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Let H be real Hilbert space with inner product ⟨·, ·⟩ and norm ∥ · ∥. Let C
be a nonempty subset of H. A subset C ⊂ H is said to be proximinal if for each
x ∈ H, there exists y ∈ C such that

∥x− y∥ = d(x,C) = inf{∥x− z∥ : z ∈ C}.

Let CB(C),K(C) and P (C) denote the families of nonempty closed bounded
subsets, nonempty compact subsets and nonempty proximinal bounded subset of
C, respectively. The Hausdorff metric on CB(C) is defined by

H(A,B) = max
{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)
}

for all A,B ∈ CB(C) where d(x,B) = infb∈B ∥x− b∥.
A singlevalued mapping T : C → C is said to be nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥

for all x, y ∈ C.
A multivalued mapping T : C → CB(C) is said to be nonexpansive if

H(Tx, Ty) ≤ ∥x− y∥

for all x, y ∈ C. An element z ∈ C is called a fixed point of T : C → C (resp.,
T : C → CB(C)) if z = Tz (resp., z ∈ Tz). The fixed point set of T is denoted
by F (T ). If F (T ) ̸= Ø and

H(Tx, Tp) ≤ ∥x− p∥

for all x ∈ C and p ∈ F (T ), then T is said to be quasi− nonexpansive.
In 1953, Mann [29] introduced the iteration procedure as follows:

x1 ∈ C, xn+1 = αnxn + (1− αn)Txn
,∀n ∈ N

where {αn} ⊂ [0, 1] and N the set of all positive integers. Recently, many mathe-
matician (see [10, 12, 23]) used Mann’s iteration for obtaining weak convergence
theorem.

In 2008, Takahashi et al.[29] introduced a new projection method which is
called the shrinking projection method by using the modification Mann’s iteration
for obtaining strong convergence theorem for a countable family of nonexpansive
singlevalued mapping in Hilbert spaces. They proved the following theorem:

Theorem 1.1. [29] Let H be a Hilbert space and C be a nonempty closed convex
subset of H. Let {Tn} and τ be a family of nonexpansive mappings of C into
H such that F := ∩∞

n=1F (Tn) = F (τ) ̸= ∅ and let x0 ∈ H. Suppose that {Tn}
satisfies the NST -condition (I) with τ . For C1 = C and u1 = PC1x0, define a
sequence {un} in C as follows: yn = αnun + (1− αn)Tnun,

Cn+1 = {z ∈ Cn : ∥yn − z∥ ≤ ∥un − z∥},
un+1 = PCn+1

x0, ∀n ∈ N,
(1.1)
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where 0 ≤ αn ≤ a < 1 for all n ∈ N. Then the sequence {un} converges strongly
to a point z0 = PFx0.

In 2008, Kohsaka and Takahashi [19, 29] presented a new mapping which
is called a nonspreading mapping and obtained fixed point theorems for a single
nonspreading mapping and also a common fixed point point theorem for a commu-
tative family of nonspreading mapping in Banach spaces. Let H be a Hilbert space
and C be nonempty closed and convex subset of H. Then a mapping T : C → C
is said to be nonspreading if

2∥Tx− Ty∥2 ≤ ∥x− Ty∥2 + ∥y − Tx∥2

for all x, y ∈ C. Recently, Iemoto and Takahashi [13] showed that T : C → C is
nonspreading if and only if

∥Tx− Ty∥2 ≤ ∥x− y∥2 + 2⟨x− Ty, y − Ty⟩, ∀x, y ∈ C.

Further, Takahashi [28] defined a class of nonlinear mapping which is called hybrid
as follows:

∥Tx− Ty∥2 ≤ ∥x− y∥2 + ⟨x− Tx, y − Ty⟩,
for all x, y ∈ C. It was shown that a mapping T : C → C is hybrid if and only if

3∥Tx− Ty∥2 ≤ ∥x− y∥2 + ∥y − Tx∥2 + ∥x− Ty∥2,

for all x, y ∈ C.
Inspired by Kohsaka and Takahashi [19], Iemoto and Takahashi [13] and Taka-

hashi [28], Cholamjiak and Cholamjiak [3] introduced a new concept of multivalued
mapping in Hilbert spaces. A multivalued mapping T : C → CB(C) is said to be
hybrid if

3H(Tx, Ty)2 ≤ ∥x− y∥2 + d(y, Tx)2 + d(x, Ty)2,

for all x, y ∈ C. They showed that if T is hybrid and F (T ) ̸= ∅, then T is
quasi-nonexpansive. The following example shows that T is hybrid but T is not
nonexpansine.

Example 1.2. [3] Let H = R. Consider C = [0, 3] with the usual norm. Define a
multivalued mapping T : C → CB(C) by

Tx =

{
{0}, x ∈ [0, 2];[
0, x

x+1 ], x ∈ (2, 3].

Let F : C × C → R be a bifunction, where R is the set of real number. The
equilibrium problem is the problem of finding a point x̂ ∈ C such that

F (x̂, y) ≥ 0 (1.2)

for all y ∈ C, which has been introduced and studied by Blum and Oettli [2]. The
solution set of the equilibrium problem (1.2) is denoted by EP (F ).
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In 2013, Kazmi and Rizvi [14] introduced and studied the following split equi-
librium problem which is a generalization of the equilibrium problem:

Let H1, H2 be real Hilbert spaces. Let C ⊆ H1 and Q ⊆ H2 and let F1 :
C × C → R and F2 : Q × Q → R be two bifunctions. Let A : H1 → H2 be a
bounded linear operator. The split equilibrium problem is to find x̂ ∈ C such that

F1(x̂, x) ≥ 0 for all x ∈ C (1.3)

and
ŷ = Ax̂ ∈ Q solves F2(ŷ, y) ≥ 0 for all y ∈ Q. (1.4)

Note that the inequality (1.3) is the classical equilibrium problem (1.2) . The
problems (1.3) and (1.4) constitute a pair of equilibrium problems which have to
find the image ŷ = Ax̂, under a given bounded linear operator A, of the solution
x̂ of the problem (1.3) in H1 which is the solution of the problem (1.4) in H2. It’s
easy to see that the split equilibrium problem generalize an equilibrium problem.
We denote the solution set of the problem (1.4) by EP (F2). The solution set of the
split equilibrium (1.3) and (1.4) is denoted by Ω = {z ∈ EP (F1) : Az ∈ EP (F2)}.

