
Thai Journal of Mathematics : (2018) 301-321
Special Issue (ACFPTO2018) on : Advances in fixed
point theory towards real world optimization problems

http://thaijmath.in.cmu.ac.th
Online ISSN 1686-0209

On Nonlinear Implicit Fractional Differential Equations

with Integral Boundary Condition Involving

p-Laplacian Operator without Compactness

K. Shah†,1, W. Hussain 2, P. Thounthong 3,P. Borisut 4,P. Kumam 5,M. Arif61

1Department of Mathematics, University of Malakand,
Chakadara Dir(L), Khyber Pakhtunkhwa, Pakistan e-mail : kamalshah408@gmail.com

2Department of Mathematics, University of Qurtuba,
Peshawar, Khyber Pakhtunkhwa, Pakistan e-mail : whussain598@gmail.com

3Renewable Energy Research Centre & Department of Teacher
Training in Electrical Engineering, Faculty of Technical Education, King Mongkut’s

University of Technology North Bangkok (KMUTNB), Wongsawang, Bangsue,
Bangkok 10800, Thailand e-mail : phatiphat.t@fte.kmutnb.ac.th

4 KMUTT Fixed Point Research Laboratory, Department of Mathematics, Room SCL 802
Fixed Point Laboratory, Science Laboratory Building, Faculty of Science, King Mongkut’s

University of Technology Thonburi (KMUTT), 126 Pracha Uthit Road, Bang Mod,
Thung Khru, Bangkok 10140 Thailand e-mail : piyachat.b@hotmail.com

5Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT),
126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand

e-mail : poom.kum@kmutt.ac.thm
6Department of Mathematics, Abdul Wali Khan University Mardan,
Khyber Pakhtunkhwa, Pakistan e-mail : marifmaths@awkum.edu.pk

Abstract : The motive behind this work is to obtain some sufficient conditions
for the existence of solution to a nonlinear problem of implicit fractional differ-
ential equations (IFDEs) involving integral boundary conditions with p-Laplacian
operator, using prior estimate method. The method applied here does not require
compactness of the operator, which makes it distinguished from other methods.
Besides developing the respective conditions, we also investigate Hyers-Ulam type
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stability for the solution of the problem under study. The validity of the estab-
lished results are justified by providing a suitable example.

Keywords :P-Laplacian operator; Compactness; Topological degree theory; Ba-
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1 Introduction

In last few decades, fractional differential equations have become an area of
interest to researchers due to its high accuracy and applicability in various filed
of science and technology. As many physical, dynamical, biological and chemical
phenomenons are represented in more realistic way by using fractional differential
equations instead of integer order differential equation. More realistic approach
is the main reason for attracting the attention of researchers. Fractional differ-
ential equations are equally suitable not only to the mathematicians but also to
engineers and physicists. The fractional order differential equations have a large
numbers of applications in many fields of science and technology, for example,
rheology, porous media, electrochemistry, electromagnetism, optics, geology, bio-
science, bioengineering, medicine, probability and statistics, etc. The fractional
order differential equations are also applicable in ecology, control theory, splines,
tomography, control of power electron, converter, polymer science, polymer physics
and neural networks. Furthermore, It has many applications in the modeling of
other phenomenons, such as nonlinear oscillations due to earthquake, seepage flow
in porous media, absorption of drug in blood stream, image processing , math-
ematical biology, genetic properties and traffic model of fluid dynamic (traffic
model). These equations are also be used for the calculations of genetically and
chemically acquired properties of different material and phenomenons, (see for
details[6, 7, 11, 12, 13, 36, 37]).
Since nonlinear operators have a vital roles in differential equations. One of the
most important operator use in differential equations is the classical nonlinear
p-Laplacian operators, which is defined as

1

p
+

1

q
= 1, ϕp(ν) = |ν|(p−2)ν, p ≥ 1 and ϕq(τ) = ϕp

−1.

For the applications mentioned above, researchers have paid much attention to
study (FDEs) with p-Laplacian operators from different aspects. One of the impor-
tant aspect which has been greatly investigated is devoted to the existence theory
of (FDEs) involving p-Laplacian operators. Since p-Lapalcian operators has been
greatly applied in the mathematical modeling of large numbers of real world phe-
nomenons devoted to physics, mechanics, dynamical systems, elector dynamics,
etc. A considerable number of valuable research articles can be found in literature
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regarding this topic, (see for detail[8, 9, 10, 14, 17, 18, 19, 24]). Researchers ap-
plied various technique of nonlinear analysis including fixed point theory, hybrid
fixed point theory, iterative techniques for establishing existence theory, (see for
details [27, 28, 30]). The existence theory by using classical fixed point theory has
been much explored. In the mentioned theory compactness for the correspond-
ing operator for the fractional integral equations equivalent to FDEs is necessary
which need some strong conditions. Using classical fixed point theory need strong
conditions to establish necessary and sufficient conditions for existence, uniqueness
of solutions to (FDEs) and therefore restrict the applicability to certain classes of
(FDEs) and their systems. To relax the criteria, degree theory plays excellent
roles for the existence of solution to (FDEs). In many articles, degree approach
has been used to replace the stronger conditions with weaker one, see[5, 6, 15, 21].
Some of the degree theories, for example Schauder degree theory, Brouwer’s degree
theory and topological degree theory are well known. An important degree theory
introduced by Mahwin [10], which later on extended by Isaia [11] has been used
to establish existence theory for nonlinear differential and integral equations. The
mentioned method is also called prior estimate method which need no compactness
of the operator and relax much more the conditions for existence and uniqueness
of solution to differential and integral equations. The topological degree methods
has appeared as a strongest tool in the study of great numbers of problems which
occurs in nonlinear analysis. The priori estimate method is frequently used to find
out the existence of solutions of nonlinear differential equation or partial differen-
tial equation. As in many articles, the existence theory for FDEs with p-Lapalcian
operators through classical fixed point theory has been very well studied. For ex-
ample, Han et.al [21], applied Guo-Krasnosel’skii fixed point theorem on cones to
study the following problem

