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1 Introduction

Over the last 30 years, several authors have investigated the relation-
ships between the commutativity of the rings and certain types of maps
on rings (see [3, 7, 15]). Devinsky [6] proved that a simple artinian ring
is commutative if it has a commuting non-trivial automorphism. Posner
[16] stated the existence of a non-zero centralizing derivation on prime ring
forces the ring to be commutative. Mayne [15] proved the analogous result
for centralizing automorphisms. These results were subsequently refined
and extended by a number of authors by different mappings on rings (see
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[7, 15-17]).M.Aslam and M.Anjum [9, 10] generalized some of these results
through endomorphisms and derivation in additive inverse semirings.

For completeness, we recall some preliminaries which are useful for the
development of this paper. Throughout this paper, S represents additive
inverse semiring with absorbing zero which satisfies A2 condition (a+ a′ ∈
Z(S)) of Bandlet and Petrich [4], with center Z(S). Karvellas [11] introduced
the additive inverse semiring, a semiring S is an inverse semiring if for every
a ∈ S there exist a unique element a′ ∈ S such that a + a′ + a = a and
a′ + a + a′ = a′, where a′ is called pseudo inverse of a. Karvellas [11]
proved that for all a, b ∈ S, (a.b)′ = a′.b = a.b′ and a′b′ = ab. The second
author of this paper, M. Aslam and others [10] attached the A2 condition
to inverse semiring and referred it as MA semiring .Commutative inverse
semirings and distributive lattices are natural examples of MA-semirings.
For further details of MA semirings we recommend [ 10, 11]. The notion of
MA-semirings is indeed crucial for developing the identities of commutators
([x, y] = xy + y′x ,see [11]).

The Lie derivation is an additive mapping on ring, L : R −→ R which
satisfies L([x, y]) = [L(x), y] + [x, L(y)], which can be canonically extend-
able in inverse semirings. The origin of Lie derivations has tremendous
applications in Differential geometry and Tensor fields, see [14, 19, 20] For
more details about Lie derivations in rings, we refer [5, 9, 14].

In this paper, we introduce an additive mapping f : S −→ S, if it
satisfies f(xy) = [x, f(y)]. This mapping admits Lie derivations. An ad-
ditive mapping is called centralizing on S if [[f(x), x], y] = 0 for all x, y ∈
S, in special case where [f(x), x] = 0 for all x ∈ S, the mapping f is said
to be commuting.The additive mapping f on a additive inverse semiring S
is strong commutativity preserving if [f(x), f(y)] + [x, y]′ = 0. Lie ideal
is an additive subsemigroup U of S satisfies [u, r] = ur + r′u ∈ U for all
u ∈ U, r ∈ S.

Throughout this paper, f stands for additive mapping on S, which
satisfiesf(xy) = [x, f(y)], unless mentioned otherwise.After examining some
properties we investigate the commutativity of MA-semirings by f . We es-
tablish that, if S is semiprime MA-semiring and f is centralizing, then f is
commuting. Furthermore we inquire more conditions on f which enforces
the MA semiring to be commutative (see Theorems 3.4, 3.5, 3.7)
In the following theorem we mention a few fundamental properties of MA-
semirings which are useful for this article.



290 Y. A. Khan, M.Aslam and Liaqat Ali

Theorem 1.1. [10, 11] Let S be a MA-semiring, then
(1) If a+ b = 0 , for some a, b ∈ S then a = b′

(2) Jacobian identity holds in S

[xy, z] = x[y, z] + [x, z]y and [x, yz] = y[x, z] + [x, y]z

(3) Let [x, y] = 0 , for all x, y ∈ S then S is commutative.

2 Some Properties of f mapping

The additive mapping f which satisfies f(xy) = [x, f(y)] leads us to

f([x, y]) = f(xy) + f ′(yx) = [x, f(y)] + [f(x), y]

and hence it admits lie derivation in inverse semirings. Therefore every f
mapping is Lie derivation, however, the converse is not true in general as
follows from the following example.

Example 2.1. Every Inner derivation is a lie derivation.
To show this, firstly we establish the following identity in MA-semiring.

