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Abstract : In 2015, Roldán López de Hierro and Shahzad introduced the no-
tion of R-function which contains simulation function and manageable function.
They introduced R-contraction with respect to R-function. Following this line of
research, we introduce a generalization of R-contraction in b-metric spaces and
prove some fixed point theorems for such contraction in b-metric spaces. Our re-
sults extend and improve several well-known comparable results. Finally, we give
examples to support our results.
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1 Introduction

The well-known Banach contraction principle assures the existence and unique-
ness of fixed points of certain self-maps in metric spaces. This principle can be
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applied in various fields such as engineering, economics, computer science. Be-
cause of its wide applications, several researchers have extended, improved and
generalized the result in many directions.

In 2015, Khojasteh et al. [4] introduced the notion of Z-contraction defined by
simulation function. Then, Khojasteh et al. proved a new fixed point theorem con-
cerning Z-contraction which generalizes Banach’s contraction principle. Recently,
Roldán López de Hierro and Shahzad [13] introduced the concept of R-contraction
defined by R-function in order to generalize the previous results.

On the other hand, Bakhtin [1] and Czerwik [2] developed the notion of b-
metric space and established some fixed point theorems in b-metric spaces. Sub-
sequently, several results appeared in this direction [9, 14, 6, 5, 8, 10]. Recently,
Mongkolkeha et al. [7] introduced the notion of a simulation function in the setting
of b-metric spaces.

In this work, we define a generalization of R-contraction in b-metric spaces,
called R′-contraction, via R′-function and prove the existence and uniqueness of a
fixed point for such class of mappings in complete b-metric spaces. Furthermore,
we provide examples to support our results.

2 Preliminaries

In this section, we recollect some basic definitions, notations and results which
are needed in continuance.

In 1993, Czerwik [2] introduced a b-metric space shown below:

Definition 2.1. [2] A b-metric on a set X is a mapping d : X × X → [0,+∞)
satisfying the following conditions: for any x, y, z ∈ X,

(b1) d(x, y) = 0 if and only if x = y;

(b2) d(x, y) = d(y, x);

(b3) there exists K ≥ 1 such that d(x, y) ≤ K(d(x, z) + d(z, y)).

Then (X, d) is known as a b-metric space with coefficient K.

Note that every metric space is a b-metric space with K = 1. Some examples of
b-metric space are given below:

Example 2.2.

1. Let X = R. Define a mapping d : X ×X → [0,∞) by

d(x, y) = (x− y)2 for all x, y ∈ X.

Then (X, d) is a b-metric space with coefficient K = 2.

2. Let X = {1, 2, 3}. Define a mapping d : X × X → [0,∞) by d(1, 1) =
d(2, 2) = d(3, 3) = 0, d(1, 2) = d(2, 1) = 2, d(2, 3) = d(3, 2) = 1 and
d(1, 3) = d(3, 1) = 6. Then (X, d) is a b-metric space with coefficient K = 2.
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In 2015, Khojasteh et al. [4] introduced a simulation function shown below:

Definition 2.3. [4] A simulation function is a mapping ζ : [0,∞) × [0,∞) → R
satisfying the following conditions:

(ζ1) ζ(0, 0) = 0;

(ζ2) ζ(t, s) < s− t, for all t, s > 0;

(ζ3) if {tn}, {sn} are sequences in [0,∞) such that lim
n→∞

tn = lim
n→∞

sn > 0, then

lim sup
n→∞

ζ(tn, sn) < 0.

The class of all simulation functions ζ : [0,∞)× [0,∞) → R is denoted by Z.

The following are examples of simulation functions given by Khojasteh [4].

Example 2.4.

1. Let λ ∈ R be such that λ < 1 and define a mapping ζ : [0,∞)× [0,∞) → R
by

ζ(t, s) = λs− t for all s, t ∈ [0,∞).

Then ζ ∈ Z.

2. Define a mapping ζ : [0,∞) × [0,∞) → R by ζ(t, s) = ψ(s) − ϕ(t) for all
t, s ∈ [0,∞), where ψ, ϕ : [0,∞) → [0,∞) are two continuous functions such
that ψ(t) = ϕ(t) = 0 if and only if t = 0 and ψ(t) < t ≤ ϕ(t) for all t > 0,
then ζ ∈ Z.

In 2015, Roldán López de Hierro and Shahzad [13] introduced R-function and
R-contraction shown below:

Definition 2.5. [13] Let A ⊆ R be a nonempty subset. A function ϱ : A×A→ R
is called R-function if it satisfies the following two conditions:

(ϱ1) If {an} ⊂ (0,∞) ∩ A is a sequence such that ϱ(an+1, an) > 0 for all n ∈ N,
then {an} → 0.