Dβ(ϕp(
cDαu(t))) = λF(t, u(t)); t ∈ J = [0, T ],

u(t)|t=0 = u
′
(t)|t=0 = u

′
(t)|t=1 = 0,

ϕp(
cDαu(t))|t=0 = ϕp(

cDαu
′
(t))|t=1 = 0.

Where cDα is the Caputo fractional derivative and Dβ is the Riemann-Liouville
fractional derivative, α ∈ (2, 3], β ∈ (1, 2]. Being inspired from the aforesaid
article, L.yunhong [3] investigated the following BVP of (FDEs) with p-Lapalcian
operators

Dβ(ϕp(
cDαu(t))) + F(t, u(t)) = 0; t ∈ J = (0, 1),

u
′
(t)|t=0 = u

′′
(t)|t=1 = 0,

ϕp(
cDαu(t))|t=0 = ϕp(

cDαu
′
(t))|t=0 = ϕp(

cDαu(t))|t=1 = 0,

au(t)|t=0 + bu
′
(t)|t=0 =

∫ 1

0

g(t)u(t)dt.

Where cDα is the Caputo fractional derivative, Dβ is the Riemann-Liouville frac-
tional derivative, α ∈ (2, 3], β ∈ (2, 3] and β + α ∈ (5, 6].
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If α, β = 3, then the above equation becomes the third order ordinary differential
equation involving p-Lapalcian operator, which is called jerk,jolt, surge or lurch
equation in physics. This equation has general form (u(t), u

′
(t), u

′′
(t), u

′′′
(t)) = 0,.

The jerk equation represent the rate of change of acceleration and has vast appli-
cations in physics and daily life. It is concerned with the flow of thin film viscous
fluid with a free surface in which surface tension effects play a role typically lead to
third order ordinary differential equation governing the shape of the free surface of
the fluid. The equation u

′′′
(t) = u(t)

−2
describes the dynamical balance between

surface tension and viscous force in a thin layer in absence of gravity. Jerk also
plays an important roles in physiological balancing of human body. The changing
gears in an average moving car, operated with a foot clutch, offers well known
example of jerk, although the accelerating force is limited by engine power, an
inexperienced driver lets you experience sever jerk, just because of intermittent
force closure over the clutch. Another application of jerk is in accelerated charged
particle which emits radiation, which is proportional to the jerk, see [2, 4, 5].
In most of the situations it is quite hard to find the exact solutions of nonlinear
problems, in such situations, approximate solutions to the nonlinear problems of
(FDEs) is considered. Stability analysis plays a very important role in such situa-
tions. Due to this importance of stability analysis, researchers have been studying
for decades its various forms to the nonlinear problems. In last few years the re-
searchers gave attentions to study various form of stability including exponential
stability, Mittag-Leffler stability and Lyapunov stability etc, see [27, 28, 30] to the
nonlinear problems. One of the important form of stability is Ulam type stability.
This form of stability for the first time was pointed out by Ulam [29], in 1940 and
was introduced by Hyers [30] in 1941. Later on, this topic was much explored
for functional, integral and ordinary differential equations, (see[35, 36]). But it
has been very rarely investigated for (FDEs). However, some literature on the
Hyers-Ulam stability of (FDEs) can be cited recently with initial conditions, (see
[31, 32]). The implicit fractional differential equations represent a very important
class of fractional differential equations. The implicit fractional differential equa-
tions have been studied so far on different standard fixed point theorems. But
here, we investigate the implicit fractional differential equations (IFDEs) involv-
ing integral boundary conditions with p-Laplacian operator by using topological
degree theory

Dβ(ϕp(
cDαu(t))) = F(t, u(t), Dβ(ϕp(

cDαu(t)))); t ∈ J = (0, 1),

u
′
(t)|t=0 = u

′′
(t)|t=1 = 0,

ϕp(
cDαu(t))|t=0 = ϕp(

cDαu
′
(t))|t=0 = ϕp(

cDαu(t))|t=1 = 0,

u(t)|t=1 =
1

Γ(α)

∫ 1

0

(1− ν)α−1g(ν, u(ν))dν.

(1.1)

Where cDα is the Caputo fractional derivative, Dβ is the Riemann-Liouville frac-
tional derivative, α ∈ (2, 3], β ∈ (2, 3] and β+α ∈ [5, 6]. Existence and uniqueness
results are developed through topological degree theory which is also called prior
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estimate method. Also, we establish some adequate conditions about Hyers-Ulam
stability for the solutions of considered problem. The main result is also illustrated
by providing an example.

2 Preliminaries

Here we remind few basic theorems, lemmas and results from fractional cal-
culus, functional analysis, topological degree theory which can be found in[6, 7, 8,
9, 10, 11, 12, 30].