Since 2013, the study of a split equilibrium problem and a fixed point problem
for a singlevalued mapping was introduced by many authors (see [4, 5, 11, 14, 17,
18, 21, 22, 30, 31]) and references therein.

Inspired by above works, we present two different hybrid methods which are
the modified Shrinking projection method for a split equilibrium problem and
a hybrid multivalued mapping in a Hilbert space by using Hausdorff metric. As
application, we give examples and numerical results for supporting our main results
and compare the rate of convergence of two iterative methods.

2 Preliminaries

We now provide some results for the main results. In a Hilbert space H1, let
C be a nonempty closed and convex subset of H1. We write xn ⇀ x to indicate
that the sequence {xn} converges weakly to x and xn → x implies that {xn}
converges strongly to x. For every point x ∈ H1, there exists a unique nearest
point of C, denoted by PCx, such that ∥x− PCx∥ ≤ ∥x− y∥ for all y ∈ C. Such
a PC is called the metric projection from H1 on to C. Further, for any x ∈ H1

and z ∈ C, z = PCx if and only if

⟨x− z, z − y⟩ ≥ 0, ∀y ∈ C.

A mapping T : C → H is said to be k − Lipschitz continuous if there exists a
constant k > 0 such that

∥Tx− Ty∥ ≤ k∥x− y∥, ∀x, y ∈ C.
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A mapping A : C → H is called α − inverse strongly monotone if there exists
α > 0 such that

⟨x− y,Ax−Ay⟩ ≥ α∥Ax−Ay∥2, ∀x, y ∈ C.

We know that if T : C → C is nonexpansive, then A
.
= I − T is 1

2 - inverse
strongly monotone; (see [25, 26, 27]) for more details. It is well know that every
nonexpansive operator T : H1 → H1 satisfies, for all (x, y) ∈ H1 × H1 , the
inequality

⟨(x− T (x))− (y − T (y)), T (y)− T (x)⟩ ≥ 1

2
∥(T (x)− x)− (T (y)− y)∥2

and therefore we get, for all (x, y) ∈ H1 × F (T ),

⟨(x− T (x)), (y − T (y)), ⟩ ≥ 1

2
∥T (x)− x∥2

see, e.g, [8, 9].

Lemma 2.1. Let H1 be a real Hilbert space. Then the following equations hold:
(1) ∥x− y∥2 = ∥x∥2 − ∥y∥2 − 2⟨x− y, y⟩ for all x, y ∈ H1;
(2) ∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩ for all x, y ∈ H1;
(3) ∥tx+ (1− t)y∥2 = t∥x∥2 + (1− t)∥y∥2 − t(1− t)∥x− y∥2 for all t ∈ [0, 1]

and x, y ∈ H1;
(4) If {xn}∞n=1 is a sequence in H1 which converges weakly to z ∈ H1, then

lim sup
n→∞

∥xn − y∥2 = lim sup
n→∞

∥xn − z∥2 + ∥z − y∥2

for all y ∈ H1.

Lemma 2.2. [20] Let C be a nonempty, closed and convex subset of a real Hilbert
space H1 and PC : H1 → C be the metric projection from H1 onto C. Then the
following inequality holds:

∥y − PCx∥2 + ∥x− PCx∥2 ≤ ∥x− y∥2, ∀x ∈ H1, ∀y ∈ C.

Lemma 2.3. [16] Let C be a nonempty, closed and convex subset of a real Hilbert
space H1. Given x, y, z ∈ H1 and also given a ∈ R, the set

{v ∈ C : ∥y − v∥2 ≤ ∥x− v∥2 + ⟨z, v⟩+ a}

is convex and closed.

Assumption 2.4. [2] Let F1 : C ×C → R be a bifunction satisfying the following
assumptions:

(1) F1(x, x) = 0 for all x ∈ C;
(2) F1 is monotone, i.e., F1(x, y) + F1(y, x) ≤ 0 for all x ∈ C;
(3) For each x, y, z ∈ C, lim supt→0 F1(tz + (1− t)x, y) ≤ F1(x, y);
(4) For each x ∈ C, y → F1(x, y) is convex and lower semi-continuous.
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Lemma 2.5. [7] Let F1 : C × C → R be a bifunction satisfying Assumption 2.4.
For any r > 0 and x ∈ H1, define a mapping TF1

r : H1 → C as follows:

TF1
r (x) =

{
z ∈ C : F1(z, y) +

1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C

}
.

Then we have the following:
(1) TF1

r is nonempty and single-value;
(2) TF1

r is firmly nonexpansive, i.e., for any x, y ∈ H1,

∥TF1
r x− TF1

r y∥2 ≤ ⟨TF1
r x− TF1

r y, x− y⟩;

(3) F (TF1
r ) = EP (F1);

(4) EP (F1) is closed and convex.

Further, assume that F2 : Q × Q → R satisfying Assumption 2.4. For each
s > 0 and w ∈ H2, define a mapping TF2

s : H2 → Q as follows:

TF2
s (w) =

{
d ∈ Q : F2(d, e) +

1

s
⟨e− d, d− w⟩ ≥ 0, ∀e ∈ Q

}
.

Then we have the following:
(5) TF2

s is nonempty and single-value;
(6) TF2

s is firmly nonexpansive;
(7) F (TF2

s ) = EP (F2, Q);
(8) EP (F2, Q) is closed and convex.
An operator B : H1 → 2H1 is said to be monotone if ⟨x1 − x2, y1 − y2⟩ ≥ 0

wherever y1 ∈ Bx1 and y2 ∈ Bx2. A monotone operator B is said to be maximal
if the graph of B is not property contained in the graph of any other monotone
operator. It is known that a monotone operator B is maximal if and only if
R(I + rB) = H1 for every r > 0, where R(I + rB) is the range of I + rB.
If B : H1 → 2H1 is a maximal monotone, then, for each r > 0, a mapping
Tr : H1 → D(B) is defined by Tr = (I + rB)−1, where D(B) is the domain
of A. Tr is called the resolvent of B. We also define the Yosida approximation
Br = (I − Tr)/r; see ([15, 25, 26]) for more details. We know the following
fundamental results:

(i) Brx ∈ BTrx for all x ∈ H1;
(ii) if B−10 = {z ∈ H1 : 0 ∈ Bz}, then B−10 = F (Tr) for all r > 0, where

F (Tr) is the set of fixed points of Tr;
(iii) ∥Trx− Try∥2 ≤ ∥x− y∥2 − ∥(I − Tr)x− (I − Tr)y∥2 for all x, y ∈ H1 and

r > 0, that is, Tr is a nonexpansive mapping of H1 into H1.

