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1 Introduction

Let H be a real Hilbert space and C; C H,i = 1,2, ..., m be nonempty closed
convex subsets of H. The convez feasibility problem (CFP) is to find a point

ot € ﬁ C.. (1.1)

Given a finite family of nonlinear mappings 7; : H — H,i = 1,2,...,m with
Fix(T;) :={x € H :x =Tz} # 0. The common fized point problem (CFPP) is to
find a point

T € ﬁ Fix(Ty). (1.2)

Since each closed convex subset may be considered as a fixed point set of a projec-
tion onto the subset, hence the CFPP () is a generalization of the CFP ().
Let Hi and Hsy be real Hilbert spaces and let A : Hy — Hs be a bounded
linear operator. Let Cj,i = 1,2,...,t and @;,7 = 1,2, ..., be nonempty closed
convex subsets of Hy and Hs, respectively. The multiple-set split feasibility prob-
lem (MSSFP) which was introduced by Censor et al. [0 is formulated as finding

a point
t

x* e ﬂ C; such that Az* € m Q. (1.3)

i=1 j=1

In particular, if ¢ = r = 1, then the MSSFP (I23) is reduced to find a point
z* € C such that Az* € Q, (1.4)

where C' and ) are nonempty closed convex subsets of H; and Hs, respectively.
The problem () is known as the split feasibility problem (SFP) which was first
introduced by Censor and Elfving [2] for modeling inverse problems in finite-
dimensional Hilbert spaces. To solve (), Byrne [3] proposed his CQ algorithm
which generates a sequence {z,} by

Tny1 = Po(xn — pnA*(I — Pg)Az,), neN

where p,, € (0, ﬁ), Pc and Py are the (orthogonal) projections onto C' and @,
respectively. and A* denotes the adjoint of A.

Let H be a real Hilbert space, and B be a set-valued mapping with do-
main D(B) := {x € H : B(z) # 0}. Recall that B is called monotone if
(u— v,z —y) > 0 for any u € Bx and v € By; B is mazimal monotone if its
graph{(z,y) : « € D(B),y € Bz} is not properly contained in the graph of any
other monotone mapping. Further, for each 8 > 0, let B is a set-valued maximal
monotone mapping. Define Jg(x) := (I + BB)~!(x) for each z € H. Jég is called
a resolvent of B order .

One of the most important problem for set-valued mappings is to find £ € H
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such that 0 € Bz, 7 is called a zero point of B. This problem contains numerous
problems in optimization, economics, physics and several areas of engineering. The
proximal point algorithm was first introduced by Martinet [d] which is a method
for approximating a zero point of a maximal monotone mapping in a real Hilbert
space and generalized by Rockafellar [5]. This iterative algorithm generates {z,}
by

Tpa1 = Jixn (1.5)

where {8, } is a sequence in (0, 00), B is a maximal monotone mapping in a real
Hilbert space, and J, ég is the resolvent mapping of B.

In 1976, Rockafellar [5] proved that the sequence {z,, } in (ICH) converges weakly
to an element of B~1(0) if B~1(0) is nonempty and hnn_lgif Brn > 0.

The split variational inclusion problem was proposed by Moudafi [B] since 2011:
(SFVIP) Find z € H; such that 0 € B1(Z) and 0 € B2(AZ)

where H; and Hs be two real Hilbert spaces, B : H; — 281 and By : Hy — 2%2
be two set-valued maximal monotone mappings, A : H; — Hsy be a bounded linear
operator.
Moreover, Moudafi [B] introduced the algorithm to solve the SEVIP as follow-
ing:
Tpy1 = I [z + yA*(JP — I)Az,). (1.6)

where A and v are fixed numbers. He proved that this iteration converges weakly
to a some element in the solution set of SFVIP.

In 2013 Chuang [7] gave a strong convergence theorems for problem SFVIP un-
der some conditions, like the Halpern-Mann type iteration method. The following
is an iteration process given by Chuang]]:

Tt = Gpu + by, + CnJéil [mn — pn A1 — JELQ)A:U”] +d,vn (1.7)

where {an},{b,} and {c,} are sequences of real numbers in [0, 1] with a,, + b, +
¢n+d,=1and 0 < a, <1 for each n € N, {v,} is a bounded sequence in Hi, u
is fixed and p,, is chosen in the interval (0, HM%H)

In this work, we introduce and study some algorithms for solving the common
fixed point problem of a finite family of quasi-nonexpansive mappings and the split
variational inclusion problem in Hilbert spaces. We establish a strong convergence
result under some suitable conditions. A numerical example supporting our main
result is also given.

2 Preliminaries

Throughout this paper, let N be the set of positive integers and let R be the set
of real numbers. We shall assume that H be a (real) Hilbert space with the inner
product (-,-) and the norm ||-||, respectively. We denote the strong convergence
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and weak convergence of a sequence {z,, } to a point € H by z, — z and x,, — x,
respectively. From [I4], for each x,y,u,v € H and t € [0,1], we have

2 2 2
[+ ylI” = llzlI” + ly[I” + 2(z, v);
2 2 2 2
[tz + (1= t)yl|” = ¢l + (1 =) lylI” — (1 = 2) [l= — yII";
2 2 2 2
2w —yu—v) = llz—oll" +ly —ull” = [z —ul” = lly =l
Furthermore, we obtain the following Lemma.

Lemma 2.1. [R] Let H be a real Hilbert space. Then for each m € N

m 2 m m
St =S tlwll - 3ty e - 2,
i=1 i=1 i=1,i#j

where x; € H,t;,t; € [0,1] for all i,j =1,2,...,m, and >\ t; = 1.
Lemma 2.2. [9] Let H be a (real) Hilbert space, and let z,y € H. Then |z +y|* <
l2]1* + 2(y, = +v).

