Thai Journal of Mathematics: (2018) 252-267 Special Issue (ACFPTO2018) on: Advances in fixed point theory towards real world optimization problems

http://thaijmath.in.cmu.ac.th Online ISSN 1686-0209

Strong Convergence Theorems for the Split Variational Inclusion Problem and Common Fixed Point Problem for a Finite Family of Quasi-nonexpansive Mappings in Hilbert Spaces

Varayut Boonyasri †,1 , Suthep Suantai ‡ and Phakdi Charoensawan ‡

†Graduate Student in Mathematics, Faculty of Science,
Chiang Mai University, Chiang Mai 50200, Thailand
e-mail: warayutbj@gmail.com (Varayut Boonyasri)

†Department of Mathematics, Faculty of Science, Chiang Mai University,
Chiang Mai 50200, Thailand

e-mail: suthep.s@cmu.ac.th (Suthep Suantai)
: phakdi@hotmail.com (Phakdi Charoensawan)

Abstract : In this work, we introduce and study an algorithm for solving the common fixed point problem of a finite family of quasi-nonexpansive mappings and the split variational inclusion problem in Hilbert spaces. We establish a strong convergence result under some suitable conditions. A numerical example supporting our main result is also given.

Keywords: split feasibility problem; split variational inclusion problem; common fixed point problem; quasi-nonexpansive mappings; resolvent mapping; strong convergence.

2000 Mathematics Subject Classification: 47H09; 47H10 (2000 MSC)

Copyright \odot 2018 by the Mathematical Association of Thailand. All rights reserved.

¹Corresponding author.

1 Introduction

Let H be a real Hilbert space and $C_i \subseteq H, i = 1, 2, ..., m$ be nonempty closed convex subsets of H. The convex feasibility problem (CFP) is to find a point

$$x^* \in \bigcap_{i=1}^m C_i. \tag{1.1}$$

Given a finite family of nonlinear mappings $T_i: H \to H, i=1,2,...,m$ with $Fix(T_i) := \{x \in H: x = T_i x\} \neq \emptyset$. The common fixed point problem (CFPP) is to find a point

$$x^* \in \bigcap_{i=1}^m Fix(T_i). \tag{1.2}$$

Since each closed convex subset may be considered as a fixed point set of a projection onto the subset, hence the CFPP (1.2) is a generalization of the CFP (1.1).

Let H_1 and H_2 be real Hilbert spaces and let $A: H_1 \to H_2$ be a bounded linear operator. Let $C_i, i = 1, 2, ..., t$ and $Q_j, j = 1, 2, ..., r$ be nonempty closed convex subsets of H_1 and H_2 , respectively. The multiple-set split feasibility problem (MSSFP) which was introduced by Censor et al. [1] is formulated as finding a point

$$x^* \in \bigcap_{i=1}^t C_i$$
 such that $Ax^* \in \bigcap_{j=1}^r Q_j$. (1.3)

In particular, if t = r = 1, then the MSSFP (1.3) is reduced to find a point

$$x^* \in C$$
 such that $Ax^* \in Q$, (1.4)

where C and Q are nonempty closed convex subsets of H_1 and H_2 , respectively. The problem (1.4) is known as the *split feasibility problem* (SFP) which was first introduced by Censor and Elfving [2] for modeling inverse problems in finite-dimensional Hilbert spaces. To solve (1.4), Byrne [3] proposed his CQ algorithm which generates a sequence $\{x_n\}$ by

$$x_{n+1} = P_C(x_n - \rho_n A^*(I - P_O)Ax_n), \quad n \in \mathbb{N}$$

where $\rho_n \in (0, \frac{2}{\|A\|^2})$, P_C and P_Q are the (orthogonal) projections onto C and Q, respectively. and A^* denotes the adjoint of A.

Let H be a real Hilbert space, and B be a set-valued mapping with domain $\mathcal{D}(B) := \{x \in H : B(x) \neq \emptyset\}$. Recall that B is called *monotone* if $\langle u - v, x - y \rangle \geq 0$ for any $u \in Bx$ and $v \in By$; B is maximal monotone if its graph $\{(x,y) : x \in \mathcal{D}(B), y \in Bx\}$ is not properly contained in the graph of any other monotone mapping. Further, for each $\beta > 0$, let B is a set-valued maximal monotone mapping. Define $J_{\beta}^{B}(x) := (I + \beta B)^{-1}(x)$ for each $x \in H$. J_{β}^{B} is called a resolvent of B order β .

One of the most important problem for set-valued mappings is to find $\bar{x} \in H$

254 V. Boonyasri et al.

such that $0 \in B\bar{x}$, \bar{x} is called a zero point of B. This problem contains numerous problems in optimization, economics, physics and several areas of engineering. The proximal point algorithm was first introduced by Martinet [4] which is a method for approximating a zero point of a maximal monotone mapping in a real Hilbert space and generalized by Rockafellar [5]. This iterative algorithm generates $\{x_n\}$ by

$$x_{n+1} = J_{\beta_n}^B x_n \tag{1.5}$$

where $\{\beta_n\}$ is a sequence in $(0,\infty)$, B is a maximal monotone mapping in a real

Hilbert space, and $J_{\beta_n}^B$ is the resolvent mapping of B. In 1976, Rockafellar [5] proved that the sequence $\{x_n\}$ in (1.5) converges weakly to an element of $B^{-1}(0)$ if $B^{-1}(0)$ is nonempty and $\liminf \beta_n > 0$.

The split variational inclusion problem was proposed by Moudafi [6] since 2011:

(SFVIP) Find
$$\bar{x} \in H_1$$
 such that $0 \in B_1(\bar{x})$ and $0 \in B_2(A\bar{x})$

where H_1 and H_2 be two real Hilbert spaces, $B_1:H_1\to 2^{H_1}$ and $B_2:H_2\to 2^{H_2}$ be two set-valued maximal monotone mappings, $A: H_1 \to H_2$ be a bounded linear operator.

Moreover, Moudafi [6] introduced the algorithm to solve the SFVIP as following:

$$x_{n+1} := J_{\lambda}^{B_1} [x_n + \gamma A^* (J_{\lambda}^{B_2} - I) A x_n]. \tag{1.6}$$

where λ and γ are fixed numbers. He proved that this iteration converges weakly to a some element in the solution set of SFVIP.