Lemma 2.6. [1] Let H1 be a Hilbert space and let C be a nonempty closed convex
subset of H1. Let F1 : C × C → R satisfy (A1) -(A4). Let AF1 be a set-valued
mapping of H1 into itself defined by

AF1
=

{
{z ∈ H1 : F1(x, y) ≥ ⟨y − x, z⟩, ∀y ∈ C}, x ∈ C,
∅, x /∈ C.
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Then, EP (F1) = A−1
F1

0 and AF1 is a maximal monotone operator with dom(AF1) ⊂
C. Furthermore, for any x ∈ H1 and r > 0, the resolvent Tr of F1 coincides with
the resolvent of AF1

, i.e.,

Trx = (I + rAF1)
−1x.

Lemma 2.7. [3] Let C be a nonempty, closed and convex subset of a real Hilbert
space H. Let T : C → K(C) be a hybrid multivalued mapping. Let {xn} be a
sequence in C such that xn ⇀ p and limn→∞∥xn − yn∥ = 0 for some yn ∈ Txn.
Then p ∈ Tp.

Lemma 2.8. [3] Let C be a closed convex subset of a real Hilbert space H. Let
T : C → K(C) be a hybrid multivalued mapping with F (T ) ̸= Ø. Then F (T ) is
closed.

Lemma 2.9. [3] Let C be a closed convex subset of a real Hilbert space H. Let
T : C → K(C) be a hybrid multivalued mapping with F (T ) ̸= Ø. If T satisfies
Condition (A) , then F (T ) is convex.

Condition(A). LetH1 be a Hilbert space and C be a subset ofH1. A multi-valued
mapping T : C → CB(C) is said to satisfy Condition (A) if ∥x−p∥ = d(x, Tp) for
all x ∈ H1 and p ∈ F (T ).

Remark 2.10. We see that T satisfies Condition (A) if and only if Tp = {p}
for all p ∈ F (T ). It is known that the best approximation operator PT , which is
defined by PTx = {y ∈ Tx : ∥y − x∥ = d(x, Tx)}, also satisfies Condition (A).

3 Main Results

In this section, we obtain two different strong convergence theorems for finding
a common element of solutions of split equilibrium problems and fixed point prob-
lems of a hybird multivalued mapping in Hilbert spaces by using the Shrinking
projection method.

Theorem 3.1. Let H1, H2 be two real Hilbert spaces and let C, Q be nonempty
closed and convex subsets of H1 and H2, respectively. Let A : H1 → H2 be a
bounded linear operator and T : C → K(C) a hybrid multivalued mapping. Let
F1 : C×C → R, F2 : Q×Q → R be bifunctions satisfying Assumption 2.4 and F2

is upper semi-continuous in the first argument. Assume that Θ = F (T ) ∩ Ω ̸= ∅,
where Ω = {z ∈ C : z ∈ EP (F1) and Az ∈ EP (F2)}. For an initial point x1 ∈ H1

with C1 = C, let {un}, {yn} and {xn} be sequences defined by
un = TF1

rn (I − γA∗(I − TF2
rn )A)xn,

yn ∈ αnun + (1− αn)Tun,
Cn+1 = {z ∈ Cn : ∥yn − z∥ ≤ ∥xn − z∥},
xn+1 = PCn+1

x1, ∀n ≥ 1

(3.1)
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where {αn} ⊂ (0, 1), rn ⊂ (0,∞) and γ ∈ (0, 1/L) such that L is the spectral
radius of A∗A and A∗ is the adjoint of A. Assume that the following conditions
hold:

(i) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1;
(ii) lim infn→∞ rn > 0.

If T satisfies Condition (A), then the sequences {un}, {yn} and {xn} converge
strongly to PΘx1.

Proof. We split the proof into six steps.
Step 1. Show that PCn+1

x1 is well-defined for every x1 ∈ H1.
By Lemma 2.8 and 2.9, we obtain that F (T ) is closed and convex. Since A

is a bounded linear operator, it is easy to prove that Ω is closed and convex. So,
Θ = F (T ) ∩ Ω is also closed and convex. From the definition of Cn+1, it follows
from Lemma 2.3 that Cn+1 is closed and convex for each n ≥ 1. Since TF2

rn is
firmly nonexpansive and I − TF2

rn is 1-inverse strongly monotone, we see that

∥A∗(I − TF2
rn )Ax−A∗(I − TF2

rn )Ay∥2

= ⟨A∗(I − TF2
rn )(Ax−Ay), A∗(I − TF2

rn )(Ax−Ay)⟩
= ⟨(I − TF2

rn )(Ax−Ay), AA∗(I − TF2
rn )(Ax−Ay)⟩

≤ L⟨(I − TF2
rn )(Ax−Ay), (I − TF2

rn )(Ax−Ay)⟩
= L∥(I − TF2

rn )(Ax−Ay)∥2

≤ L⟨Ax−Ay, (I − TF2
rn )(Ax−Ay)⟩

= L⟨x− y,A∗(I − TF2
rn )Ax−A∗(I − TF2

rn )Ay⟩

for all x, y ∈ H1. This implies that A∗(I−TF2
rn )A is a 1

L -inverse strongly monotone
mapping. Since γ ∈ (0, 1

L ), it follows that I−γA∗(I−TF2
rn )A is nonexpansive. Let

p ∈ Θ. Then p = TF1
rn p and (I − γA∗(I − TF2

rn )A)p = p. Thus, we have

∥un − p∥ = ∥TF1
rn (I − γA∗(I − TF2

rn )A)xn − TF1
rn (I − γA∗(I − TF2

rn )A)p∥
≤ ∥(I − γA∗(I − TF2

rn )A)xn − (I − γA∗(I − TF2
rn )A)p∥

≤ ∥xn − p∥. (3.2)