(ϱ2) If {an}, {bn} ⊂ (0,∞) ∩ A are two sequences converging to the same limit
L ≥ 0 and verifying that L < an and ϱ(an, bn) > 0 for all n ∈ N, then
L = 0.

The class of all R-functions ϱ : A×A→ R is denoted by RA. They also consider
the following property.

(ϱ3) If {an}, {bn} ⊂ (0,∞) ∩ A are two sequences such that {bn} → 0 and
ϱ(an, bn) > 0 for all n ∈ N, then {an} → 0.

In [13], the authors showed that every simulation function is an R−function
that satisfies (ϱ3) but the converse is not true.
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Definition 2.6. [13] Let (X, d) be a metric space. A mapping T : X → X is called
R-contraction if there exists an R-function ϱ : A × A → R such that ran(d)⊆ A
and

ϱ(d(Tx, Ty), d(x, y)) > 0 for all x, y ∈ X such that x ̸= y.

Notice that if we take ϱ(t, s) = λs− t for all s, t ≥ 0 and λ ∈ [0, 1) in Definition
2.6, then R-contraction becomes the Banach contraction.

In 2017, Mongkolkeha et al. [7] introduced a simulation function in the frame-
work of b-metric spaces shown below:

Definition 2.7. [7] Let K be a given real number such that K ≥ 1.
A K-simulation function is a mapping ζ : [0,∞) × [0,∞) → R satisfying the
following conditions:

(ζ ′1) ζ(0, 0) = 0;

(ζ ′2) ζ(Kt, s) ≤ s−Kt, for all t, s > 0;

(ζ ′3) if {tn}, {sn} are sequences in [0,∞) such that lim sup
n→∞

Ktn = lim sup
n→∞

sn > 0

and tn < sn for all n ∈ N, then

lim sup
n→∞

ζ(Ktn, sn) < 0.

The class of all K-simulation functions ζ : [0,∞)× [0,∞) → R is denoted by Z∗.

Example 2.8. [7] Let λ,K ∈ R be such that λ < 1 and K ≥ 1. Define the mapping
ζ : [0,∞)× [0,∞) → R by

ζ(Kt, s) =


s−Kt if s < t,

λs−Kt

Ks+ 1
otherwise.

Then ζ ∈ Z∗ but ζ /∈ Z.

3 Main Results

In this section, we introduce the new family of functions in the setting of
b-metric spaces.

Definition 3.1. Let K be a given real number such that K ≥ 1. A function
ϱ : [0,∞) × [0,∞) → R is called R′−function if it satisfies the following two
conditions:

(ϱ′1) If {an} ⊂ (0,∞) is a sequence such that ϱ(Kan+1, an) > 0 for all n ∈ N,
then {an} → 0.
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(ϱ′2) If {an}, {bn} ⊂ (0,∞) are two sequences such that lim sup
n→∞

Kan = lim sup
n→∞

bn =

L ≥ 0 and verifying that L < Kan and ϱ(Kan, bn) > 0 for all n ∈ N, then
L = 0.

The class of all R′-functions ϱ : [0,∞) × [0,∞) → R is denoted by R∗. We also
consider the following property.

(ϱ′3) If {an}, {bn} ⊂ (0,∞) are two sequences such that {bn} → 0 and ϱ(Kan, bn) >
0 for all n ∈ N, then {an} → 0.

Lemma 3.2. Every K-simulation function is a R′-function that also verifies (ϱ′3).

Proof. Let K be a given real number such that K ≥ 1 and ϱ : [0,∞)× [0,∞) → R
be a K-simulation function.

(ϱ′1) Let {an} ⊂ (0,∞) be a sequence such that ϱ(Kan+1, an) > 0 for all n ∈ N.
By condition (ζ ′2),

0 < ϱ(Kan+1, an) ≤ an −Kan+1 ≤ an − an+1,

for all n ∈ N. So {an} is a strictly decreasing sequence of positive real
numbers. Then {an} is convergent, given L ≥ 0 such that {an} → L. We
will show that L = 0. By contradiction, assume L > 0. Let tn = an+1

K and
sn = an for all n ∈ N. By condition (ζ ′3),

0 ≤ lim sup
n→∞

ϱ(an+1, an) = lim sup
n→∞

ϱ(Ktn, sn) < 0,

which is a contradiction. Therefore {an} → 0.

(ϱ′2) Let {an}, {bn} ⊂ (0,∞) be sequences such that lim sup
n→∞

Kan = lim sup
n→∞

bn =

L ≥ 0 and satisfying that L < Kan and ϱ(Kan, bn) > 0 for all n ∈ N. We
will show that L = 0. By contradiction, assume L > 0. By condition (ζ ′2),
0 < ϱ(Kan, bn) ≤ bn −Kan. Then

an ≤ Kan < bn for all n ∈ N.

By condition (ζ ′3), 0 ≤ lim sup
n→∞

ϱ(Kan, bn) < 0, which is a contradiction.