In 2013 Chuang [7] gave a strong convergence theorems for problem SFVIP under some conditions, like the Halpern-Mann type iteration method. The following is an iteration process given by Chuang[7]:

$$x_{n+1} := a_n u + b_n x_n + c_n J_{\beta_n}^{B_1} \left[x_n - \rho_n A^* (I - J_{\beta_n}^{B_2}) A x_n \right] + d_n v_n$$
 (1.7)

where $\{a_n\},\{b_n\}$ and $\{c_n\}$ are sequences of real numbers in [0,1] with a_n+b_n+ $c_n+d_n=1$ and $0< a_n<1$ for each $n\in\mathbb{N},$ $\{v_n\}$ is a bounded sequence in $H_1,$ u is fixed and ρ_n is chosen in the interval $(0,\frac{2}{\|A\|^2+1})$.

In this work, we introduce and study some algorithms for solving the common fixed point problem of a finite family of quasi-nonexpansive mappings and the split variational inclusion problem in Hilbert spaces. We establish a strong convergence result under some suitable conditions. A numerical example supporting our main result is also given.

2 Preliminaries

Throughout this paper, let \mathbb{N} be the set of positive integers and let \mathbb{R} be the set of real numbers. We shall assume that H be a (real) Hilbert space with the inner product $\langle \cdot, \cdot \rangle$ and the norm $\|\cdot\|$, respectively. We denote the strong convergence

and weak convergence of a sequence $\{x_n\}$ to a point $x \in H$ by $x_n \to x$ and $x_n \rightharpoonup x$, respectively. From [14], for each $x, y, u, v \in H$ and $t \in [0, 1]$, we have

$$||x+y||^2 = ||x||^2 + ||y||^2 + 2\langle x, y \rangle;$$

$$||tx+(1-t)y||^2 = t ||x||^2 + (1-t) ||y||^2 - t(1-t) ||x-y||^2;$$

$$2\langle x-y, u-v \rangle = ||x-v||^2 + ||y-u||^2 - ||x-u||^2 - ||y-v||^2.$$

Furthermore, we obtain the following Lemma.

Lemma 2.1. [8] Let H be a real Hilbert space. Then for each $m \in \mathbb{N}$

$$\left\| \sum_{i=1}^{m} t_i x_i \right\|^2 = \sum_{i=1}^{m} t_i \|x_i\|^2 - \sum_{i=1, i \neq j}^{m} t_i t_j \|x_i - x_j\|^2,$$

where $x_i \in H, t_i, t_j \in [0, 1]$ for all i, j = 1, 2, ..., m, and $\sum_{i=1}^{m} t_i = 1$.

Lemma 2.2. [9] Let H be a (real) Hilbert space, and let $x, y \in H$. Then $||x + y||^2 \le ||x||^2 + 2\langle y, x + y \rangle$.

Let C be a nonempty closed convex subset of a real Hilbert space H. Recall that the (metric) projection from H onto C, denote by P_C is defined for each $x \in H$, $P_C x$ is the unique element in C such that

$$||x - P_C x|| = \inf\{||x - y|| : y \in C\}.$$

Lemma 2.3. [10] Let C be a nonempty closed convex subset of a Hilbert space H. Let P_C be the metric projection from H onto C. Then, for each $x \in H$ and $z \in C$, we know that $z = P_C x$ if and only if $\langle x - z, z - y \rangle \geq 0$ for all $y \in C$.

Let C be a nonempty closed convex subset of a real Hilbert space H, and let $T: H \to H$ be a mapping. Let $Fix(T) := \{x \in H : Tx = x\}$. Now let us recall the definitions of some mappings concerned in our study.

Definition 2.4. Let H be a real Hilbert space. A mapping $T: H \to H$ is said to be

- (i) nonexpansive if $||Tx Ty|| \le ||x y||$ for all $x, y \in H$,
- (ii) quasi-nonexpansive if

$$Fix(T) \neq \emptyset$$
 and $||Tx - q|| \leq ||x - q||$ for all $x \in H$ and $q \in Fix(T)$,

(iii) firmly nonexpansive if $||Tx - Ty||^2 \le \langle x - y, Tx - Ty \rangle$ for all $x, y \in H$.

It is easy to see that Fix(T) is a closed convex subset of H if T is a quasi-nonexpansive mapping.

Lemma 2.5. An mapping $T: H \to H$ is called demiclosed at the origin if, for any sequence $\{x_n\}$ which weakly converges to w and if the sequence $\{Tx_n\}$ strongly converges to w, then w

Lemma 2.6. Let C be a nonempty closed convex subset of a real Hilbert space H. If $T: C \to H$ is a nonexpansive mapping, then I - T is demiclosed at the origin.

The following are important tools to study the split variational inclusion problems.

Lemma 2.7. [11] Let H be a real Hilbert space. Let $B: H \to 2^H$ be a set-valued maximal monotone mapping, $\beta > 0$, and let J_{β}^B be a resolvent mapping of B defined by $J_{\beta}^B(x) = (I + \beta B)^{-1}(x)$ for each $x \in H$. Thus

- (i) J_{β}^{B} is a single-valued and firmly nonexpansive mapping for each $\beta > 0$;
- (ii) $\mathcal{D}(J_{\beta}^{B}) = H$ and $Fix(J_{\beta}^{B}) = \{x \in \mathcal{D}(B) : 0 \in Bx\};$
- (iii) $||x J_{\beta}^B x|| \le ||x J_{\gamma}^B x||$ for all $0 < \beta \le \gamma$ and for all $x \in H$;
- (iv) Suppose that $B^{-1}(0) \neq \emptyset$. Then $\|x J_{\beta}^B x\|^2 + \|J_{\beta}^B x \bar{x}\|^2 \leq \|x \bar{x}\|^2$ for each $x \in H$, each $\bar{x} \in B^{-1}(0)$, and each $\beta > 0$.
- (v) Suppose that $B^{-1}(0) \neq \emptyset$. Then $\langle x J_{\beta}^B x, J_{\beta}^B x w \rangle \geq 0$ for each $x \in H$, each $w \in B^{-1}(0)$, and each $\beta > 0$.

Lemma 2.8. [7] Let H_1 and H_2 be real Hilbert spaces, $A: H_1 \to H_2$ be linear operator, and A^* be the adjiont of A, and let $\beta > 0$ be fixed, and let $\rho \in (0, \frac{2}{\|A\|^2})$. Let $B_2: H_2 \to 2^{H_2}$ be a set-valued maximal monotone mapping, and let $J_{\beta}^{B_2}$ be a resolvent mapping of B_2 . Then

$$\begin{aligned} & \left\| \left[x - \rho A^* (I - J_{\beta}^{B_2}) A x \right] - \left[y - \rho A^* (I - J_{\beta}^{B_2}) A y \right] \right\|^2 \\ & \leq \left\| x - y \right\|^2 - (2\rho - \rho^2 \left\| A \right\|^2) \left\| (I - J_{\beta}^{B_2}) A x - (I - J_{\beta}^{B_2}) A y \right\|^2 \end{aligned}$$

for all $x, y \in H_1$. Furthermore, $I - \rho A^*(I - J_{\beta}^{B_2})A$ is a nonexpansive mapping.