Definition 2.1. Let z : R+ → R is a given function. The fractional integral of
order α > 0 is defined as below

Iαz(t) =
1

Γ(α)

∫ t

0

(t− ν)α−1z(ν)dν,

subject to the condition the integral on right side is pointwise defined on R+.

Definition 2.2. The fractional order Caputo derivative of a function z : R+ → R
is given as below

cDαz(t) =
1

Γ(n− α)

∫ t

0

(t− ν)n−α−1

(
d

dν

)n

z(ν)dν,

subject to the condition the integral on right side is pointwise defined on R+ and
n = [α] + 1 where [α] represents the integer part of α.

Definition 2.3. The fractional order Riemann-Liouville derivative of a continu-
ous function z : R+ → R is given by

Dβz(t) =
1

Γ(n− β)

(
d

dt

)n ∫ t

0

(t− ν)n−α−1z(ν)dν,

subject to the condition the integral on right side is pointwise defined on R+, such
that n = [β] + 1 where [β] represents the integer part of β.

Lemma 2.1. Fractional order differential equation

cDαz(t) = 0,

satisfies the result given below

Iα(cDαz(t)) = z(t) + a0 + a1t+ a2t
2 + ...+ an−1t

n−1,

for arbitrary ai ∈ R, i = 0, 1, 2, ..., n− 1.

Definition 2.4. The space Z = C(J,R) endowed with a norm

||u||Z = sup{|u(t)| : t ∈ J} is Banach space.
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We state here the results given below from [15].

Definition 2.5. The Kuratowski’s measure of non-compactness δ : P → R+ is
given below as

δ(P ) = inf {ϱ > 0 where P ∈ P has a finite cover by sets of diameter ≤ ϱ} .

Proposition 2.2. The Kuratowski’s measure δ satisfy the following properties:

(i) δ(P ) = 0 if and only if P is relatively compact;

(ii) δ is a semi norm, that is δ(λP ) = |λ|δ(P ), λ ∈ R and δ(P1 +P2) ≤ δ(P1) +
δ(P2);

(iii) P1 ⊂ P2 implies δ(P1) ≤ δ(P2); δ(P1 ∪ P2) = max{δ(P1), δ(P2)};

(iv) δ(convP ) = δ(P );

(v) δ(P̄ ) = δ(P ).

Definition 2.6. Let M : A → Z be a continuous bounded map and A ⊂ Z. The
operator M is said to be δ-Lipschitz if we can find a constant k ≥ 0 satisfying the
following condition,

δ(M(P )) ≤ kδ(P ), for all P ⊂ A is bounded.

Moreover, M is called strict δ-contraction if k < 1.

Definition 2.7. The function M is called δ-condensing if

δ(M(P )) < δ(P ), for all P ⊂ A bounded with δ(P ) > 0.

In other words, δ(M(P )) ≥ δ(P ) implies δ(P ) = 0.

The collection of all strict δ-contractions M : A → Z is represented by kCδ(Ω)
and the collection of all δ-condensing maps M : A → Z by Cδ(Ω).

Remark 2.3. kCδ(A) ⊂ Cδ(A) and every M ∈ Cδ(A) is δ-Lipschitz with constant
k = 1.

Moreover, recall that M : A → Z is Lipschitz if we can find k > 0 such that

|M(v)−M(w)| ≤ k|v − w|, for all v, w ∈ A,

if k < 1, M is said to be strict contraction.

Proposition 2.4. If M,N : A → Z are δ-Lipschitz mapping with constants k1
and k2 respectively, then M+N : A → Z are δ-Lipschitz with constants k1 + k2.

Proposition 2.5. If M : A → Z is compact, then M is δ-Lipschitz with constant
k = 0.
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Proposition 2.6. If M : A → Z is Lipschitz with constant k, then M is δ-
Lipschitz with the same constant k.

The theorem given below due to Isaia [11] is of key importance for the proof
of our main result.

Theorem 2.7. Let M : Z → Z be δ-condensing and

V = {x ∈ Z : there exist ϑ ∈ [0, 1] such that x = ϑMx}.

If V is a bounded set in Z, so there exists r > 0 such that V ⊂ Br(0), then the
degree

deg(I − ϑM, Br(0), 0) = 1, for all ϑ ∈ [0, 1].

Consequently, M has at least one fixed point and the set of the fixed points of M
lies in Br(0).

3 Integral representation of BVP (1.1)

In this section, we find an equivalent representation of our considered problem
(1.1).

Lemma 3.1. Let x ∈ (J,R), then the following BVP of (FDEs) with p-Laplacian
operator

Dβ(ϕp(
cDαu(t))) = x(t); t ∈ J = (0, 1),

u
′
(t)|t=0 = u

′′
(t)|t=1 = 0,

ϕp(
cDαu(t))|t=0 = ϕp(

cDαu
′
(t))|t=0 = ϕp(

cDαu(t))|t=1 = 0,

u(t)|t=0 =
1

Γ(α)

∫ 1

0

(1− ν)α−1g(ν, u(ν))dν.

(3.1)

has a solution given by

u(t)) =
1

Γ(α)

∫ 1

0

(1− ν)α−2g(ν, u(ν))dν +

∫ 1

0

H(t, ν)ϕq

(∫ 1

0

G(ν, τ)x(ν)dτ
)
dν

where H(t, ν) is the Green’s function given as

H(t, ν) =
1

Γ(α)

{
− αt(1− ν)α−2; t ≤ ν,

− αt(1− ν)α−2 + (t− ν)α−1; ν ≤ t.
(3.2)

Proof. From Eq. (3.1), we get

ϕp(
cDαu(t)) = c0 + c1t+ c2t

2 + Iβx(t). (3.3)
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In view of conditions ϕp(
cDαu(t))|t=0 = ϕp(

cDαu
′
(t))|t=0 = 0, we get c0, c1 = 0.