Therefore L = 0.

(ϱ′3) Let {an}, {bn} ⊂ (0,∞) such that {bn} → 0 and ϱ(Kan, bn) > 0 for all
n ∈ N. Since ϱ is a K-simulation function, 0 < ϱ(Kan, bn) ≤ bn −Kan for
all n ∈ N. Hence 0 < Kan < bn for all n ∈ N, this implies that, {Kan} → 0.
Since K ≥ 1, {an} → 0.

Now, we useR′-function to define a new class of contractions in b-metric spaces.
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Definition 3.3. Let (X, d) be a b-metric space with coefficient K ≥ 1 and let
T : X → X be a mapping. We will say that T is a R′-contraction if there exists a
R′-function ϱ : [0,∞)× [0,∞) → R such that

ϱ(Kd(Tx, Ty), d(x, y)) > 0 for all x, y ∈ X such that x ̸= y.

Now, we are ready to give the main theorem.

Theorem 3.4. Let (X, d) be a complete b-metric space with coefficient K ≥ 1.
Let T : X → X be R′-contraction with respect ϱ ∈ R∗. If ϱ(Kt, s) ≤ s−Kt for all
s, t ∈ (0,∞) then T has a unique fixed point.

Proof. Let x0 ∈ X be a arbitrary point. Let {xn} be Picard sequence of T based
on x0, that is, xn+1 = Txn. If there exists n0 ∈ N such that xn0+1 = xn0

, then
Txn0

= xn0
which implies that xn0

is a fixed point. Assume xn ̸= xn+1 for all
n ∈ N. Let {an} ⊂ (0,∞) be a sequence defined by an = d(xn, xn+1) > 0 for all
n ∈ N. By R′-contraction,

ϱ(Kan+1, an) = ϱ(Kd(xn+1, xn+2), d(xn, xn+1))

= ϱ(Kd(Txn, Txn+1), d(xn, xn+1))

> 0.

From the condition (ϱ′1),

lim
n→∞

d(xn, xn+1) = lim
n→∞

an = 0.

Next, we show that {xn} is a Cauchy sequence reasoning by contradiction. If {xn}
is not a Cauchy sequence, then there exists ε0 > 0 such that

d(xnk
, xmk

) > ε0 and d(xnk
, xmk−1) ≤ ε0 for all mk > nk ≥ k. (3.1)

Consider

ε0 < d(xnk
, xmk

) ≤ K(d(xnk
, xmk−1) + d(xmk−1, xmk

)) for all k ∈ N.

Taking limit superior k to infinity,

ε0 ≤ lim sup
k→∞

d(xnk
, xmk

) ≤ Kε0. (3.2)

Since d(xnk−1, xmk−1) ≤ K(d(xnk−1, xnk
) + d(xnk

, xmk−1)) for all k ∈ N, taking
limit superior k to infinity,

lim sup
k→∞

d(xnk−1, xmk−1) ≤ Kε0. (3.3)

If d(xnk0
−1, xmk0

−1) = 0, for some k0 ∈ N then xnk0
= xmk0

, which contradict to
(3.1). Therefore xnk−1 ̸= xmk−1 for all k ∈ N. By R′-contraction,

0 <ϱ(Kd(xnk
, xmk

), d(xnk−1, xmk−1)) ≤ d(xnk−1, xmk−1)−Kd(xnk
, xmk

).
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This implies that

Kd(xnk
, xmk

) < d(xnk−1, xmk−1) for all k ∈ N. (3.4)

By (3.2), (3.3) and (3.4).

Kε0 ≤ lim sup
k→∞

Kd(xnk
, xmk

) ≤ lim sup
k→∞

d(xnk−1, xmk−1) ≤ Kε0.

That is
lim sup
k→∞

Kd(xnk
, xmk

) = lim sup
k→∞

d(xnk−1, xmk−1) = Kε0.

Since Kε0 < Kd(xnk
, xmk

), for all k ∈ N and the condition (ϱ′2), Kε0 = 0.
That is a contradiction. Thus {xn} is a Cauchy sequence. Since (X, d) is complete,
there exists z ∈ X such that {xn} → z.

Next, we will show that z is fixed point reasoning by contradiction. If z is not

a fixed point, that is z ̸= Tz. Let ε = d(z,Tz)
2 > 0. Since {xn} → z,

there exists N such that d(xn, z) < ε for all n > N. (3.5)

Let Ω = {n ∈ N : d(xn, z) = 0}. Assume that Ω is not finite, then we can find
n0 > N such that d(xn0

, z) = 0 i.e. xn0
= z. By (3.5),

ε > d(xn0+1, z) = d(Txn0 , z) = d(Tz, z),

which is a contradiction. Therefore Ω is finite, there exists n0 such that d(xn, z) >
0 for all n > n0. Since T is a R′-contraction,

0 < ϱ(Kd(Txn, T z), d(xn, z)) ≤ d(xn, z)−Kd(Txn, T z), for all n > n0.