Lemma 2.9. [12] Let $\{a_n\}$ be a sequence of real numbers such that there exists a subsequence $\{a_{n_i}\}$ of $\{a_n\}$ which satisfies $a_{n_i} \leq a_{n_i+1}$ for all $i \in \mathbb{N}$. Then there exists a nondecreasing sequence $\{m_k\} \subseteq \mathbb{N}$ such that $m_k \to \infty, a_{m_k} \leq a_{m_k+1}$ and $a_k \leq a_{m_k+1}$ are satisfied by all (sufficiently large) numbers $k \in \mathbb{N}$. In fact, $m_k = \max\{j \leq k : a_j < a_{j+1}\}$.

Lemma 2.10. [9] Let $\{a_n\}$ and $\{c_n\}$ are sequences of nonnegative real numbers such that

$$a_{n+1} \le (1 - \delta_n)a_n + b_n + c_n, \quad n \ge 1$$

where $\{\delta_n\}$ is a sequence in (0,1) and $\{b_n\}$ is a real sequence. Assume $\sum_{n=1}^{\infty} c_n < \infty$. Then the following result hold:

- (i) If $b_n \leq \delta_n M$ for some $M \geq 0$, then $\{a_n\}$ is a bounded sequence.
- (ii) If $\sum_{n=1}^{\infty} \delta_n = \infty$ and $\limsup_{n \to \infty} b_n / \delta_n \le 0$, then $\lim_{n \to \infty} a_n = 0$.

Lemma 2.11. [7] Let H_1 and H_2 be real Hilbert spaces, $A: H_1 \to H_2$ be linear operator, and A^* be the adjiont of A, and let $\beta > 0, \gamma > 0, B_1: H_1 \to 2^{H_1}$ and $B_2: H_2 \to 2^{H_2}$ be a set-valued maximal monotone mappings. Given any $\bar{x} \in H_1$.

- (i) If \bar{x} is a solution of (SFVIP), then $J_{\beta}^{B_1}[\bar{x} \gamma A^*(I J_{\beta}^{B_2})A\bar{x}] = \bar{x}$.
- (ii) Suppose that $J_{\beta}^{B_1} \left[\bar{x} \gamma A^* (I J_{\beta}^{B_2}) A \bar{x} \right] = \bar{x}$ and the solution set of (SFVIP) is nonempty. Then \bar{x} is a solution of (SFVIP).

3 Main Results

Theorem 3.1. Let H_1 and H_2 be two real Hilbert spaces, $A: H_1 \to H_2$ be a bounded linear operator, and let A^* denote the adjoint of A. Let $B_1: H_1 \to 2^{H_1}$ and $B_2: H_2 \to 2^{H_2}$ be two set-valued maximal monotone mappings. Let $\{T_i: i=1,2,\ldots,N\}$ be family of quasi-nonexpansive mappings of H_1 into itself. Let $\{a_n\}, \{b_{n,i}\}, i=1,2,\ldots,N$ and $\{c_n\}$ be sequences of real numbers in [0,1] with $a_n + \sum_{i=1}^N b_{n,i} + c_n = 1$ and $0 < a_n < 1$ for all $n \in \mathbb{N}$. Let $\{\beta_n\}$ be a sequence in $(0,\infty)$. Let $x_1, u \in H_1$ be fixed. Let $\{\rho_n\} \subseteq (0, \frac{2}{\|A\|^2+1})$.

Let $\Omega := \{x \in H_1 : x \in \bigcap_{i=1}^N Fix(T_i), 0 \in B_1(x) \text{ and } 0 \in B_2(Ax)\}$ and suppose that $\Omega \neq \emptyset$. Let $\{x_n\}$ be defined by

$$x_{n+1} := a_n u + \sum_{i=1}^{N} b_{n,i} T_i x_n + c_n J_{\beta_n}^{B_1} \left[x_n - \rho_n A^* (I - J_{\beta_n}^{B_2}) A x_n \right]$$

for each $n \in \mathbb{N}$. Assume that:

- (i) $\lim_{n \to \infty} a_n = 0; \sum_{n=1}^{\infty} a_n = \infty;$
- (ii) $\liminf_{n\to\infty} \rho_n > 0$; $\liminf_{n\to\infty} c_n > 0$; $\liminf_{n\to\infty} \beta_n > 0$; $\liminf_{n\to\infty} b_{n,i} > 0 \quad \forall i = 1, 2, \dots, N$.
- (iii) $I T_i$ are demiclosed at origin for all i = 1, 2, ..., N.

Then $\lim_{n\to\infty} x_n = \bar{x}$, where $\bar{x} = P_{\Omega}u$.

Proof. Let $\bar{x} = P_{\Omega}u$, where P_{Ω} is the metric projection from H_1 onto Ω .

Then, for each $n \in \mathbb{N}$, it follows from Lemma 2.8 that

$$||x_{n+1} - \bar{x}|| = \left\| a_n u + \sum_{i=1}^N b_{n,i} T_i x_n + c_n J_{\beta_n}^{B_1} \left[x_n - \rho_n A^* (I - J_{\beta_n}^{B_2}) A x_n \right] - \bar{x} \right\|$$

$$\leq a_n ||u - \bar{x}|| + \sum_{i=1}^N b_{n,i} ||x_n - \bar{x}|| + c_n \left\| J_{\beta_n}^{B_1} \left[x_n - \rho_n A^* (I - J_{\beta_n}^{B_2}) A x_n \right] - \bar{x} \right\|$$

$$\leq a_n ||u - \bar{x}|| + \sum_{i=1}^N b_{n,i} ||x_n - \bar{x}||$$

$$+ c_n \left\| J_{\beta_n}^{B_1} \left[x_n - \rho_n A^* (I - J_{\beta_n}^{B_2}) A x_n \right] - J_{\beta_n}^{B_1} \left[\bar{x} - \rho_n A^* (I - J_{\beta_n}^{B_2}) A \bar{x} \right] \right\|$$