Thus (3.3) becomes
ϕp(

cDαu(t)) = Iβx(t) + c2t
2. (3.4)

Condition ϕp(
cDαu(t))|t=1 = 0 implies that c2 = −Iβx(1). Thus (3.4) becomes

ϕp(
cDαu(t)) = Iβx(t)− t2Iβx(1)

Above equation can written as

ϕp(
cDαu(t)) =

∫ 1

0

G(t, ν)x(ν)dν. (3.5)

Where G(t, ν) is called the Green’s function such that

G(t, ν) = 1

Γ(β)

{
− t2(1− τ)β−1; t ≤ ν,

(t− τ)β−1 − t2(1− τ)β−1; ν ≤ t.
(3.6)

Therefore Eq.(3.5) implies that cDαu(t) = ϕq

(∫ 1

0
G(t, ν)x(ν)dν

)
where ϕq is the

inverse function of ϕp. Putting ϕq

(∫ 1

0
G(t, ν)x(ν)dν

)
= y(t). We get

cDαu(t) = y(t).

In view of Lemma 3.1, the above equation implies that,

u(t) = d0 + d1t+ d2t
2 + Iαy(t).

The condition u
′′
(0) = 0, implies that d2 = 0, similarly the condition u

′
(1) =

0,implies that

d1 = − 1

Γ(α− 1)

∫ 1

0

(1− ν)α−2y(ν)dν.

The condition u(0) = 1
Γ(α)

∫ 1

0
(1− ν)α−1g(ν, u(ν))dν, implies that

d0 =
1

Γ(α)

∫ 1

0

(1− ν)α−1g(ν, u(ν))dν.

Thus

u(t) =
1

Γ(α)

∫ 1

0

(1− ν)α−1g(ν, u(ν))dν − t
1

Γ(α− 1)

∫ 1

0

(1− ν)α−2y(ν)dν

+
1

Γ(α)

∫ t

0

(t− ν)α−1y(ν)dν,

u(t)) =
1

Γ(α)

∫ 1

0

(1− ν)α−1g(ν, u(ν))dν +

∫ 1

0

H(t, ν)ϕq

(∫ 1

0

G(ν, τ)x(ν)
)
dτdν.

(3.7)
H(t, ν) is called the Green’s function, defined as given in (3.2).
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In view of Lemma 3.1, our considered BVP (1.1) is given by the following
second kind of Fredholm integral equation

u(t) =
1

Γ(α)

∫ 1

0

(1− ν)α−1g(ν, u(ν))dν

+

∫ 1

0

H(t, ν)ϕq

(∫ 1

0

G(ν, τ)F(τ, u(τ), Dβ(ϕp(
cDαu(τ)))dτ

)
dν, t ∈ J.

(3.8)

Lemma 3.2. The Green’s function G(t, τ) and H(t, ν) defined in Lemma 3.1,
satisfies the properties given below:

(i) G(t, ν) and H(t, ν) are continuous over J × J ;

(ii) max |G(t, ν)| = 1
Γ(β) (1− τ)β−1,

max |H(t, ν)| = 1
Γ(α) (1− ν)α−2(1− ν + α).

Proof. (i) and (ii) can be proved easily.

Definition 3.1. The solution of the considered problem (1.1) is Hyers-Ulam stable
if we can find a real number cF > 0 with the property that for each µ > 0 and for
each solution u ∈ C(J,R) of the inequality

|Dβ(ϕp(
cDαu(t)))−F(t, u(t), Dβ(ϕp(

cDαu(t))))| ≤ µ, t ∈ J, (3.9)

there exists a unique solution w ∈ C(J,R) of the considered equation (1.1) with a
constant cF > 0 such that

|u(t)− w(t))| ≤ cFµ, t ∈ J.

Definition 3.2. The solution of the equation (1.1) is said to be generalized Hyers-
Ulam stable, if we can find

ΥF ∈ C(R+,R+), ΥF (0) = 0,

such that for each solution u ∈ C(J,R) of the inequality (3.9) we can find a unique
solution w ∈ C(J,R) of the equation (1.1) such that

|u(t)− w(t))| ≤ ΥF (µ), t ∈ J.

Remark 3.3. A function u ∈ C(J,R) is said to be the solution of inequality given
in (3.9) if and only if, we can find a function h ∈ C(J,R) depends on v only then

(i) |h(t)| ≤ µ, for all t ∈ J ;

(ii) Dβ(ϕp(
cDαu(t))) = F(t, u(t), Dβ(ϕp(

cDαu(t)))) + h(t), for all t ∈ J.
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4 Existence theory for at least one solution of
BVP (1.1)

This section is devoted to the proof of some results required for existence of solution
of the considered problem (1.1). Thank to Lemma 3.1, the considered problem
(1.1) can be represented by the second kind of Fredholm integral equation given
below,

u(t) =
1

Γ(α)

∫ 1

0

(1− ν)α−1g(ν, u(ν))dν

+

∫ 1

0

H(t, ν)ϕq

(∫ 1

0

G(ν, τ)F(τ, u(τ), Dβ(ϕp(
cDαu(τ)))

)
dτdν, t ∈ J.