This implies that

∥yn − p∥ = ∥αnun + (1− αn)zn − p∥
≤ αn∥un − p∥+ (1− αn)∥zn − p∥
= αn∥un − p∥+ (1− αn)d(zn, Tp)

≤ αn∥un − p∥+ (1− αn)H(Tun, Tp)

≤ ∥un − p∥
≤ ∥xn − p∥

for all zn ∈ Tun. So, we have p ∈ Cn+1, thus Θ ⊂ Cn+1. Therefore PCn+1
x1 is

well defined.
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Step 2. Show that limn→∞ ∥xn − x1∥ exists.
Since Θ is a nonempty closed and convex subset of H1, there exists a unique

v ∈ Θ such that
v = PΘx1.

From xn = PCn
x1, Cn+1 ⊂ Cn and xn+1 ∈ Cn, ∀n ≥ 1, we get

∥xn − x1∥ ≤ ∥xn+1 − x1∥, ∀n ≥ 1.

On the other hand, as Θ ⊂ Cn, we obtain

∥xn − x1∥ ≤ ∥v − x1∥, ∀n ≥ 1.

It follows that the sequence {xn} is bounded and nondecreasing. Therefore
limn→∞ ∥xn − x1∥ exists.

Step 3. Show that xn → w ∈ C as n → ∞.
For m > n, by the definition of Cn, we see that xm = PCm

x1 ∈ Cm ⊂ Cn. By
Lemma 2.2, we get

∥xm − xn∥2 ≤ ∥xm − x1∥2 − ∥xn − x1∥2.

From Step 2, we obtain that {xn} is Cauchy. Hence, there exists w ∈ C such that
xn → w as n → ∞.

Step 4. Show that w ∈ F (T ).
From Step 3, we get

∥xn+1 − xn∥ → 0 (3.3)

as n → ∞. Since xn+1 ∈ Cn+1 ⊂ Cn, we have

∥yn − xn∥ ≤ ∥yn − xn+1∥+ ∥xn+1 − xn∥ ≤ 2∥xn+1 − xn∥ → 0 (3.4)

as n → ∞. Hence, yn → w as n → ∞. For p ∈ Θ, we estimate

∥un − p∥2 = ∥TF1
rn (I − γA∗(I − TF2

rn )A)xn − p∥2

= ∥TF1
rn (I − γA∗(I − TF2

rn )A)xn − TF1
rn p∥2

≤ ∥xn − γA∗(I − TF2
rn )Axn − p∥2

≤ ∥xn − p∥2 + γ2∥A∗(I − TF2
rn )Axn∥2

+2γ⟨p− xn, A
∗(I − TF2

rn )Axn⟩.

Thus we have

∥un − p∥2 ≤ ∥xn − p∥2 + γ2⟨Axn − TF2
rn Axn, AA∗(I − TF2

rn )Axn⟩
+2γ⟨p− xn, A

∗(I − TF2
rn )Axn⟩. (3.5)

On the other hand, we have

γ2⟨Axn − TF2
rn Axn, AA

∗(I − TF2
rn )Axn⟩ ≤ Lγ2⟨Axn − TF2

rn Axn, Axn − TF2
rn Axn⟩

= Lγ2∥Axn − TF2
rn Axn∥2 (3.6)
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and

2γ⟨p− xn, A
∗(I − TF2

rn )Axn⟩ = 2γ⟨A(p− xn), Axn − TF2
rn Axn⟩

= 2γ⟨A(p− xn) + (Axn − TF2
rn Axn)

−(Axn − TF2
rn Axn), Axn − TF2

rn Axn⟩
= 2γ{⟨Ap− TF2

rn Axn, Axn − TF2
rn Axn⟩

−∥Axn − TF2
rn Axn∥2}

≤ 2γ{1
2
∥Axn − TF2

rn Axn∥2 − ∥Axn − TF2
rn Axn∥2}

= −γ∥Axn − TF2
rn Axn∥2. (3.7)

Using (3.5), (3.6) and (3.7), we have

∥un − p∥2 ≤ ∥xn − p∥2 + Lγ2∥Axn − TF2
rn Axn∥2 − γ∥Axn − TF2

rn Axn∥2

= ∥xn − p∥2 + γ(Lγ − 1)∥Axn − TF2
rn Axn∥2. (3.8)

It follows that, for all zn ∈ Tun,

∥yn − p∥2 = ∥αnun + (1− αn)zn − p∥2

≤ αn∥un − p∥2 + (1− αn)∥zn − p∥2

= αn∥xn − p∥2 + (1− αn)d(zn, Tp)
2

≤ αn∥xn − p∥2 + (1− αn)H(Tun, Tp)
2

≤ αn∥xn − p∥2 + (1− αn)∥un − p∥2

≤ αn∥xn − p∥2 + (1− αn)(∥xn − p∥2

+γ(Lγ − 1)∥Axn − TF2
rn Axn∥2)

≤ ∥xn − p∥2 + γ(Lγ − 1)∥Axn − TF2
rn Axn∥2.

Therefore, we have

−γ(Lγ − 1)∥Axn − TF2
rn Axn∥2 ≤ ∥xn − p∥2 − ∥yn − p∥2

≤
(
∥xn − p∥+ ∥yn − p∥

)
∥xn − yn∥.