$$\leq a_n ||u - \bar{x}|| + \sum_{i=1}^N b_{n,i} ||x_n - \bar{x}|| + c_n ||x_n - \bar{x}||$$

$$= a_n ||u - \bar{x}|| + (\sum_{i=1}^N b_{n,i} + c_n) ||x_n - \bar{x}||$$

$$= a_n ||u - \bar{x}|| + (1 - a_n) ||x_n - \bar{x}||.$$

This implies by Lemma 2.10 that $\{x_n\}$ is a bounded sequence. For convenience, we set $y_n = J_{\beta_n}^{B_1} \left[x_n - \rho_n A^* (I - J_{\beta_n}^{B_2}) Ax_n\right]$. By Lemma 2.7(ii) and 2.8, we have

$$\|y_{n} - \bar{x}\|^{2} = \|J_{\beta_{n}}^{B_{1}} \left[x_{n} - \rho_{n} A^{*} (I - J_{\beta_{n}}^{B_{2}}) A x_{n}\right] - J_{\beta_{n}}^{B_{1}} \left[\bar{x} - \rho_{n} A^{*} (I - J_{\beta_{n}}^{B_{2}}) A \bar{x}\right] \|^{2}$$

$$\leq \|\left[x_{n} - \rho_{n} A^{*} (I - J_{\beta_{n}}^{B_{2}}) A x_{n}\right] - \left[\bar{x} - \rho_{n} A^{*} (I - J_{\beta_{n}}^{B_{2}}) A \bar{x}\right] \|^{2}$$

$$\leq \|x_{n} - \bar{x}\|^{2} - (2\rho_{n} - \rho_{n}^{2} \|A\|^{2}) \|(I - J_{\beta_{n}}^{B_{2}}) A x_{n} - (I - J_{\beta_{n}}^{B_{2}}) A \bar{x}\|^{2}$$

$$= \|x_{n} - \bar{x}\|^{2} - (2\rho_{n} - \rho_{n}^{2} \|A\|^{2}) \|(I - J_{\beta_{n}}^{B_{2}}) A x_{n}\|^{2}. \tag{3.1}$$

Hence, it follows form Lemma 2.2 that

$$||x_{n+1} - \bar{x}||^2 = \left\| a_n u + \sum_{i=1}^N b_{n,i} T_i x_n + c_n y_n - \bar{x} \right\|^2$$

$$\leq \left\| \sum_{i=1}^N b_{n,i} (T_i x_n - \bar{x}) + c_n (y_n - \bar{x}) \right\|^2 + 2a_n \langle u - \bar{x}, x_{n+1} - \bar{x} \rangle$$

$$= (1 - a_n)^2 \left\| \sum_{i=1}^N b'_{n,i} (T_i x_n - \bar{x}) + c'_n (y_n - \bar{x}) \right\|^2$$

$$+ 2a_n \langle u - \bar{x}, x_{n+1} - \bar{x} \rangle$$

$$(3.2)$$
where $b'_{n,i} = \frac{b_{n,i}}{1 - a_n} = \frac{b_{n,i}}{\sum_{i=1}^N b_{n,i} + c_n}, c'_n = \frac{c_n}{\sum_{i=1}^N b_{n,i} + c_n}.$

By (3.1),(3.2) and Lemma 2.1, we have

$$||x_{n+1} - \bar{x}||^{2} \leq \left\| \sum_{i=1}^{N} b_{n,i} (T_{i}x_{n} - \bar{x}) + c_{n} (y_{n} - \bar{x}) \right\|^{2} + 2a_{n} \langle u - \bar{x}, x_{n+1} - \bar{x} \rangle$$

$$\leq \sum_{i=1}^{N} b_{n,i} ||x_{n} - \bar{x}||^{2} + c_{n} ||y_{n} - \bar{x}||^{2}$$

$$- \sum_{i=1}^{N} b_{n,i} c_{n} ||T_{i}x_{n} - y_{n}||^{2} + 2a_{n} \langle u - \bar{x}, x_{n+1} - \bar{x} \rangle$$

$$\leq \sum_{i=1}^{N} b_{n,i} ||x_{n} - \bar{x}||^{2} + c_{n} (||x_{n} - \bar{x}||^{2} - (2\rho_{n} - \rho_{n}^{2} ||A||^{2}) ||(I - J_{\beta_{n}}^{B_{2}}) Ax_{n}||^{2})$$

$$- \sum_{i=1}^{N} b_{n,i} c_{n} ||T_{i}x_{n} - y_{n}||^{2} + 2a_{n} \langle u - \bar{x}, x_{n+1} - \bar{x} \rangle$$

$$= \left(c_{n} + \sum_{i=1}^{N} b_{n,i} \right) ||x_{n} - \bar{x}||^{2} - c_{n} (2\rho_{n} - \rho_{n}^{2} ||A||^{2}) ||(I - J_{\beta_{n}}^{B_{2}}) Ax_{n}||^{2}$$

$$- \sum_{i=1}^{N} b_{n,i} c_{n} ||T_{i}x_{n} - y_{n}||^{2} + 2a_{n} \langle u - \bar{x}, x_{n+1} - \bar{x} \rangle. \tag{3.3}$$

Since $\liminf_{n\to\infty} \beta_n > 0$, we may assume that $\beta_n > \beta > 0$ for each $n \in \mathbb{N}$. Next, we consider 2 cases

Case I

There exists a natural number n_0 such that $||x_{n+1} - \bar{x}|| \le ||x_n - \bar{x}||$ for each $n \ge n_0$. Because $\{x_n\}$ is a bounded sequence, we have $\lim_{n\to\infty} ||x_n - \bar{x}||$ exists. From (3.3),

$$||x_{n+1} - \bar{x}||^{2} \le \left(c_{n} + \sum_{i=1}^{N} b_{n,i}\right) ||x_{n} - \bar{x}||^{2} - c_{n}(2\rho_{n} - \rho_{n}^{2} ||A||^{2}) ||(I - J_{\beta_{n}}^{B_{2}}) Ax_{n}||^{2} + 2a_{n} \langle u - \bar{x}, x_{n+1} - \bar{x} \rangle$$

$$\le ||x_{n} - \bar{x}||^{2} - c_{n}(2\rho_{n} - \rho_{n}^{2} ||A||^{2}) ||(I - J_{\beta_{n}}^{B_{2}}) Ax_{n}||^{2} + 2a_{n} \langle u - \bar{x}, x_{n+1} - \bar{x} \rangle.$$