(4.1)
Below we list some assumptions:

(P1) There exist constant Lg > 0, such that for each u, v ∈ (J,R) ,

∥g(t, u(t))− g(t, v(t))∥ ≤ Lg∥u− v∥Z .

(P2) There exist constants Dg, Ng > 0, such that for each u ∈ (J,R) ,

∥g(t, u(t))∥ ≤ Dg∥u∥Z +Ng.

(P3) There exist p, q, r ∈ C(J,R+) and, u,w ∈ R, t ∈ J such that

|F(t, u, w)| ≤ p(t) + q(t)|u|+ r(t)|w|,

where

r∗ = sup{|r(t)| : t ∈ J} < 1, p∗ = sup{|p(t)| : t ∈ J}, q∗ = sup{|q(t)| : t ∈ J}.

(P4) There exist constants LF > 0, 0 < NF < 1 and u1, w1, u2, w2 ∈ R such
that,

|F(t, u1, w1)−F(t, u2, w2)| ≤ LF∥u1 − u2∥Z +NF∥w1 − w2∥Z .

Assume that (P1) to (P4) hold, here it will be shown that the fractional integral
equation (4.1) has a unique solution u ∈ C(J,R). We consider two operators M,N
on C(J,R)

M : Z → Z defined by (M(u(t)) =
1

Γ(α)

∫ 1

0

(1− ν)α−1g(ν, u(ν))dν,

and
N : Z → Z defined by (N (u(t))

=

∫ 1

0

H(t, ν)ϕq

(∫ 1

0

G(ν, τ)F(τ, u(τ), Dβ(ϕp(
cDαu(τ)))

)
dτdν.
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Let us consider another operator U on C(J,R), such that

U : Z → Z defined by U(u) = Mu+Nu.

U is well defined because M and N are well define. Moreover, Uu = u. Thus to
find the solution of BVP (1.1) is equivalent to find fixed point for operator U in
Z.

Lemma 4.1. M is Lipschitz with constant kg. Moreover, M satisfies the growth
condition given below

∥Mu∥Z ≤ 1

Γ(α+ 1)
(Dg∥u∥+Ng). (4.2)

Proof. Let u,w ∈ C(J,R), then consider

|M(u)−M(w)| =
∣∣∣∣ 1

Γ(α)

∫ 1

0

(1− ν)α−1g(ν, u(ν))dν

− 1

Γ(α)

∫ 1

0

(1− ν)α−1g(ν, w(ν))dν

∣∣∣∣
≤ Lg

Γ(α+ 1)
|u− w|.

Putting kg =
Lg

Γ(α+1) ≤ 1, which yields

|M(u)−M(w)| ≤ kg|u− w|
∥M(u)−M(w)∥Z ≤ kg∥u− w∥Z .

Consequently M is µ-Lipschitz with some constant kg. The growth condition is a
simple consequences of (P2) as given by

∥Mu∥Z ≤ 1

Γ(α+ 1)
(Dg∥u∥+Ng).

Lemma 4.2. The operator N is continuous and satisfies the growth condition
given as below,

∥N (u)∥Z≤
(

(q − 1)mq−2(α2 + α+ 1)

Γ(α+ 1)Γ(β + 1)(α− 1)(1− r∗)

)
(p∗ + q∗∥u∥Z). (4.3)

Proof. To prove that N is continuous. Let {un} be any sequence in bounded set
Bγ , such that Bγ = {un : ∥vn∥Z ≤ γ} and un → u as n → ∞ in Bγ . We are
required to prove that |Nun −Nu|→ 0, n → ∞. As F(t, u(t), Dβ(ϕp(

cDαu(t))))
is continuous, thus it follows that

F(ν, un(ν), D
β(ϕp(

cDαun(t)))) → F(ν, u(ν), Dβ(ϕp(
cDαu(t)))), as n → ∞
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. Using assumption (P3), we get the relation given below

|Nun −Nu|

≤
∫ 1

0

|H(t, ν)|
∣∣∣∣ϕq

(∫ 1

0

G(ν, τ)F(τ, un(τ), D
β(ϕp(

cDαun(τ))))

)
− ϕq

(∫ 1

0

G(ν, τ)F(τ, u(τ), Dβ(ϕp(
cDαu(τ))))

)∣∣∣∣dνdτ
≤ (q − 1)mq−2

Γ(α)Γ(β)

[ ∫ 1

0

(1− ν)α−2(1− ν + α)dν

∫ 1

0

(1− τ)β−1dτ

]
×
∣∣∣∣F(τ, un(τ), D

β(ϕp(
cDαun(τ))))−F(τ, u(τ), Dβ(ϕp(

cDαu(τ))))

∣∣∣∣.
Since |F(t, un(t), D

β(ϕp(
cDαun(t)))) − F(t, u(t), Dβ(ϕp(

cDαu(t)))|≤ LF
1−NF

|un −
u|. Therefore, we get

||Nun −Nu|| ≤ (q − 1)mq−2(α2 + α+ 1)LF

(α− 1)Γ(α+ 1)Γ(β + 1)((1−NF )
||un − u|| (4.4)

the inequality (4.4) clearly implies that the right hand side tends to 0 as n tends
to infinity. Therefore N (un) → N (u), as n → ∞. This means that the operator
N is continuous. For the growth condition, we use (P4) and obtain as

∥N (u)∥Z≤
(

(q − 1)mq−2(α2 + α+ 1)

Γ(α+ 1)Γ(β + 1)(α− 1)(1− r∗)

)
(p∗ + q∗∥u∥Z). (4.5)

Lemma 4.3. The operator N : Z → Z is compact and δ−lipschitz with constant
0.