It follows from γ(Lγ − 1) < 0 and (3.4) that

lim
n→∞

∥Axn − TF2
rn Axn∥ = 0. (3.9)

Since TF1
rn is firmly nonexpansive and I−γA∗(TF2

rn −I)A is nonexpansive, it follows
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that

∥un − p∥2

= ∥TF1
rn (xn − γA∗(I − TF2

rn )Axn)− TF1
rn p∥2

≤ ⟨TF1
rn (xn − γA∗(I − TF2

rn )Axn)− TF1
rn p, xn − γA∗(I − TF2

rn )Axn − p⟩
= ⟨un − p, xn − γA∗(I − TF2

rn )Axn − p⟩

=
1

2
{∥un − p∥2 + ∥xn − γA∗(I − TF2

rn )Axn − p∥2

−∥un − xn − γA∗(I − TF2
rn )Axn∥2}

≤ 1

2
{∥un − p∥2 + ∥xn − p∥2 − ∥un − xn − γA∗(I − TF2

rn )Axn∥2}

=
1

2
{∥un − p∥2 + ∥xn − p∥2 − (∥un − xn∥2 + γ2∥A∗(I − TF2

rn )Axn∥2

− 2γ⟨un − xn, A
∗(I − TF2

rn )Axn⟩)},

which implies that

∥un − p∥2 ≤ ∥xn − p∥2 − ∥un − xn∥2

+2γ⟨un − xn, A
∗(I − TF2

rn )Axn⟩
≤ ∥xn − p∥2 − ∥un − xn∥2

+2γ∥un − xn∥∥A∗(I − TF2
rn )Axn∥. (3.10)

It follows from (3.10) that

∥yn − p∥2 ≤ αn∥un − p∥2 + (1− αn)∥zn − p∥2

= αn∥xn − p∥2 + (1− αn)d(zn, Tp)
2

≤ αn∥xn − p∥2 + (1− αn)H(Tun, Tp)
2

≤ αn∥xn − p∥2 + (1− αn)∥un − p∥2

≤ αn∥xn − p∥2 + (1− αn)(∥xn − p∥2

−∥un − xn∥2 + 2γ∥un − xn∥∥A∗(I − TF2
rn )Axn∥)

Therefore, we have

(1− αn)∥un − xn∥2 ≤ 2γ∥un − xn∥∥A∗(I − TF2
rn )Axn∥+ ∥xn − p∥2 − ∥yn − p∥2.

From the condition (i) , (3.4) and (3.9), we have

lim
n→∞

∥un − xn∥ = 0. (3.11)

We know that xn → w as n → ∞, thus un → w as n → ∞. It follows from Lemma
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2.1 and (3.2), we have

∥yn − p∥2 = ∥αnun + (1− αn)zn − p∥2

≤ αn∥un − p∥2 + (1− αn)∥zn − p∥2 − αn(1− αn)∥un − zn∥2

= αn∥un − p∥2 + (1− αn)d(zn, Tp)
2 − αn(1− αn)∥un − zn∥2

≤ αn∥un − p∥2 + (1− αn)H(Tun, Tp)
2 − αn(1− αn)∥un − zn∥2

≤ ∥un − p∥2 − αn(1− αn)∥un − zn∥2

≤ ∥xn − p∥2 − αn(1− αn)∥un − zn∥2.

This implies that

αn(1− αn)∥un − zn∥2 ≤ ∥xn − p∥2 − ∥yn − p∥2

≤
(
∥xn − p∥+ ∥yn − p∥

)
∥xn − yn∥.

From the condition (i) and (3.4) that

lim
n→∞

∥un − zn∥ = 0. (3.12)

By Lemma 2.7, we obtain w ∈ F (T ).
Step 5. Show that w ∈ EP (F ).
From un = TF1

rn (I + γA∗(I − TF2
rn )A)xn, we have

F1(un, y) +
1

rn
⟨y − un, un − xn − γA∗(I − TF2

rn )Axn⟩ ≥ 0

for all y ∈ C, which implies that

F1(un, y) +
1

rn
⟨y − un, un − xn⟩ −

1

rn
⟨y − un, γA

∗(I − TF2
rn )Axn⟩ ≥ 0

for all y ∈ C. By Assumption 2.4 (2), we have

1

rni

⟨y − uni
, uni

− xni
⟩ − 1

rni

⟨y − uni
, γA∗(I − TF1

rni
)Axni

⟩ ≥ F1(y, uni
)

for all y ∈ C. From lim infn→∞ rn > 0, from (3.8), (3.10) and the Assumption 2.4
(4), we obtain

F1(y, w) ≤ 0

for all y ∈ C. For any 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)w. Since y ∈ C
and w ∈ C, yt ∈ C and hence F1(yt, w) ≤ 0. So, by Assumption 2.4 (1) and (4),
we have

0 = F1(yt, yt) ≤ tF1(yt, y) + (1− t)F1(yt, w) ≤ tF1(yt, y)

and hence F1(yt, y) ≥ 0. So F1(w, y) ≥ 0 for all y ∈ C and hence w ∈ EP (F1).
Since A is a bounded linear operator, Axni ⇀ Aw. Then it follows from (3.9) that

TF2
rni

Axni
⇀ Aw (3.13)
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as i → ∞. By the definition of TF2
rni

Axni , we have

F2(T
F2
rni

Axni
, y) +

1

rni

⟨y − TF2
rni

Axni
, TF2

rni
Axni

−Axni
⟩ ≥ 0

for all y ∈ C. Since F2 is upper semi-continuous in the first argument and (3.13),
it follows that

F2(Aw, y) ≥ 0

for all y ∈ C. This shows that Aw ∈ EP (F2). Hence w ∈ Ω.
Step 6. Show that w = v = PΘx1.
Since xn = PCn

x1 and Θ ⊂ Cn, we obtain⟨
x1 − xn, xn − p

⟩
≥ 0 ∀p ∈ Θ. (3.14)

By taking the limit in (3.14), we obtain⟨
x1 − w,w − p

⟩
≥ 0 ∀p ∈ Θ.

This shows that w = PΘx1 = v.
From Step 4, we obtain that {xn}, {yn} and {un} converge strongly to v =

PΘx1. This completes the proof.