Hence,

Kd(Txn, T z) < d(xn, z), for all n > n0.

Taking limit n to infinity,

lim
n→∞

Kd(Txn, T z) ≤ lim
n→∞

d(xn, z) = 0.

Thus lim
n→∞

Kd(Txn, T z) = 0, that is, {xn+1 = Txn} → Tz. By the uniqueness of

the limit, Tz = z. Finally, let us show that z is unique fixed point of T . Assume
x = Tx and y = Ty such that x ̸= y. Let an = d(x, y) > 0 for all n ∈ N. Consider

ϱ(Kan+1, an) = ϱ(Kd(x, y), d(x, y)) = ϱ(Kd(Tx, Ty), d(x, y)) > 0.

From (ϱ′1), then {an} → 0, which imply that d(x, y) = 0, which is a contradiction.
So x = y.

This following results are immediately true by our main result.
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Corollary 3.5. [4] Let (X, d) be a complete metric space and T : X → X be a
Z-contraction with respect to a certain simulation function ζ, that is,

ζ(d(Tx, Ty), d(x, y)) ≥ 0, for all x, y ∈ X.

Then T has a unique fixed point. Moreover, for every x0 ∈ X, the Picard sequence
{Tnx0} converges to this fixed point.

Corollary 3.6. [3] Let (X, d) be a complete b-metric space and let T : X → X be
a mapping. Suppose that there exists λ ∈ (0, 1) such that

d(Tx, Ty) ≤ λd(x, y) for all x, y ∈ X.

Then T has a unique fixed point.

Corollary 3.7. [12] Let (X, d) be a complete b-metric space and let T : X → X
be a mapping. Suppose that there exists a lower semi-continuous function φ :
[0,∞) → [0,∞) with φ−1(0) = 0 such that

d(Tx, Ty) ≤ d(x, y)− φ(d(x, y)) for all x, y ∈ X.

Then T has a unique fixed point.

Proof. The result follows from Theorem 3.4, by taking as simulation function

ζ(t, s) = s− φ(s)− t for all t, s ≥ 0.

Corollary 3.8. [11] Let (X, d) be a complete b-metric space and let T : X →
X be a mapping. Suppose that there exists a function φ : [0,∞) → [0, 1) with
lim sup
t→r+

φ(t) < 1 for all r > 0 such that

d(Tx, Ty) ≤ φ(d(x, y))d(x, y) for all x, y ∈ X.

Then T has a unique fixed point.

Proof. The result follows from Theorem 3.4, by taking as simulation function

ζ(t, s) = sφ(s)− t for all t, s ≥ 0.

The following examples support our main result.
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Example 3.9. Let X = [0, 1] and d(x, y) = (x− y)2 for all x, y ∈ X, then (X, d)
is a complete b-metric space with coefficient K = 2. Let T : X → X be given by

T (x) =
x√
5
for all x ∈ X. Define ϱ : [0,∞)× [0,∞) → R by

ϱ(2t, s) =


s
2 − 2t if 2t ̸= s,

0 if 2t = s.

Therefore, all the requirements of previous Theorem 3.4 are satisfied and x = 0 is
a unique fixed point in X.

Example 3.10. Let X = [0, 1] and d(x, y) = (x−y)2 for all x, y ∈ X, then (X, d)
is a complete b-metric space with coefficient K = 2. Let T : X → X be given by

T (x) =
x√

10(2 + x)
for all x ∈ X. For all x, y ∈ X such that x ≥ y, we have

d(Tx, Ty) =

(
x√

10(2 + x)
− y√

10(2 + y)

)2

=
2

5

(
x− y

(2 + x)(2 + y)

)2

=
2

5

(
(x− y)2

(4 + 2x+ 2y + xy)2

)
≤ 2

5

(
(x− y)2

(1 + x− y)2

)
≤ 2

5

(
(x− y)2

1 + (x− y)2

)
.

Define ϱ : [0,∞)× [0,∞) → R by ϱ(2t, s) =
s

1 + s
− 2t, then ϱ ∈ R∗.

Therefore

ϱ(2d(Tx, Ty), d(x, y)) =
(x− y)2

1 + (x− y)2
− 2d(Tx, Ty)

≥ (x− y)2

1 + (x− y)2
− 4

5

(
(x− y)2

1 + (x− y)2

)
=

1

5

(
(x− y)2

1 + (x− y)2

)
> 0.

Therefore, T is a R′-contraction and ϱ(2t, s) =
s

1 + s
− 2t ≤ s − 2t for all

s, t ∈ (0,∞). By Theorem 3.4, T has a unique fixed point, that is, x = 0.
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