This implies that $\lim_{n\to\infty} c_n(2\rho_n - \rho_n^2 \|A\|^2) \|(I - J_{\beta_n}^{B_2}) Ax_n\|^2 = 0$. Since $c_n(2\rho_n - \rho_n^2 \|A\|^2) \ge \frac{c_n\rho_n}{\|A^2\|+1}$ for all $n \in \mathbb{N}$ and $\liminf_{n\to\infty} c_n\rho_n > 0$, it follows that

$$\lim_{n \to \infty} \left\| Ax_n - J_{\beta_n}^{B_2} Ax_n \right\| = 0.$$
 (3.4)

By Lemma 2.7(iii), $\|Ax_n - J_{\beta}^{B_2}Ax_n\| \le \|Ax_n - J_{\beta_n}^{B_2}Ax_n\|$ Hence,

$$\lim_{n \to \infty} \left\| Ax_n - J_{\beta}^{B_2} Ax_n \right\| = 0. \tag{3.5}$$

From (3.3), we have

$$||x_{n+1} - \bar{x}||^2 \le \left(c_n + \sum_{i=1}^N b_{n,i}\right) ||x_n - \bar{x}||^2 - \sum_{i=1}^N b_{n,i} c_n ||T_i x_n - y_n||^2 + 2a_n \langle u - \bar{x}, x_{n+1} - \bar{x} \rangle$$

$$\le ||x_n - \bar{x}||^2 - \sum_{i=1}^N b_{n,i} c_n ||T_i x_n - y_n||^2 + 2a_n \langle u - \bar{x}, x_{n+1} - \bar{x} \rangle.$$

Thus, for each $i = 1, 2, \dots, N$,

$$||x_{n+1} - \bar{x}||^2 \le ||x_n - \bar{x}||^2 - b_{n,i}c_n ||T_ix_n - y_n||^2 + 2a_n\langle u - \bar{x}, x_{n+1} - \bar{x}\rangle.$$

This implies $\lim_{n\to\infty} b_{n,i}c_n ||T_ix_n - y_n|| = 0 \quad \forall i = 1, 2, \dots, N.$

Since $\liminf_{n\to\infty} c_n > 0$ and $\liminf_{n\to\infty} b_{n,i} > 0$ $\forall i = 1, 2, \dots, N$, it follows that

$$\lim_{n \to \infty} ||T_i x_n - y_n|| = 0 \quad \forall i = 1, 2, \dots, N.$$
(3.6)

Further, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $x_{n_k} \rightharpoonup z$ for some $z \in H_1$ and

$$\limsup_{n \to \infty} \langle u - \bar{x}, x_{n+1} - \bar{x} \rangle = \lim_{k \to \infty} \langle u - \bar{x}, x_{n_k} - \bar{x} \rangle = \langle u - \bar{x}, z - \bar{x} \rangle. \tag{3.7}$$

Clearly, $Ax_{n_k} oup Az$. From (3.5) and nonexpansiveness of $J_{\beta}^{B_2}$, we have, by Lemma 2.6, $J_{\beta}^{B_2}Az = Az$. That is $Az \in Fix(J_{\beta}^{B_2})$. By Lemma 2.7(ii), $Az \in B_2^{-1}(0)$. Since $J_{\beta_n}^{B_1}$ and $J_{\beta_n}^{B_2}$ are nonexpansive for each n, we have

$$\|y_{n} - J_{\beta_{n}}^{B_{1}} x_{n}\| = \|J_{\beta_{n}}^{B_{1}} \left[x_{n} - \rho_{n} A^{*} (I - J_{\beta_{n}}^{B_{2}}) A x_{n}\right] - J_{\beta_{n}}^{B_{1}} x_{n}\|$$

$$\leq \|x_{n} - \rho_{n} A^{*} (I - J_{\beta_{n}}^{B_{2}}) A x_{n} - x_{n}\|$$

$$= \rho_{n} \|A^{*} (I - J_{\beta_{n}}^{B_{2}}) A x_{n}\|$$

$$\leq \frac{2 \|A\|}{\|A\|^{2} + 1} \cdot \|A x_{n} - J_{\beta_{n}}^{B_{2}} A x_{n}\|.$$
(3.8)

By (3.4),

$$\lim_{n \to \infty} \left\| y_n - J_{\beta_n}^{B_1} x_n \right\| = 0. \tag{3.9}$$

From (3.1),

$$||y_n - \bar{x}||^2 \le ||x_n - \bar{x}||^2$$
. (3.10)

Moreover,

$$||y_{n} - \bar{x}||^{2} = ||J_{\beta_{n}}^{B_{1}}[x_{n} - \rho_{n}A^{*}(I - J_{\beta_{n}}^{B_{2}})Ax_{n}] - \bar{x}||^{2}$$

$$\leq \langle y_{n} - \bar{x}, x_{n} - \bar{x} - \rho_{n}A^{*}(I - J_{\beta_{n}}^{B_{2}})Ax_{n} \rangle$$

$$= \frac{1}{2} ||y_{n} - \bar{x}||^{2} + \frac{1}{2} ||x_{n} - \bar{x} - \rho_{n}A^{*}(I - J_{\beta_{n}}^{B_{2}})Ax_{n}||^{2}$$

$$- \frac{1}{2} ||y_{n} - \bar{x} - x_{n} + \bar{x} + \rho_{n}A^{*}(I - J_{\beta_{n}}^{B_{2}})Ax_{n}||^{2}$$

$$= \frac{1}{2} ||y_{n} - \bar{x}||^{2} + \frac{1}{2} ||x_{n} - \bar{x}||^{2} + \frac{1}{2} ||\rho_{n}A^{*}(I - J_{\beta_{n}}^{B_{2}})Ax_{n}||^{2} - \frac{1}{2} ||y_{n} - x_{n}||^{2}$$

$$- \frac{1}{2} ||\rho_{n}A^{*}(I - J_{\beta_{n}}^{B_{2}})Ax_{n}||^{2} - \langle x_{n} - \bar{x}, \rho_{n}A^{*}(I - J_{\beta_{n}}^{B_{2}})Ax_{n} \rangle$$

$$- \langle y_{n} - x_{n}, \rho_{n}A^{*}(I - J_{\beta_{n}}^{B_{2}})Ax_{n} \rangle$$

$$= \frac{1}{2} ||y_{n} - \bar{x}||^{2} + \frac{1}{2} ||x_{n} - \bar{x}||^{2} - \langle y_{n} - \bar{x}, \rho_{n}A^{*}(I - J_{\beta_{n}}^{B_{2}})Ax_{n} \rangle - \frac{1}{2} ||y_{n} - x_{n}||^{2}.$$