If Tp = {p} for all p ∈ F (T ), then T satisfies Condition (A). We then obtain
the following result:

Theorem 3.2. Let H1,H2 be two real Hilbert spaces and let C , Q be nonempty
closed and convex subsets of Hilbert spaces H1 and H2, respectively. Let A : H1 →
H2 be a bounded linear operator and T : C → K(C) a hybrid multivalued mapping.
Let F1 : C×C → R, F2 : Q×Q → R be bifunctions satisfying Assumption 2.4 and
F2 is upper semi-continuous in the first argument. Assume that Θ = F (T )∩Ω ̸= Ø,
where Ω = {z ∈ C : z ∈ EP (F1) and Az ∈ EP (F2)} . For an initial point x1 ∈ H1

with C1 = C, let {un}, {yn} and {xn} be sequences defined by
un = TF1

rn (I − γA∗(I − TF2
rn )A)xn,

yn ∈ αnun + (1− αn)Tun,
Cn+1 = {z ∈ Cn : ∥yn − z∥ ≤ ∥xn − z∥},
xn+1 = PCn+1

x1, ∀n ≥ 1

(3.15)

where {αn} ⊂ (0, 1), rn ⊂ (0,∞) and γ ∈ (0, 1/L) such that L is the spectral
radius of A∗A and A∗ is the adjoint of A. Assume that the following conditions
hold:

(i) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1;
(ii) lim infn→∞ rn > 0.

If Tp = {p} for all p ∈ F (T ), then the sequences {un}, {yn} and {xn} converge
strongly to PΘx1.
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Since PT satisfies Condition (A), we also obtain the following result:

Theorem 3.3. Let H1,H2 be two real Hilbert spaces and let C , Q be nonempty
closed and convex subsets of Hilbert spaces H1 and H2, respectively. Let A : H1 →
H2 be a bounded linear operator and T : C → P (C) a multivalued mapping. Let
F1 : C ×C → R, F2 : Q×Q → R be bifunctions satisfying Assumption 2.4 and F2

is upper semi-continuous in the first argument. Assume that Θ = F (T ) ∩ Ω ̸= Ø,
where Ω = {z ∈ C : z ∈ EP (F1) and Az ∈ EP (F2)} . For an initial point x1 ∈ H1

with C1 = C, let {un}, {yn} and {xn} be sequences defined by
un = TF1

rn (I − γA∗(I − TF2
rn )A)xn,

yn ∈ αnun + (1− αn)PTun,
Cn+1 = {z ∈ Cn : ∥yn − z∥ ≤ ∥xn − z∥},
xn+1 = PCn+1

x1, ∀n ≥ 1

(3.16)

where {αn} ⊂ (0, 1), rn ⊂ (0,∞) and γ ∈ (0, 1/L) such that L is the spectral
radius of A∗A and A∗ is the adjoint of A. Assume that the following conditions
hold:

(i) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1;
(ii) lim infn→∞ rn > 0.

If PT is hybrid multivalued mapping and I−T is demiclosed at 0, then the sequences
{un}, {yn} and {xn} converge strongly to PΘx1.

Proof. By the same proof as in Theorem 3.1, we have

lim
n→∞

∥un − zn∥ = 0

where zn ∈ PTun ⊆ Tun. From I − T is demiclosed at 0, so we obtain the
result.

Theorem 3.4. Let H1,H2 be two real Hilbert spaces and let C , Q be nonempty
closed and convex subsets of H1 and H2, respectively. Let A : H1 → H2 be a
bounded linear operator and T : C → K(C) a hybrid multivalued mapping. Let
F1 : C ×C → R, F2 : Q×Q → R be bifunctions satisfying Assumption 2.4 and F2

is upper semi-continuous in the first argument. Assume that Θ = F (T ) ∩ Ω ̸= Ø,
where Ω = {z ∈ C : z ∈ EP (F1) and Az ∈ EP (F2)} . For an initial point x1 ∈ H1

with C1 = C, let {un}, {yn} and {xn} be sequences defined by
un = TF1

rn (I − γA∗(I − TF2
rn )A)xn,

yn ∈ αnxn + (1− αn)Tun,
Cn+1 = {z ∈ Cn : ∥yn − z∥ ≤ ∥xn − z∥},
xn+1 = PCn+1

x1, ∀n ≥ 1

(3.17)

where {αn} ⊂ (0, 1), rn ⊂ (0,∞) and γ ∈ (0, 1/L) such that L is the spectral
radius of A∗A and A∗ is the adjoint of A. Assume that the following conditions
hold:
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(i) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1;
(ii) lim infn→∞ rn > 0.

If T satisfies Condition (A), then the sequences {un} , {yn} and {xn} converge
strongly to PΘx1.

Proof. As the same proof in Step 1 of Theorem 3.1, we have

∥un − p∥ = ∥TF1
rn (I − γA∗(I − TF2

rn )A)xn − TF1
rn (I − γA∗(I − TF2

rn )A)p∥
≤ ∥(I − γA∗(I − TF2

rn )A)xn − (I − γA∗(I − TF2
rn )A)p∥

≤ ∥xn − p∥. (3.18)

This implies that

∥yn − p∥ = ∥αnxn + (1− αn)zn − p∥
≤ αn∥xn − p∥+ (1− αn)∥zn − p∥
= αn∥xn − p∥+ (1− αn)d(zn, Tp)

≤ αn∥xn − p∥+ (1− αn)H(Tun, Tp)

≤ αn∥xn − p∥+ (1− αn)∥un − p∥
≤ ∥xn − p∥

for all zn ∈ Tun. So, we have p ∈ Cn+1, thus Θ ⊂ Cn+1. Therefore PCn+1
x1 is

well defined.
From Step 2-3 in Theorem 3.1, we know that {xn} is Cauchy. Hence, there exists
w ∈ C such that xn → w as n → ∞. Since {xn} is Cauchy, we get

∥xn+1 − xn∥ → 0 (3.19)

as n → ∞. Since xn+1 ∈ Cn+1 ⊂ Cn, we have

∥yn − xn∥ ≤ ∥yn − xn+1∥+ ∥xn+1 − xn∥ ≤ 2∥xn+1 − xn∥ → 0 (3.20)

as n → ∞. Hence, yn → w as n → ∞. For p ∈ Θ, as the same proof in Step 4 of
Theorem 3.1, we have

∥un − p∥2 ≤ ∥xn − p∥2 + Lγ2∥Axn − TF2
rn Axn∥2 − γ∥Axn − TF2

rn Axn∥2

= ∥xn − p∥2 + γ(Lγ − 1)∥Axn − TF2
rn Axn∥2. (3.21)

Since T satisfies condition (A), for zn ∈ Tun,

∥yn − p∥2 = ∥αnxn + (1− αn)zn − p∥2

≤ αn∥xn − p∥2 + (1− αn)∥zn − p∥2

= αn∥xn − p∥2 + (1− αn)d(zn, Tp)
2

≤ αn∥xn − p∥2 + (1− αn)H(Tun, Tp)
2

≤ αn∥xn − p∥2 + (1− αn)∥un − p∥2

≤ αn∥xn − p∥2 + (1− αn)(∥xn − p∥2

+γ(Lγ − 1)∥Axn − TF2
rn Axn∥2)

≤ ∥xn − p∥2 + γ(Lγ − 1)∥Axn − TF2
rn Axn∥2.
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Therefore, we have

−γ(Lγ − 1)∥Axn − TF2
rn Axn∥2 ≤ ∥xn − p∥2 − ∥yn − p∥2

≤
(
∥xn − p∥+ ∥yn − p∥

)
∥xn − yn∥.