[a, [x, y]] = [x, [a, y]] + [[a, x], y] (2.1)

By expanding right side, we get [x, ay]+[ya, x]+[ax, y]+[y, xa]. By Theorem
1.1, we have

a[x, y] + [x, a]y + y[a, x] + [y, x]a+ a[x, y] + [a, y]x+ [y, x]a+ x[y, a]

or axy+ ayx′+xay+ axy′+ yax+ yxa′+ yxa+xya′+ axy+ ayx′+ ayx+
yax′ + yxa + xya′ + xya + xay′. By using the properties of MA-semiring
and after simplification , we obtain

a(xy + y′x) + (xy + y′x)a′ or [a, [x, y]]

If S is non-commutative MA-semiring, then inner derivation satisfies Lie
derivation, since [x, f(y)] + [f(x), y] = [x, [a, y]] + [[a, x], y]. By identity
(2.1), it follows that

[x, f(y)] + [f(x), y] = [a, [x, y]] = f([x, y])

Hence, every inner derivation is a Lie derivation , but it doesnot satisfy
f(xy) = [x, f(y)].
Consider S be a commutative MA-semiring, then an inner derivation f
such that f(x) = [a, x] for some fixed a ∈ S, and for all x ∈ S. This
satisfies f(xy) = [x, f(y)] and this also admits Lie derivation.
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Example 2.2. Let Mn(S) be the nn matrix ring over the MA-semirings
with unity and tr : Mn(S) −→ S be the trace mapping. Define L :
Mn(S) −→ Mn(S) as

L(A) = [a,A] + tr(A).In = aA+Aa′ + tr(A).In

for A ∈ Mn(S), and some fixed a ∈ S. By using identity (1), we can
verify that this additive mapping L is a Lie derivation but doesnot satisfy
f mapping in general. For instance, we take S as set of integers Z which

is a ring, and X,Y ∈ M2(Z). If X =

[
1 2
0 3

]
and Y =

[
0 1
2 0

]
, then [X, Y]

=

[
4 − 2
4 − 4

]
, whereas, tr([X, Y])= 0. If we fix a = 1 ∈ Z , then we can

calculate that L([X, Y]) =

[
0 0
0 0

]
. Moreover, [X, L(Y)] =

[
0 0
0 0

]
and [L(X),

Y] =

[
0 0
0 0

]
.

On the other hand, L(XY ) =

[
4 0
0 4

]
̸= [X, L(Y)] =

[
0 0
0 0

]
. Hence this

mapping satisfies Lie derivation but doesn’t admit f .

In the following Lemma, we collect some useful properties of f which
can be verified.

Lemma 2.3. (1) If S is with nilpotency index 2, then f is commuting.
(2) If f(x2) = 0, for all x ∈ S then f is commuting.
(3) If S is with unity, then f(x) = f(x) + f ′(x)
(4) In a semiprime MA-semiring S, if f(x)f(y) = 0, for all x, y ∈ S then
f = 0.
(5) If f is commuting on S, then f(xn) = 0,∀ n ≥ 2.
(6) If f(xa) = 0 , for all x ∈ S, then f(a) ∈ Z(S).

Proposition 2.4. Let S be a semiprime MA-semiring and a, b ∈ S. If
f(a)x+ x′f(b) = 0 then f(xb) = 0 for all x ∈ S, and f(a) = f(b) ∈ Z(S).

Proof. By hypothesis, we have

f(a)x+ x′f(b) = 0. (2.2)

By Theorem (1.1), it gives f(a)x = xf(b) Replace x by xy in (2.2), we get
f(a)xy+x′yf(b) = 0 or xf(b)y+x′yf(b) = 0 or x[f(b), y] = 0 for all x, y ∈
S This implies that [f(b), y]x[f(b), y] = 0. By Semiprimeness, we have
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[f(b), y] = 0 and hence f(yb) = 0, for all y ∈ S.
Moreover, By Lemma 2.3(6), we get f(b) ∈ Z(S), therefore (2.2) becomes
(f(a)+f ′(b))x = 0 or (f(a)+f ′(b))x(f(a)+f ′(b) = 0. Again by semiprime-
ness, we get f(a) + f ′(b) = 0 and hence f(a) = f(b).

Let f be commuting on S, then by Lemma 2.3 (4), we have f(x2) =
[x, f(x)] = 0, and this leads to the following Proposition.