Proof. In order to show that N is compact. Let us take a bounded set B ⊂ Bγ .
We are required to show that N (B) is relatively compact in Z. For arbitrary
un ∈ B ⊂ Bγ , the growth condition is given as

∥N (u)∥Z≤
(

(q − 1)mq−2(α2 − α+ 1)

Γ(α+ 1)Γ(β + 1)(α− 1)(1− r∗)

)
(p∗ + q∗∥u∥Z).

From this it is clear that N (un) is uniformly bounded. For equi-continuity of N ,
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we have,

|N (un)(t1)−N (un)(t2)|

≤
∫ 1

0

|(H(t1, ν)−H(t2, ν))|
∣∣∣∣ϕq

∫ 1

0

G(ν, τ)F(τ, un(τ), D
β(ϕ(

pcD
αun(t))))

∣∣∣∣dνdτ
≤

(
(q − 1)mq−2

Γ(β + 1)(1− r∗)

)
(p∗ + q∗∥u∥Z)

(∫ t1

0

(t1 − ν)α−1dν −
∫ t2

0

(t2 − ν)α−1dν

+

∫ t2

t1

(t1 − ν)α−1 − (t2 − ν)α−1dν + α(t2 − t1)

∫ 1

0

(1− ν)dν

)
≤

(
(q − 1)mq−2

Γ(α+ 1)Γ(β + 1)(1− r∗)

)
(p∗ + q∗∥u∥Z)

× [tα1 − tα2 − (t1 − t2)
α − (t2 − t1)

α + α(t1 − t2)].

From above relation , it follows clearly that ∥N (un)(t1)−N (un)(t2)∥→ 0, as t1 →
t2, which implies that N (u) is equi-continuous.
Hence by Arzelá-Ascoli theorem N (u) is compact and thus by proposition 2.4 N
is δ−Lipschitz with constant 0.

Theorem 4.4. Suppose that (P2)−(P4) are satisfied, then the (BVP) (1.1) has at
least one solution u ∈ C(J,R) and the set of the solutions is bounded in C(J,R).

Proof. LetM,N ,U are the operators defined in the start of this section. These op-
erators are continuous and bounded. Moreover, by Lemma 4.1, M is δ−Lipschitz
with constant Kg and by Lemma 4.2, N is δ−Lipschitz with constant 0. Thus, U
is δ−Lipschitz with constant Kg. Let us take the set given below

W =

{
u : there exist ξ ∈ [0, 1], such that u = ξU(u)

}
.

We will show that the set W is bounded. For u ∈ W, we have u = ξUu =
ξ(M(u) +N (u)), which implies that

|u| ≤ ξ(|Mu|+|Nu|), from which we have

∥u∥ ≤ 1

Γ(α+ 1)
(Dg∥u∥+Ng) +

(
(q − 1)mq−2(α2 + α+ 1)

Γ(α+ 1)Γ(β + 1)(α− 1)(1− r∗)

)
(p∗ + q∗∥u∥Z)

From the above inequalities, we conclude that W is bounded in C(J,R). If it is
not bounded, then dividing the above inequality by a =∥u∥ and letting a → ∞,
we arrive at

1 ≤

1
Γ(α+1) (Dg∥v∥+Ng) +

(
(q−1)mq−2(α2+α+1)

Γ(α+1)Γ(β+1)(α−1)(1−r∗)

)
(p∗ + q∗∥u∥Z)

a
≤ 0,

which is a contradiction. Thus the set W is bounded and the operator U has at
least one fixed point which represent the solution of (BVP) (1.1).
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Theorem 4.5. Under the assumptions (P1)− (P4), the (BVP) (1.1) has a unique
solution if

(
1

Γ(α+ 1)
Lg +

(q − 1)mq−2LF

Γ(β + 1)Γ(α+ 1)(1−NF )

)
< 1.

Proof. By application of Banach contraction theorem we will show that equation
(1.1) has a unique solution. Consider u(.) and w(.) be the solutions of (BVP)
(1.1), then

|U(u)(t)− U(w)(t)| ≤
∣∣∣∣ 1

Γ(α)

∫ 1

0

(1− ν)α−1g(ν, u(ν))dν

+

∫ 1

0

H(t, ν)ϕq

(∫ 1

0

G(ν, τ)F(τ, u(τ), Dβ(ϕ(cDαw(τ)))dτdν

)
− 1

Γ(α)

∫ 1

0

(1− ν)α−1g(ν, w(ν))dν

+

∫ 1

0

H(t, ν)ϕq

(∫ 1

0

G(ν, τ)F(τ, w(τ), Dβ(ϕ(cDαw(τ)))

)
dτdν

∣∣∣∣
≤ 1

Γ(α+ 1)
|g(ν, u(ν))− g(ν, w(ν))|

+

∣∣∣∣ ∫ 1

0

H(t, ν)

∣∣∣∣∣∣∣∣ϕq

(∫ 1

0

G(ν, τ)F(τ, u(τ), Dβ(cDαu(t)))

)
dτdν

− ϕq

(∫ 1

0

G(ν, τ)F(τ, w(τ), Dβ(cDαw(t)))

)
dτdν

∣∣∣∣
≤ 1

Γ(α+ 1)
Lg|v − w|+ (q − 1)mq−2

Γ(β + 1)Γ(α+ 1)

× |F(τ, u(τ), Dβ(cDαu(t)))−F(τ, w(τ), Dβ(cDαw(t)))|

≤ 1

Γ(α+ 1)
Lg|v − w|+ (q − 1)mq−2LF

Γ(β + 1)Γ(α+ 1)(1−NF )
|u− w|

≤
(

1

Γ(α+ 1)
Lg +

(q − 1)mq−2LF

Γ(β + 1)Γ(α+ 1)(1−NF )

)
||u− w||.