By (3.10), we have

$$\|y_n - \bar{x}\|^2 \le \|x_n - \bar{x}\|^2 + \langle \bar{x} - y_n, \rho_n A^* (I - J_{\beta_n}^{B_2}) A x_n \rangle - \frac{1}{2} \|y_n - x_n\|^2.$$
 (3.11)

By (3.3) and (3.11).

$$||x_{n+1} - \bar{x}||^{2} \leq \sum_{i=1}^{N} b_{n,i} ||x_{n} - \bar{x}||^{2} + c_{n} ||y_{n} - \bar{x}||^{2} + 2a_{n} \langle u - \bar{x}, x_{n+1} - \bar{x} \rangle$$

$$\leq c_{n} (||x_{n} - \bar{x}||^{2} + \langle \bar{x} - y_{n}, \rho_{n} A^{*} (I - J_{\beta_{n}}^{B_{2}}) A x_{n} \rangle - \frac{1}{2} ||y_{n} - x_{n}||^{2})^{2}$$

$$+ \sum_{i=1}^{N} b_{n,i} ||x_{n} - \bar{x}||^{2} + 2a_{n} \langle u - \bar{x}, x_{n+1} - \bar{x} \rangle$$

$$= \left(c_{n} + \sum_{i=1}^{N} b_{n,i} \right) ||x_{n} - \bar{x}||^{2} + c_{n} \langle \bar{x} - y_{n}, \rho_{n} A^{*} (I - J_{\beta_{n}}^{B_{2}}) A x_{n} \rangle$$

$$- \frac{c_{n}}{2} ||y_{n} - x_{n}||^{2} + 2a_{n} \langle u - \bar{x}, x_{n+1} - \bar{x} \rangle$$

$$\leq ||x_{n} - \bar{x}||^{2} + c_{n} \langle \bar{x} - y_{n}, \rho_{n} A^{*} (I - J_{\beta_{n}}^{B_{2}}) A x_{n} \rangle$$

$$- \frac{c_{n}}{2} ||y_{n} - x_{n}||^{2} + 2a_{n} \langle u - \bar{x}, x_{n+1} - \bar{x} \rangle. \tag{3.12}$$

This together with the condition $\liminf_{n\to\infty} c_n > 0$, we get

$$\lim_{n \to \infty} \|y_n - x_n\| = 0. \tag{3.13}$$

From (3.6) and (3.13), we obtain

$$\lim_{n \to \infty} ||x_n - T_i x_n|| = 0 \qquad \forall i = 1, 2, \dots, N.$$
 (3.14)

Again, by (3.9) and (3.13), we get

$$\lim_{n \to \infty} \left\| x_n - J_{\beta_n}^{B_1} x_n \right\| = 0 \tag{3.15}$$

By (3.15) and Lemma 2.7(iii)

$$\lim_{n \to \infty} \left\| x_n - J_{\beta}^{B_1} x_n \right\| = 0 \tag{3.16}$$

By Lemma 2.6, we obtain $J_{\beta}^{B_1}(z)=z$. That is $z\in Fix(J_{\beta}^{B_1})$. By Lemma 2.7(ii), $z\in B_1^{-1}(0)$. So, z is a solution of (SFVIP). Since $I-T_i$ are demiclosed at origin for all $i=1,2,\ldots,N$, we also get $z\in\bigcap_{i=1}^N FixT_i$. Thus $z\in\Omega$. From $\bar x=P_\Omega u$, we obtain that $\langle u-\bar x,\bar x-z\rangle\geq 0$ by Lemma 2.3. Hence

$$\lim_{n \to \infty} \sup \langle u - \bar{x}, x_{n+1} - \bar{x} \rangle = \langle u - \bar{x}, z - \bar{x} \rangle \le 0.$$
 (3.17)

From (3.3), we get

$$||x_{n+1} - \bar{x}||^2 \le \left(c_n + \sum_{i=1}^N b_{n,i}\right) ||x_n - \bar{x}||^2 + 2a_n \langle u - \bar{x}, x_{n+1} - \bar{x} \rangle$$
$$= (1 - a_n) ||x_n - \bar{x}||^2 + 2a_n \langle u - \bar{x}, x_{n+1} - \bar{x} \rangle.$$

By Lemma 2.10, we have $\lim_{n\to\infty} \|x_n - \bar{x}\|$. Therefore $\lim_{n\to\infty} x_n = \bar{x}$.

Case II

Suppose that there exists a subsequence $\{x_{n_j}\}$ of $\{x_n\}$ such that for each $j \in \mathbb{N}$ $\|x_{n_j} - \bar{x}\| \le \|x_{n_j+1} - \bar{x}\|$. By Lemma 2.9, there exists a nondecreasing sequence $\{m_k\}$ in \mathbb{N} such that $m_k \to \infty$,

$$||x_{m_k} - \bar{x}|| \le ||x_{m_k+1} - \bar{x}||$$
 and $||x_k - \bar{x}|| \le ||x_{m_k+1} - \bar{x}||$ $\forall k \in \mathbb{N}$. (3.18)

By (3.3) and (3.18), we have

$$||x_{m_{k}} - \bar{x}||^{2} \leq ||x_{m_{k}+1} - \bar{x}||^{2}$$

$$\leq \left(c_{m_{k}} + \sum_{i=1}^{N} b_{m_{k},i}\right) ||x_{m_{k}} - \bar{x}||^{2} + 2a_{m_{k}} \langle u - \bar{x}, x_{m_{k}+1} - \bar{x} \rangle$$

$$- c_{m_{k}} (2\rho_{m_{k}} - \rho_{m_{k}}^{2} ||A||^{2}) ||(I - J_{\beta_{m_{k}}}^{B_{2}}) A x_{m_{k}}||^{2}$$

$$- \sum_{i=1}^{N} b_{m_{k},i} c_{m_{k}} ||T_{i} x_{m_{k}} - y_{m_{k}}||^{2}$$

$$\leq ||x_{m_{k}} - \bar{x}||^{2} - c_{m_{k}} (2\rho_{m_{k}} - \rho_{m_{k}}^{2} ||A||^{2}) ||(I - J_{\beta_{m_{k}}}^{B_{2}}) A x_{m_{k}}||^{2}$$

$$- \sum_{i=1}^{N} b_{m_{k},i} c_{m_{k}} ||T_{i} x_{m_{k}} - y_{m_{k}}||^{2} + 2a_{m_{k}} \langle u - \bar{x}, x_{m_{k}+1} - \bar{x} \rangle \quad (3.19)$$

