w) := ∥w − x∥, ∀w ∈ Rn. Then, f is a continuous convex
function. Now, x̄ = PΩ(x) if and only if x̄ is a global minimizer of the problem
(RPf ), which is equivalent to the statement, as Ω is a closed convex set, that

0 ∈ ∂∥x− ·∥(x̄) + (Ω− x̄)◦.
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Therefore, (4.1) gives to the equivalence (i)⇔(iii).
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