Since

(
1

Γ(α+1)Lg + (q−1)mq−2LF
Γ(β+1)Γ(α+1)(1−NF )

)
< 1. Thus U is a contraction mapping

and by Banach contraction principle U has a unique fixed point.
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5 Hyers-Ulam stability

Theorem 5.1. Let u ∈ C(J,R) be a solution of

Dβ(ϕp(
cDαu(t))) = F(t, u(t), Dβ(ϕp(

cDαu(t)))) + h(t), t ∈ J, α, β ∈ (2, 3],

u
′
(t)|t=0 = u

′′
(t)|t=1 = 0,

ϕp(
cDαu(t))|t=0 = ϕp(

cDαu
′
(t))|t=0 = ϕp(

cDαu(t))|t=1 = 0,

u(t)|t=0 =
1

Γ(α)

∫ 1

0

(1− ν)α−1g(ν, u(ν))dν.

Then the following result holds,∣∣∣∣u(t)− (
1

Γ(α)

∫ 1

0

(1− ν)α−1g(ν, u(ν))dν

+

∫ 1

0

H(t, ν)ϕq

(∫ 1

0

G(ν, τ)F(τ, u(τ), Dβ(ϕp(
cDαu(τ))))dνdτ

))∣∣∣∣
≤ (α2 + α− 1)(q − 1)mq−2

(α− 1)Γ(α+ 1)Γ(β + 1)
δ.

Proof. The solution of the problem

Dβ(ϕp(
cDαu(t))) = F(t, u(t), Dβ(ϕp(

cDαu(t)))) + h(t), t ∈ J, α, β ∈ (2, 3],

u
′
(t)|t=0 = u

′′
(t)|t=1 = 0,

ϕ(cDαu(t))|t=0 = ϕp(
cDαu

′
(t))|t=0 = ϕp(

cDαu(t))|t=1 = 0,

u(t)|t=0 =
1

Γ(α)

∫ 1

0

(1− ν)α−1g(ν, u(ν))dν.

is given by

u(t) =
1

Γ(α)

∫ 1

0

(1− ν)α−1g(ν, u(ν))dν

+

∫ 1

0

H(t, ν)ϕq

(∫ 1

0

G(ν, τ)F(τ, u(τ), Dβ(ϕp(
cDαu(τ))))dτ

)
dν

+

∫ 1

0

H(t, ν)ϕq

(∫ 1

0

G(ν, τ)h(τ)dτ
)
dν.

From, which we have∣∣∣∣u(t)− (
1

Γ(α)

∫ 1

0

(1− ν)α−1g(ν, u(ν))dν

+

∫ 1

0

H(t, ν)ϕq

(∫ 1

0

G(ν, τ)F(τ, u(τ), Dβ(ϕc
pD

αu(τ)))dτdν

))∣∣∣∣
≤

∣∣∣∣ ∫ 1

0

H(t, ν)ϕq

(∫ 1

0

G(ν, τ)h(τ)dτdν
)∣∣∣∣,
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which implies that

∣∣∣∣u(t)− (
1

Γ(α)

∫ 1

0

(1− ν)α−1g(ν, u(ν))dν

+

∫ 1

0

H(t, ν)ϕq

(∫ 1

0

G(ν, τ)F(τ, u(τ), Dβ(ϕc
pD

αu(τ)))dτdν

))∣∣∣∣
≤ (q − 1)mq−2(α2 + α− 1)

(α− 1)Γ(α+ 1)Γ(β + 1)
µ.

Theorem 5.2. If assumption (P3) and Γ(α+1)(1−NF ) ̸= (q−1)mq−2LF holds.
Then the solution of BVP (1.1) is Hyers-Ulam stable.

Proof. Let u ∈ C(J,R) be the solution of (3.9) and w ∈ C(J,R) be the unique
solution of

Dβ(ϕp(
cDαw(t)))) = F(t, w(t), Dβ(ϕp(

cDαw(t)))), t ∈ J, α, β ∈ (2, 3],

ϕp(
cDαw(t))|t=0 = ϕp(

cDαw
′
(t))|t=0 = ϕp(

cDαw(t))|t=1 = 0,

w(t)|t=0 =
1

Γ(α)

∫ 1

0

(1− ν)α−1g(ν, w(ν))dν = u(t)|t=0

=
1

Γ(α)

∫ 1

0

(1− ν)α−1g(ν, u(ν))dν.