Proposition 2.5. (a) If f is injective then S is of index 2.
(b) If f is injective and S is non-zero semiprime MA-semiring then f = 0

Theorem 2.6. Let f be non-zero on prime MA-semiring, U be a non-
zero right ideal of S such that f(U) = 0, then f(S) ⊆ Z(S) and also f is
commuting on S.

For the proof of Theorem 2.6 we need the following two Lemmas, which
are interesting independently.

Lemma 2.7. Let S be a semiprime MA-semiring and a ∈ S such that
a[a, x] = 0 for all x ∈ S, then a ∈ Z(S)

Proof. By hypothesis, a[a, x] = 0 for all x ∈ S. Replace x by xy , we get

a[a, xy] = 0, for x, y ∈ S (2.3)

By Theorem 1.1, we get a[a, x]y+ax[a, y] = 0 , or ax[a, y] = 0 for all x.y ∈
S. This implies that aS[a, y] = 0, and by using semiprimeness, we get
[a, y] = 0 for all y ∈ S. Hence, by Theorem 1.1, we get a ∈ Z(S)

Lemma 2.8. Let S be a semiprime MA-semiring and U be a non-zero right
ideal of S. If [a, x] = 0 for all x ∈ U , then a ∈ Z(S).

Proof. As [a, x] = 0, for all x ∈ U , implies that ax = xa. Also ar ∈ U , for
all r ∈ S. Therefore [a, ar] = 0 or a[a, r] = 0, for all r ∈ S. By Lemma 2.7,
we get the result.

Proof. Theorem 2.6 By hypothesis f(x) = 0, for all x ∈ U , implies that
f(xr) = 0 for some r ∈ S. By definition of f , we get

[x, f(r)] = 0 for all x ∈ U (2.4)

By Lemma 2.8, we get f(r) ∈ Z(S)for all r ∈ S, and hence f(S) ⊆ Z(S).
Replace x by xr in (2.4),we get [xr, f(r)] = 0 or x[r, f(r)]+[x, f(r)]r = 0 By
using (2.4), we have x[r, f(r)] = 0. Here, U is right ideal, we can replace x
by xs, for some s ∈ S , which implies that xs[r, f(r)] = 0 or xS[r, f(r)] = 0
By using primeness, we have
[r, f(r)] = 0, for all r ∈ S. This shows that f is commuting on S.
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Proposition 2.9. Let f ̸= 0, and U be a Lie ideal of prime MA-semiring
S such that f(U) = 0, then f(S) ⊆ Z(U). Moreover, if U is not a ring,
then f is centralizing on S.

Proof. As U is a lie ideal, then for all u ∈ U, x ∈ S, we have ux + x′u ∈
U. Therefore, by hypothesis, we get f(ux + x′u) = 0, which implies that
[u, f(x)] + [x′, f(u)] = 0 or

[u, f(x)] = 0 for all u ∈ U, x ∈ S (2.5)

Hence f(S) ⊆ Z(U). Replace u by uy + y′u for some y ∈ S in (2.5), which
implies that [uy + y′u, f(x)] = 0 , we get that

u[y, f(x)] + [y, f(x)]u′ = 0 (2.6)

Replace y by x in (2.6), which implies that [u, [x, f(x)]] = 0 or [u, f(x2)] = 0.
Replace u by ur+r′ufor some r ∈ S, we get that u[r, f(x2)]+[r, f(x2)]u′ =
0. By using (2.6), we have (u+u′)[r, f(x2)] = 0. By using primeness, either
u + u′ = 0 or [r, [x, f(x)]] = 0.As U is not a ring , therefore [r, [x, f(x)]] =
0 for all x, r ∈ S. This completes the proof.

Theorem 2.10. (a) Let U be a left ideal of S, if f satisfies f(u) + u′ = 0
for all u ∈ U , then U ⊆ l(S), where l(S) = {y ∈ S, yx = 0 for all x ∈ S},
be the left annihilator of S. Moreover, if S is semiprime then U = {0}
(b) Let U be right ideal of S, and f satisfies f(u)+u′ = 0 for all u ∈ U , then
u2 ∈ Z(S), for all u ∈ U . Moreover, if S is prime then either U = {0} or
S ia a ring.