It follows that $\lim_{k\to\infty} c_{m_k} (2\rho_{m_k} - \rho_{m_k}^2 \|A\|^2) \|(I - J_{\beta_{m_k}}^{B_2}) Ax_{m_k}\|^2 = 0.$ Following a similar argument as the proof of case I, we have

$$\lim_{k \to \infty} \left\| A x_{m_k} - J_{\beta}^{B_2} A x_{m_k} \right\| = 0. \tag{3.20}$$

and

$$\lim_{k \to \infty} ||T_i x_{m_k} - y_{m_k}|| = 0 \quad \forall i = 1, 2, \dots, N.$$
(3.21)

Further, there exists a subsequence $\{x_{m_{k_l}}\}$ of $\{x_{m_k}\}$ such that $x_{m_{k_l}} \rightharpoonup z$ for some $z \in H_1$ and

$$\lim_{k \to \infty} \sup \langle u - \bar{x}, x_{m_k+1} - \bar{x} \rangle = \lim_{l \to \infty} \langle u - \bar{x}, x_{m_{k_l}} - \bar{x} \rangle. \tag{3.22}$$

Clearly, $Ax_{m_{k_l}} oup Az$. From (3.5) and nonexpansiveness of $J_{\beta}^{B_2}$, by Lemma 2.6, we have $J_{\beta}^{B_2}Az = Az$. That is $Az \in Fix(J_{\beta}^{B_2})$. By Lemma 2.7(ii), $Az \in B_2^{-1}(0)$. Moreover, by (3.9),

$$\lim_{k \to \infty} \left\| y_{m_k} - J_{\beta_{m_k}}^{B_1} x_{m_k} \right\| = 0 \tag{3.23}$$

From (3.12) and (3.18), we have

$$||x_{m_{k}+1} - \bar{x}||^{2} \leq ||x_{m_{k}} - \bar{x}||^{2} + c_{m_{k}} \langle \bar{x} - y_{m_{k}}, \rho_{m_{k}} A^{*} (I - J_{\beta_{m_{k}}}^{B_{2}}) A x_{m_{k}} \rangle$$

$$- \frac{c_{m_{k}}}{2} ||y_{m_{k}} - x_{m_{k}}||^{2} + 2a_{m_{k}} \langle u - \bar{x}, x_{m_{k}+1} - \bar{x} \rangle$$

$$\leq ||x_{m_{k}+1} - \bar{x}||^{2} + c_{m_{k}} \langle \bar{x} - y_{m_{k}}, \rho_{m_{k}} A^{*} (I - J_{\beta_{m_{k}}}^{B_{2}}) A x_{m_{k}} \rangle$$

$$- \frac{c_{m_{k}}}{2} ||y_{m_{k}} - x_{m_{k}}||^{2} + 2a_{m_{k}} \langle u - \bar{x}, x_{m_{k}+1} - \bar{x} \rangle$$
(3.24)

This implies

$$\lim_{k \to \infty} \|y_{m_k} - x_{m_k}\| = 0. \tag{3.25}$$

From $\left\|x_{m_k} - J_{\beta_{m_k}}^{B_1} x_{m_k}\right\| \le \left\|x_{m_k} - y_{m_k} + y_{m_k} - J_{\beta_{m_k}}^{B_1} x_{m_k}\right\|$, by (3.23) and (3.25), we get

$$\lim_{k \to \infty} \left\| x_{m_k} - J_{\beta_{m_k}}^{B_1} x_{m_k} \right\| = 0. \tag{3.26}$$

By Lemma 2.7(iii), we also get

$$\lim_{k \to \infty} \left\| x_{m_k} - J_{\beta}^{B_1} x_{m_k} \right\| = 0. \tag{3.27}$$

By Lemma 2.6 and nonexpansiveness of $J_{\beta}^{B_1}$, we have $J_{\beta}^{B_1}(z) = z$. That is $z \in Fix(J_{\beta}^{B_1})$. By Lemma 2.7(ii), $z \in B_1^{-1}(0)$. So, z is a solution of (SFVIP). Since $I - T_i$ are demiclosed at origin for all i = 1, 2, ..., N, we have $z \in \bigcap_{i=1}^N FixT_i$.

Thus $z \in \Omega$. From $\bar{x} = P_{\Omega}u$, we obtain that $\langle u - \bar{x}, \bar{x} - z \rangle \geq 0$, by Lemma 2.3. Hence

$$\limsup_{k \to \infty} \langle u - \bar{x}, x_{m_k + 1} - \bar{x} \rangle = \langle u - \bar{x}, z - \bar{x} \rangle \le 0.$$
 (3.28)

By (3.19),

$$||x_{m_k} - \bar{x}||^2 \le \left(c_{m_k} + \sum_{i=1}^N b_{m_k,i}\right) ||x_{m_k} - \bar{x}||^2 + 2a_{m_k} \langle u - \bar{x}, x_{m_k+1} - \bar{x} \rangle$$

$$\le (1 - a_{m_k}) ||x_{m_k} - \bar{x}||^2 + 2a_{m_k} \langle u - \bar{x}, x_{m_k+1} - \bar{x} \rangle. \tag{3.29}$$

It follows that $||x_{m_k} - \bar{x}||^2 \le 2\langle u - \bar{x}, x_{m_k+1} - \bar{x}\rangle$. By (3.28) and (3.29), we get

$$\lim_{k \to \infty} \|x_{m_k} - \bar{x}\| = 0. \tag{3.30}$$

V. Boonyasri et al.

For each $k \in \mathbb{N}$, we have

$$||x_{m_k+1} - x_{m_k}|| = \left| \left| a_{m_k} u + \sum_{i=1}^N b_{m_k,i} T_i x_{m_k} + c_{m_k} y_{m_k} - x_{m_k} \right| \right|$$

$$\leq a_{m_k} ||u - x_{m_k}|| + \sum_{i=1}^N b_{m_k,i} ||T_i x_{m_k} - x_{m_k}|| + c_{m_k} ||y_{m_k} - x_{m_k}||.$$

It follows by (3.14),(3.25) and $\lim_{n\to\infty} a_n = 0$ that

$$\lim_{k \to \infty} ||x_{m_k+1} - x_{m_k}|| = 0. (3.31)$$

Therefore,

$$||x_{m_k+1} - \bar{x}|| \le ||x_{m_k+1} - x_{m_k}|| + ||x_{m_k} - \bar{x}||. \tag{3.32}$$

Hence, by (3.18) and (3.32),

$$\lim_{k \to \infty} \|x_k - \bar{x}\| = 0.$$

It implies that $\lim_{k\to\infty} x_k = \bar{x}$. Moreover, by Lemma 2.6, $T_i\bar{x} = \bar{x}$ for all i = 1, 2, ..., N. Therefore,

$$\bar{x} \in \bigcap_{i=1}^{N} Fix(T_i).$$

Therefore, the proof is completed.