It follows from γ(Lγ − 1) < 0 and (3.20) that

lim
n→∞

∥Axn − TF2
rn Axn∥ = 0. (3.22)

From Step 4 in Theorem 3.1, we also have

∥yn − p∥2 ≤ αn∥xn − p∥2 + (1− αn)∥zn − p∥2

= αn∥xn − p∥2 + (1− αn)d(zn, Tp)
2

≤ αn∥xn − p∥2 + (1− αn)H(Tun, Tp)
2

≤ αn∥xn − p∥2 + (1− αn)∥un − p∥2

≤ αn∥xn − p∥2 + (1− αn)(∥xn − p∥2

−∥un − xn∥2 + 2γ∥un − xn∥∥A∗(I − TF2
rn )Axn∥).

Therefore, we have

(1− αn)∥un − xn∥2 ≤ 2γ∥un − xn∥∥A∗(I − TF2
rn )Axn∥+ ∥xn − p∥2 − ∥yn − p∥2.

From the condition (i) , (3.20) and (3.22), we have

lim
n→∞

∥un − xn∥ = 0. (3.23)

We know that xn → w as n → ∞, thus un → w as n → ∞. It follows from Lemma
2.1 and (3.18), we have

∥yn − p∥2 = ∥αnxn + (1− αn)zn − p∥2

≤ αn∥xn − p∥2 + (1− αn)∥zn − p∥2 − αn(1− αn)∥un − zn∥2

= αn∥xn − p∥2 + (1− αn)d(zn, Tp)
2 − αn(1− αn)∥un − zn∥2

≤ αn∥xn − p∥2 + (1− αn)H(Tun, Tp)
2 − αn(1− αn)∥un − zn∥2

≤ ∥xn − p∥2 − αn(1− αn)∥un − zn∥2

≤ ∥xn − p∥2 − αn(1− αn)∥un − zn∥2.

This implies that

αn(1− αn)∥un − zn∥2 ≤ ∥xn − p∥2 − ∥yn − p∥2

≤
(
∥xn − p∥+ ∥yn − p∥

)
∥xn − yn∥.

From the condition (i) and (3.20) that

lim
n→∞

∥un − zn∥ = 0. (3.24)

By Lemma 2.7, we obtain w ∈ F (T ). As the same proof in Step 5-6 of Theorem
3.1, we can conclude that {xn}, {yn} and {un} converge strongly to v = PΘx1.
This completes the proof.
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If Tp = {p} for all p ∈ F (T ), then T satisfies Condition (A). We then obtain
the following result:

Theorem 3.5. Let H1,H2 be two real Hilbert spaces and let C , Q be nonempty
closed and convex subsets of H1 and H2, respectively. Let A : H1 → H2 be a
bounded linear operator and T : C → K(C) a hybrid multivalued mapping. Let
F1 : C ×C → R, F2 : Q×Q → R be bifunctions satisfying Assumption 2.4 and F2

is upper semi-continuous in the first argument. Assume that Θ = F (T ) ∩ Ω ̸= Ø,
where Ω = {z ∈ C : z ∈ EP (F1) and Az ∈ EP (F2)} . For an initial point x1 ∈ H1

with C1 = C, let {un}, {yn} and {xn} be sequences defined by
un = TF1

rn (I − γA∗(I − TF2
rn )A)xn,

yn ∈ αnxn + (1− αn)Tun,
Cn+1 = {z ∈ Cn : ∥yn − z∥ ≤ ∥xn − z∥},
xn+1 = PCn+1x1, ∀n ≥ 1

(3.25)

where {αn} ⊂ (0, 1), rn ⊂ (0,∞) and γ ∈ (0, 1/L) such that L is the spectral
radius of A∗A and A∗ is the adjoint of A. Assume that the following conditions
hold:

(i) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1;
(ii) lim infn→∞ rn > 0.

If Tp = {p} for all p ∈ F (T ), then the sequences {un}, {yn} and {xn} converge
strongly to PΘx1.

Since PT satisfies Condition (A), we also obtain the following result:

Theorem 3.6. Let H1,H2 be two real Hilbert spaces and let C , Q be nonempty
closed and convex subsets of H1 and H2, respectively. Let A : H1 → H2 be a
bounded linear operator and T : C → P (C) a hybrid multivalued mapping. Let
F1 : C ×C → R, F2 : Q×Q → R be bifunctions satisfying Assumption 2.4 and F2

is upper semi-continuous in the first argument. Assume that Θ = F (T ) ∩ Ω ̸= Ø,
where Ω = {z ∈ C : z ∈ EP (F1) and Az ∈ EP (F2)} . For an initial point x1 ∈ H1

with C1 = C, let {un}, {yn} and {xn} be sequences defined by
un = TF1

rn (I − γA∗(I − TF2
rn )A)xn,

yn ∈ αnxn + (1− αn)PTun,
Cn+1 = {z ∈ Cn : ∥yn − z∥ ≤ ∥xn − z∥},
xn+1 = PCn+1x1, ∀n ≥ 1

(3.26)

where {αn} ⊂ (0, 1), rn ⊂ (0,∞) and γ ∈ (0, 1/L) such that L is the spectral
radius of A∗A and A∗ is the adjoint of A. Assume that the following conditions
hold:

(i) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1;
(ii) lim infn→∞ rn > 0.