Proof. (a) By hypothesis, f(u)+u′ = 0 which implies that f(u) = u for all
u ∈ U . Replace u by ru, we get f(ru) + ru′ = 0 or [r, f(u)] + ru′ = 0 or
[r, u] + ru′ = 0. This implies that ru+ u′r+ ru′ = 0. As S is MA-semiring,
we get u′r = 0 for all u ∈ U , r ∈ S. This implies that

uS = {0} for all u ∈ U

Hence both results can be followed immediately.

(b) By hypothesis, f(u) + u′ = 0, this implies that f(u) = u for all
u ∈ U . As U is right ideal, therefore f(ur) + (ur)′ = 0 for r ∈ S. We get
that

uf(r) + f(r)u′ + u′r = 0 for all r ∈ S (2.7)
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Replace r by ru, which implies that uf(ru)+f(ru)u′+u′ru = 0 or u[r, f(u)]+
[r, f(u)]u′ + u′ru = 0. By using f(u) = u, we obtain

uru+ u2r′ + r′u2 = 0 (2.8)

Moreover, if we replace r by ur in (2.7), we get that uf(ur) + f(ur)u′ +
u2r′ = 0. As U is right ideal, therefore by hypothesis, we get

u2r + uru′ + u2r′ = 0 (2.9)

As S is MA-semirings, then from (2.8) and (2.9), we get that u2r+r′u2 = 0.
By Theorem 1.1, we get the result.
If S is prime then from u2r+r′u2 = 0 we have u2r+u2r′ = 0 or u2(r+r′) =
0, which implies that u2S(r+r′) = 0. By using primeness, we get that either
u2 = 0 implies u = 0 or r + r′ = 0 for all r ∈ S, that the S is a ring.

From previous theorem we can conclude

Corollary 2.11. Let U be an ideal in prime MA-semiring S, and f satisfies
f(u) + u′ = 0 for all u ∈ U , then U = {0}

Proposition 2.12. If f is injective on a non-zero left ideal U on a prime
MA semiring S, then it is injective on S.

Proof. To show the injectivity of f , we need to show that kerf = 0. It is ob-
served that kerf is left ideal, since f(rx) = [r, f(x)] = [r, 0] = 0, for all r ∈
S, x ∈ kerf , this implies that

(kerf)U ⊆ kerf ∩ U

As f is injective on U , which implies that (kerf)U ⊆ kerf ∩U = {0} , and
we get (kerf)U = {0}. As U is left ideal therefore (kerf)SU = {0}
Now S is prime and U ̸= 0, therefore kerf = {0}. This completes the
proof.

3 Main Results

The following theorem provides the Commuting condition of f

Theorem 3.1. Let U be a non-zero ideal of semiprime MA semiring S. If
f is centralizing on U , that f is commuting on U
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Proof. As f is centralizing on U , therefore

[[f(x), x], z] = 0 , for all x ∈ U, z ∈ S (3.1)

By Theorem 1.1, we get [f(x), x]z = z[f(x), x] for all x ∈ U, z ∈ S By
lineralization of (3.1), we get

[[f(x), y] + [f(y), x], z] = 0 (3.2)

Replace y by x2, we get

[[f(x), x2] + [f(x2), x], z] = 0

or [[f(x), x]x+ x[f(x), x] + [[x, f(x)], x], z] = 0 , by using (3.1) we get

[2x[f(x), x], z] = 0 for all x ∈ U, z ∈ S (3.3)

Replace z by f(x), we get [2x[f(x), x], f(x)] = 0 , and therefore

2{x[[f(x), x], f(x)] + [x, f(x)][f(x), x]} = 0

2[x, f(x)][f(x), x] = 0

2[f(x), x]2 = 0

As centre of semiprime inverse semiring does not contain non-zero nilpotent
elements, therefore

2[f(x), x] = 0 , for all x ∈ U (3.4)

By Linearlizing (3.4), we have

[y, f(x)] + [x, f(y)] = 0 (3.5)

Now consider
[xy + yx, f(x)] + [x2, f(y)] =[xy, f(x)] + [yx, f(x)] + x[x, f(y] + [x, f(y)]x