Consider

|u(t)− w(t)|

≤
∣∣∣∣u(t)− (

1

Γ(α)

∫ 1

0

(1− ν)α−1g(ν, u(ν))dν

+

∫ 1

0

H(t, ν)ϕq

(∫ 1

0

G(ν, τ)F(τ, u(τ), Dβ(ϕp(
cDαu(τ))))dτdν

))∣∣∣∣
+

∣∣∣∣ ∫ 1

0

H(t, ν)ϕq

(∫ 1

0

G(ν, τ)F(τ, u(τ), Dβ(ϕ(
pcD

αu(τ))))dτdν

)
−
∫ 1

0

H(t, ν)ϕq

(∫ 1

0

G(ν, τ)F(τ, w(τ), Dβ(ϕp(
cDαw(τ))))dτdν

)∣∣∣∣
≤ (q − 1)mq−2(α2 + α− 1)

(α− 1)Γ(α+ 1)Γ(β + 1)
µ+

(q − 1)mq−2LF

Γ(α+ 1)(1−NF )
|u(t)− w(t)|.
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Which on simplification implies that

||u− w||Z ≤ (q − 1)mq−2(α2 + α− 1)

(α− 1)Γ(α+ 1)Γ(β + 1)
µ+

(q − 1)mq−2LF

Γ(α+ 1)(1−NF )
||u− w||Z(

1− (q − 1)mq−2LF

Γ(α+ 1)(1−NF )

)
||w − u||Z ≤ (q − 1)mq−2(α2 + α− 1)

(α− 1)Γ(α+ 1)Γ(β + 1)
µ

||w − u||Z ≤
(q−1)mq−2(α2+α−1)
(α−1)Γ(α+1)Γ(β+1) µ(
1− (q−1)mq−2LF

Γ(α+1)(1−NF )

)
||w − u||Z ≤ (q − 1)mq−2(α2 + α− 1)(1−NF )

(α− 1)Γ(β + 1)

(
Γ(α+ 1)(1−NF )− (q − 1)mq−2LF

)µ,

where (Γ(α+ 1)(1−NF ) ̸= (q − 1)mq−2LF .

this implies that the solution of BVP (1.1) is Hyer-Ulam stable. Further taking

Υ(µ) =
(q−1)mq−2(α2+α−1)
(α−1)Γ(α+1)Γ(β+1)

µ(
1− (q−1)mq−2LF

Γ(α+1)(1−NF )

) . Then clearly Υ(0) = 0. So the solution of (BVP) (1.1)

is Generalized Hyers-Ulam stable.

6 Example

Example 6.1. Consider the following (BVP)

D
5
2 (ϕ2(

cD
5
2u(t)) =

| sin(u(t))|+ | sin(D 5
2 (ϕc

2D
1
2u(t)))|

49 + 9et
, t ∈ J,

ϕ2(
cDαu(t))|t=0 = ϕ2(

cDαu
′
(t))|t=0 = ϕ2(

cDαu(t))|t=1 = 0,

u(t)|t=0 =
1

Γ( 52 )

∫ 1

0

(1− ν)
5
2
cosu(ν)

9eν
)dν.

(6.1)

We have α = 5
2 , β = 5

2 , p = 2, q = 2 and the nonlinear function F(t, u(t), Dβ(ϕ2(
cDαu(t)))) =

| sin(u(t))|+| sin(D
5
2 (cD

5
2 u(t)))|

49+9et .
In view of Theorem 3.1, the Green functions of(BVP) (6.1) is given by

G(t, ν) = 1

Γ( 52 )

{
− t2(1− τ)

3
2 ; t ≤ ν,

(t− τ)
3
2 − t2(1− τ)

3
2 ; ν ≤ t,

(6.2)

H(t, ν) =
1

Γ( 52 )


− 5

2
t(1− ν)

1
2 ; t ≤ ν,

(t− ν)
3
2 − 5

2
t(1− ν)

1
2 ; ν ≤ t

(6.3)
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Now let u,w ∈ R, t ∈ J, we have

∣∣∣∣F(t, u(t), Dβ(ϕ2(
cDαu(t))))−F(t, w(t), Dβ(ϕ2(

cDαw(t))))

∣∣∣∣
=

∣∣∣∣ | sin(u(t))|+ | sin(D 5
2 (ϕ2(

cD
1
2u(t))))|

49 + 9et
− | sin(w(t))|+ | sin(D 5

2 (ϕ2(
cD

1
2w(t))))|

49 + 9et

∣∣∣∣
≤ 1

58

∣∣∣∣u(t)− w(t)

∣∣∣∣+ 1

58

∣∣∣∣D 5
2 (ϕ2(

cD
5
2u(t))−D

5
2 (ϕ2(

cD
5
2w(t))

∣∣∣∣.
So we have LF = 1

58 and NF = 1
58 , Lg = 1

9 . Also

(
1

Γ(α+1)Lg+
(q−1)mq−2LF

Γ(β+1)Γ(α+1)(1−NF )

)
=

124
1000 < 1. Hence by Theorem 4.5, the BVP (6.1) has a unique solution. Further
(q− 1)mq−2LF = 1

58 and Γ(α+1)(1−NF ) =
181
58 ,which implies that Γ(α+1)(1−

NF ) ̸= (q − 1)mq−2LF . So by Theorem (5.2) the solution of the considered BVP
(6.1) is Hyer-Ulam stable and hence Generalized Hyer-Ulam stable.

7 Conclusion

By applying Arzela Ascoli’s theorem and Banach contraction theorem coupled with
topological degree theory, we have developed sufficient conditions for existence
and uniqueness of solution to the considered BV P (1.1) of (IFDEs) involving p-
Laplacian operator. Also some results for Hyers-Ulam and generalized Hyers-Ulam
types stability of the solutions for the considered BVP (1.1) are obtained.
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