If PT is hybrid multivalued mapping and I−T is demiclosed at 0, then the sequences
{un}, {yn} and {xn} converge strongly to PΘx1.
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Proof. By the same proof as in Theorem 3.4, we have

lim
n→∞

∥un − zn∥ = 0

where zn ∈ PTun ⊆ Tun. From I − T is demiclosed at 0, so we obtain the
result.

We then apply our main theorems to solve the proximal point problems.

Remark 3.7. If, we set TF1
rn = (I + rnAF1

)−1 and TF2
rn = (I + rnAF2

)−1 where

AF1 =

{
{f1 ∈ H1 : F1(x, y) ≥ ⟨y − x, f1⟩, ∀y ∈ C}, x ∈ C
∅ x /∈ C

and

AF2
=

{
{f2 ∈ H2 : F2(x, y) ≥ ⟨y − x, f2⟩, ∀y ∈ Q}, x ∈ Q
∅ x /∈ Q.

Then the sequences {un}, {yn} and {xn} generated in Theorem 3.1-3.6 converge
strongly to PΘx1, where Θ = F (T ) ∩ Ω and Ω = {z ∈ C : z ∈ A−1

F1
0 and Az ∈

A−1
F2

0}.

4 Examples and Numerical Results

In this section, we give examples and numerical results for supporting our main
theorem.

Example 4.1. Let H1 = H2 = R, C = [1, 4] and Q = [0,∞). Let F1(u, v) =
2(u − 4)(v − u) for all u, v ∈ C and F2(x, y) = 2(x − 8)(y − x) for all x, y ∈ Q.
Define two mappings A : R → R and T : C → K(C) by Ax = 2x for all x ∈ R and

Tx =

{
{4}, x ∈ [2, 4];[
(x− 4) · tan−1(20x−45)

2 + x, 4
]
, x /∈ [2, 4].

Choose αn = n
5n+3 , rn = n

200n+2 and γ = 1
200 . It is easy to check that F1 and

F2 satisfy all conditions in Theorem 3.1 and T satisfies Condition (A) such that
F (T ) = {4} .
Now, we show that T is hybrid. In fact, we have the following case:
Case 1: If x, y ∈ [2, 4], then H(Tx, Ty) = 0.

Case 2: If x ∈ [2, 4] and y /∈ [2, 4], then Tx = {4} and Ty =
[
(y−4)· tan

−1(20y−45)
2 +

y, 4
]
. This implies that

3H(Tx, Ty)2 = 3
(
(y−4)· tan

−1(20y − 45)

2
+y−4

)2

< 3 < ∥x−y∥2+d(x, Ty)2+d(y, Tx)2.
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Case 3: If x, y /∈ [2, 4], then Tx =
[
(y − 4) · tan−1(20x−45)

2 + x, 4
]
and Ty =[

(y − 4) · tan−1(20y−45)
2 + y, 4

]
. This implies that

3H(Tx, Ty)2 = 3
(
(x− 4) · tan

−1(20x− 45)

2
+ x− (y − 4) · tan

−1(20y − 45)

2
+ y

)2

< 3

< ∥x− y∥2 + d(x, Ty)2 + d(y, Tx)2.

On the other hand, T is not nonexpansive since for x = 1.83 and y = 2.18, we
have Tx =

[
3.41, 4

]
and Ty = {4}. This implies that

H(Tx, Ty) = 4− 3.41 = 0.39 > 0.35 = |1.83− 2.18| = ∥x− y∥.

Choosing x1 = 2 and taking randomly yn ∈ αnun + (1 − αn)Tun, we obtain the
numerical results of iteration (3.1) as follows :

n Randomized in the 1st Randomized in the 2nd
un yn xn un yn xn

1 1.980296 3.238563 2.000000 1.990245 3.309093 2.000000
2 2.600318 3.784664 2.619281 2.635056 3.790009 2.654546
3 3.174306 3.980938 3.201973 3.194307 3.865718 3.222278
4 3.499574 3.984921 3.532179 3.511217 3.914994 3.543998
5 3.687122 3.987276 3.722574 3.693940 3.945346 3.729496
6 3.796242 3.988661 3.833351 3.800251 3.963682 3.837421
7 3.860073 3.989470 3.898152 3.862437 3.974659 3.900552
8 3.897540 3.989939 3.936188 3.898936 3.981197 3.937605
9 3.919580 3.990206 3.958563 3.920406 3.985076 3.959401
10 3.932562 3.990354 3.971742 3.933051 3.987368 3.972239
... ... ... ... ... ...
40 3.950556 3.990257 3.990010 3.950558 3.990258 3.990012

Table 1. Numerical results of iteration (3.1) being randomized in two times.

Choosing x1 = 2 and taking randomly yn ∈ αnxn + (1 − αn)Tun, we also
obtain the numerical results of iteration (3.17) as follows :
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n Randomized in the 1st Randomzied in the 2nd
un yn xn un yn xn

1 1.990245 3.591220 2.000000 1.990245 3.741293 2.000000
2 2.774011 3.814709 2.795610 2.847926 3.826253 2.870646
3 3.275949 3.884193 3.305159 3.318592 3.891408 3.348450
4 3.561137 3.929509 3.594676 3.586012 3.933901 3.619929
5 3.726049 3.957517 3.762093 3.740650 3.960163 3.776915
6 3.822299 3.974510 3.859805 3.830903 3.976098 3.868539
7 3.878794 3.984739 3.917157 3.883878 3.985690 3.922319
8 3.912079 3.990874 3.950948 3.915089 3.991443 3.954004
9 3.311743 3.994546 3.790911 9.933528 3.994886 3.972724
10 3.943384 3.996741 3982729 3.944444 3.996944 3.983805
... ... ... ... ... ... ...
30 3.960396 4.000000 3.999999 3.960396 4.000000 3.999999

Table 2. Numerical results of iteration (3.17) being randomized in two times.

From Table 1 , we see that 4 is the solution in Example 4.1.
We next show error plots for comparing the convergence of iterations (3.1) and

(3.17).

Figure 1. Error plots for all sequences {xn} in Table 1 and Table 2 being
randomized in the first time.
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Figure 2. Error plots for sequences {xn} in Table 1 and Table 2 being
randomized in the second time .

Remark 4.2. We see that the iteration (3.17) converges faster than the iteration
(3.1) under the same conditions.
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