4 Numerical example

In this section, we give a numerical example to demonstrate the convergence of our algorithm.

Let $H_1 = \mathbb{R}^2, H_2 = \mathbb{R}^3$. Let $B_1 : \mathbb{R}^2 \to \mathbb{R}^2, B_2 : \mathbb{R}^3 \to \mathbb{R}^3$ be defined by

$$B_1 \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}, B_2 \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 & 2 & 2 \\ 4 & 3 & 1 \\ 4 & 5 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

and let $A: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $A \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ -1 & 1 \\ 3 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$. We see that both B_1

and B_2 are maximal monotone mappings and A is a bounded linear operator. For each i = 1, 2, ..., N, define a mapping $T_i : \mathbb{R}^2 \to \mathbb{R}^2$ by

$$T_i(x,y)^{\top} = \begin{cases} \frac{i}{i+1} (x \sin \frac{1}{x}, y \sin \frac{1}{y})^{\top}, & \text{if } x \neq 0 \text{ and } y \neq 0; \\ (0,0)^{\top}, & \text{otherwise.} \end{cases}$$

Then T_1 and T_2 are quasi-nonexpansive mapping (but not nonexpansive) with a unique fixed point $(0,0)^{\top}$. It's not hard to see that $I-T_1$ and $I-T_2$ are demiclosed at origin. Let $\Omega := \left\{x \in \mathbb{R}^2 : x \in Fix(T_1) \cap Fix(T_2), 0 \in B_1(x) \text{ and } 0 \in B_2(Ax)\right\}$. We see that $(0,0)^{\top} \in \Omega$. Choose $a_n = \frac{1}{100n+1}, b_{n,1} = b_{n,2} = \frac{1}{4} - \frac{1}{200n}, c_n = \frac{1}{2} + \frac{1}{100n} - a_n, \rho_n = \frac{1}{\|A\|^2 + 1}$ and $\beta_n = \frac{n+1}{2n}$ for all $n \in \mathbb{N}$.

First, we start with the initial point $x_1 = (4, -7)^{\top}$ and $u = (-5, 5)^{\top}$. The stopping criterion for our testing method is taken as: $||x_{n+1} - x_n|| < 10^{-4}$. Now, a convergence of our algorithm is shown in Table 1.

Table 1: Numerical experiment of the algorithm in Theorem 3.1

n	x_n	$\ x_{n+1} - x_n\ $
2	(1.6007, -3.956146)	2.007613
3	(0.48182, -2.289227)	1.336871
4	(-0.350435, -1.243007)	0.703085
5	(-0.18089, -0.560671)	0.608410
6	(-0.28325, 0.039067)	0.30006
•	•	
•		
•		
60	(-0.000817, 0.001026)	0.000498
61	(-0.001045, 0.001468)	0.000864
62	(-0.000540, 0.000767)	9.29E-05

From Table 1, we observe that a sequence $\{x_n\}$ strongly converges to $(0,0)^{\top}$ and $(0,0)^{\top}$ is a solution of SFVIP and common fixed point of T_1 and T_2 .

266 V. Boonyasri et al.

Figure 1: Figure of error $||x_{n+1} - x_n||$

Acknowledgement(s): The first author would like to thank the Human Resource Development in Science Project (Science Achievement Scholarship of Thailand, SAST) and Chiang Mai University for the financial support.

References

- [1] Y. Censor, T. Elfving, N. Kopf, T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Probl. 21 (2005) 2071-2084.
- [2] Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms 8 (1994) 221-239.
- [3] C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Probl. 18 (2002) 441-453.
- [4] B. Martinet, Rgularisation dinquations variationnelles par approximations successives, Rev. Fr. Autom. Inform. Rech.Opr. 4 (1970) 154-158.
- [5] RT. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1976) 877-898.
- [6] A. Moudafi, Split monotone variational inclusions, J. Optim. Theory Appl. 150 (2011) 275-283.
- [7] C.S. Chuang, Strong convergence theorems for the split variational inclusion problem in Hilbert spaces, Fixed Point Theory Appl. 350 (2013).

- [8] W. Cholamjiak, P. Cholamjiak, S. Suantai, Convergence of iterative schemes for solving fixed point problems for multi-valued nonself mappings and equilibrium problems, J. Nonlinear Sci. Appl. 8 (2015) 1245-1256.
- [9] H.K. Xu, Iterative algorithm for nonlinear operators, J. Lond. Math. Soc. 2 (2002) 240-256.
- [10] W. Takahashi, Nonlinear Functional Analysis-Fixed Point Theory and Its Applications, Yokohama Publishers, Yokohama (2000).
- [11] Z. He, W-S. Du, Nonlinear algorithms approach to split common solution problems, Fixed Point Theory Appl. 130 (2012).
- [12] P.E. Maing, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal. 16 (2008) 899-912.
- [13] K. Aoyama, Y. Kimura, W. Takahashi, M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal. 67 (2007) 2350-2360.
- [14] W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publishers, Yokohama (2009).
- [15] U. Witthayarat, Y.J. Cho, P. Cholamjiak, On solving proximal split feasibility problems and applications, Ann. Funct. Anal. 9 (2018) 111-122.
- [16] S. Suantai, N. Pholasa, P. Cholamjiak, The modified inertial relaxed CQ algorithm for solving the split feasibility problems, J. Indust. Manag. Optim. 14 (2018) 1595-1615.
- [17] N.T. Vinh, P. Cholamjiak, S. Suantai, A new CQ algorithm for solving split feasibility problems in Hilbert spaces, Bull. Malays. Math. Sci. Soc. (2018), https://doi.org/10.1007/s40840-018-0614-0.
- [18] S. Suantai, N. Pholasa, P. Cholamjiak, Relaxed CQ algorithms involving the inertial technique for multiple-sets split feasibility problems, RACSAM (2018), https://doi.org/10.1007/s13398-018-0535-7.

(Received 29 August 2018) (Accepted 16 October 2018)

THAI J. MATH. Online @ http://thaijmath.in.cmu.ac.th