=[x, f(x)]y + x[y, f(x)] + y[x, f(x)] + [y, f(x)]x+ x[x, f(y)] + [x, f(y)]x
By using (3.2),

= 2y[x, f(x)] + 2x{[y, f(x)] + [x, f(y)]}

by using (3.4) and (3.5), we get

[xy + yx, f(x)] + [x2, f(y)] = 0 (3.6)

If we substitute y = f(x)x in (3.6) we obtain
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[xf(x)x+ f(x)x.x, f(x)] + [x2, f(f(x).x)] = 0

[(xf(x) + f ′(x)x+ f(x)x+ f(x)x)x, f(x)] + [x2, [f(x), f(x)]] = 0

[([x, f(x)] + 2f(x)x, f(x)] + [x2, [f(x), f(x)]] = 0 , which gives

[[x, f(x)]x, f(x)] + [2f(x)x2, f(x)] + x2[f(x), f(x)] + [f(x), f(x)]x2 = 0

[x, f(x)]2 + [[x, f(x)], f(x)]x+ 2f(x)[x2, f(x)] + 2[f(x), f(x)]x2 +
x2[f(x), f(x)] + x2[f(x), f(x)]′ = 0

As [f(x), f(x)] ∈ Z(S) and [f(x), f(x)] = [f(x), f(x)]′, therefore we get

[x, f(x)]2 + [x, f(x)]f(x)x+ f ′(x)[x, f(x)]x+ 2f(x)[x2, f(x)]

+ [f(x), f(x)](2(x2)′ + 2(x2)) = 0 (3.7)

As [x2, f(x)] = x[x, f(x)] + [x, f(x)]x = 2x[x, f(x)] = 0, so we have

[x, f(x)]2 + [x, f(x)]f(x)(x+ x′) + [f(x), f(x)]((x2)′ + (x2)) = 0

Consequently, we get

[x, f(x)]2 + 2[x, f(x)]f(x)(x+ x′) = 0 (3.8)

By using (3.4) , it becomes [x, f(x)]2 = 0. As S is semiprime MA-semiring
therefore [x, f(x)] = 0 and hence f is commuting on S

Corollary 3.2. Let S be a semiprime MA semiring, if f is centralizing on
S then f is commuting on S.

By Proposition 2.9 and Corollary 3.2, we get the following result

Corollary 3.3. Let U be a Lie ideal of prime MA-semiring S. If f(x) =
0, for all x ∈ U , then either U is a ring or f is commuting on S.

Proposition 3.4. Let S be a prime MA-semiring and U be its non-zero
right ideal. If f is surjective and f(uv) = 0 for all u, v ∈ U then U is ring
or S is commutative.

Proof. Consider f(uv) = 0 implies that [u,f(v)] = 0, Substituting ur in
place of v, we get [u, f(ur)] = [u, [u, f(r)]] = 0
Here f is surjective therefore we can replace f(r) with r , implies

[u, [u, r]] = 0 ,for all r ∈ S ,u ∈ U
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Therefore u[u, r] + [u, r]u′ = 0 or u[u, r] + u′[u, r] = 0 or (u + u′)[u, r] = 0
or (u+u′)S[u, r] = 0 ,consequently we have either (u+u′) = 0 or [u, r] = 0
for all r ∈ S, u ∈ U . If (u+ u′) = 0 for all u ∈ U then U is ring, otherwise
[u, r] = 0 which implies that U ⊆ Z(S). If we replace u by us, for some s∈
S, we get u[s, r] + [u, r]s = 0oru[s, r] = 0 which implies that uS[s, r] = 0.
By primeness of S we have [s, r] = 0 for all s, r ∈ S. By Theorem 1.1, we
get sr = rs for all s, r ∈ S. Hence S is commutative

Theorem 3.5. Let S be semiprime MA-semiring and f be centralizing and
surjective, then f forces the S to be commutative.

Proof. As f is centralizing so by Theorem (3.1), it is commuting, therefore

[f(x), x] = 0 for all x ∈ S (3.9)

By linearlization of (3.9), we get

[f(x), y] = [x, f(y)] for all x, y ∈ S (3.10)

Replace x by xy, we get

[f(xy), x] = [xy, f(x)] or [f(xy), x] = x[y, f(x)] + [x, f(x)]y , which gives

[f(xy), x] = x[y, f(x)] (3.11)

By definition of f ,

[f(xy), x] = [[x, f(y)], x] (3.12)

From (3.11) and (3.12), we get

[f(xy), x] + [f(xy), x]′ = [[x, f(y)], x] + x[yf(x)]′ (3.13)

= [x, [x, f(y)] + x[y, f(x)]]

This leads the following

[f(xy), x] + [f(xy), x]′ = x[x, f(y)] + [x, f(y)]′x+ x[y, f(x)] (3.14)

On the other hand, by using (3.10)
[f(xy), x]+[f(xy), x]′ = [xy, f(x)]+[xy, f(x)]′ = x{[y, f(x)]+[f(y), x]′}

= x{[f(x), y] + [f(y), x]}′ = 0

(3.14) becomes

x[f(x), y] + [x, f(y)]′x+ x[f(x), y]′ = 0.

This implies that
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[x, f(y)]x = 0

Since f is surjective, therefore we can replace f(y) by y and we obtain

[x, y]x = 0for all x, y ∈ S

Replace y by yr, we get [x, yr]x = 0 or [x, y]rx+y[x, r]x = 0 or[x, y]Sx = 0,
consequently we have, [x, y]S[x, y] = 0
By using semiprimeness, we have [x, y] = 0 , for all x, y ∈ S
Hence by using Theorem 1.1, we have S is commutative.

Proposition 3.6. (a) If f satisfies f(xy)+[x, y]′ = 0 for all x, y ∈ S then
f + I ′ maps S into Z(S)
(b) Let S be prime MA semiring, and f is centralizing which satisfies f(xy)+
f ′(x)y = 0 ,then f = 0 or S is a ring.

Proof. (a) Suppose f(xy) + [x, y]′ = 0 , which implies that

[x, f(y)] + [x, y]′ = 0

or [x, f(y)+I ′(y)] = 0 for all x, y ∈ S. Hence (f+I ′)(y) ∈ Z(S) for all y ∈
S or f + I ′ maps S into Z(S).
(b) Let f(xy) + f ′(x)y = 0, this implies that

[x, f(y)] + f ′(x)y = 0 (3.15)

Also f is centralizing, therefore by Theorem 3.1, it is commuting ,and by
using (3.10) , it becomes

[f(x), y] + f ′(x)y = 0 (3.16)

or f(x)y + y′f(x) + f ′(x)y = 0 which gives f(x)y + [f(x), y] = 0. From
(3.15) we get

f(x)y + [x, f(y)] = 0 (3.17)

From (3.16) and (3.17), we getf(x)(y + y′) = 0, for all x,y ∈ S. Replace
y by ry , we have f(x)r(y + y′)= 0, and by the primeness of S, we get the
result.

Theorem 3.7. Let S be a prime MA-semiring and U be a nonzero left ideal
of S. If f is centralizing and strong commutativity preserving map on U,
then S is commutative
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Proof. As f is Strong commutativity preserving on U therefore by definition

[f(x), f(y)] + [x, y]′ = 0 for all x ∈ S (3.18)

Replace y by xy, we get

[f(x), f(xy)] + [x, xy]′ = 0 or [f(x), [x, f(y)]] + x[x, y]′ = 0

or x[f(x), f(y)] + [f(x), x]f(y) + [f(x), f(y)]x′ + f(y)[f(x), x] + x[x, y]′ = 0
By using Theorem 3.1 and (3.18), we obtain

x[x, y] + [x, y]x′ + x[x, y]′ = 0

Again by Using (3.18) we get , [x, y]x = 0 for all x, y ∈ U or [x, y]SU = 0.
By using primeness we get [x, y] = 0. Replace y by ry for r ∈ S, we get
[x, r]y = 0, or [x, r]Sy = {0} and by using primeness we get[x, r] = 0 for
x ∈ U, r ∈ S,which shows that U is central ideal. If we replace x by xs, for
some s∈ S, we get x[s, r] + [x, r]s = 0 or x[s, r] = 0 , as U is central ideal
this implies that Sx[s, r] = xS[s, r] = 0. By using primeness of S we get
that [s, r] = 0 for all s, r ∈ S . Hence S is commutative
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