Let C' be a nonempty closed convex subset of a real Hilbert space H. Recall
that the (metric) projection from H onto C, denote by Pc is defined for each
x € H, Pox is the unique element in C such that

l — Poz|| = inf{[jz —y| : y € C}.

Lemma 2.3. [[{] Let C be a nonempty closed convex subset of a Hilbert space H.
Let Pc be the metric projection from H onto C'. Then, for each x € H and z € C,
we know that z = Pox if and only if (x —z,z —y) >0 for ally € C.

Let C be a nonempty closed convex subset of a real Hilbert space H, and let
T : H — H be a mapping. Let Fiz(T) := {x € H : Tz = z}. Now let us recall
the definitions of some mappings concerned in our study.

Definition 2.4. Let H be a real Hilbert space. A mapping T : H — H is said to
be

(i) nonexpansive if ||Tx —Ty| < ||z —y| forall z,y € H,

(i4) quasi-nonexpansive if

Fiz(T)# 0 and ||[Tz—q|| <|lz—gq| forall z € H and ¢ € Fiz(T),

(iii) firmly nonezpansive if |[Tx — Ty|> < (x —y,Tx — Ty) for all z,y € H.

It is easy to see that Fiz(T) is a closed convex subset of H if T is a quasi-
nonexpansive mapping.
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Lemma 2.5. An mapping T : H — H is called demiclosed at the origin if, for
any sequence {x, } which weakly converges to w and if the sequence {Tx,} strongly
converges to 0, then Tw = 0.

Lemma 2.6. Let C' be a nonempty closed convex subset of a real Hilbert space H.
If T : C — H is a nonexpansive mapping, then I — T is demiclosed at the origin.

The following are important tools to study the split variational inclusion prob-
lems.

Lemma 2.7. 1] Let H be a real Hilbert space. Let B : H — 2 be a set-valued
maximal monotone mapping, B > 0, and let Jég be a resolvent mapping of B

defined by JﬁB(x) = (I + BB)~Y(x) for each x € H. Thus
(4) Jég s a single-valued and firmly nonexpansive mapping for each 3 > 0;
(1) D(JF) = H and Fiz(J§) = {x € D(B) : 0 € Bz};

(#i1) Hx — J?x” < ||:c — J,‘?x” for all0 < B <~ and for all x € H,;

2 2
(iv) Suppose that B~1(0) # (. Then ’x—JéBxH + HJéBm—ﬁcH <z —z|?
for each = € H, each & € B~1(0), and each 3 > 0.

(v) Suppose that B=1(0) # 0. Then (x — ng, JFx —w) >0 for each x € H,
each w € B1(0), and each > 0.

Lemma 2.8. [[d] Let Hy and Hy be real Hilbert spaces, A : Hy — Hs be linear
operator, and A* be the adjiont of A, and let 8 > 0 be fized, and let p € (0, ﬁ)

Let By : Hy — 282 be a set-valued mazimal monotone mapping, and let JEQ be a
resolvent mapping of Bs. Then

H[az—pA*([—ng)Ax] — [ypr*(IfJﬁ]‘%)Ay]H2 2
< lle = yl* = 20 = o | AIP) || (1 = If) 4w — (1 = T5) Ay

for all x,y € Hy. Furthermore, I — pA*(I — sz)A i a monerpansive mapping.

Lemma 2.9. [I2] Let {a,} be a sequence of real numbers such that there exists
a subsequence {an,} of {an} which satisfies an, < an,4+1 for all i € N. Then
there exists a nondecreasing sequence {my} C N such that my — 00, apm, < Qm,+1
and ap < am,+1 are satisfied by all (sufficiently large) numbers k € N. In fact,
my =max{j < k:a; <aji1}.

Lemma 2.10. [{] Let {a,} and {c,} are sequences of nonnegative real numbers
such that
i1 < (1 —=0p)an +bp+cpy, n>1

where {6, } is a sequence in (0,1) and {b,} is a real sequence. Assume >~ ¢y <
00. Then the following result hold:
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(1) If by, < 6, M for some M >0, then {a,} is a bounded sequence.

(i) If Y07 0, =00 and limsupb,/d, <0, then lim a, = 0.
n—oo

n—oo

Lemma 2.11. [7] Let Hy and Hs be real Hilbert spaces, A : Hy — Hy be linear
operator, and A* be the adjiont of A, and let 3 > 0,7 > 0,B; : H; — 281 and
By : Hy — 282 be a set-valued mazimal monotone mappings. Given any T € Hi.

(1) If T is a solution of (SFVIP), then Jfl [z — yA*(I - J§2)Aj] =Z.

(79) Suppose that Jlégl [z —~yA*(I— JgQ)A:E] = Z and the solution set of (SFVIP)
is nonempty. Then T is a solution of (SFVIP).

3 Main Results

Theorem 3.1. Let Hi and Hs be two real Hilbert spaces, A : Hi — Hs be a
bounded linear operator, and let A* denote the adjoint of A. Let By : H; — 2/
and By : Hy — 2H2 be two set-valued mazimal monotone mappings. Let {T; :
i=1,2,...,N} be family of quasi-nonexpansive mappings of Hy into itself. Let
{an},{bn,i},i = 1,2,...,N and {c,} be sequences of real numbers in [0, 1] with
an + Zf\il bpi+cn=1and 0 <a, <1 foralln € N. Let {,} be a sequence in

(0,00). Let x1,u € Hy be fized. Let {pn} C (0, HAWI%H)

N
Let Q:={z € Hy : x € ﬂ Fiz(T;),0 € By(z) and 0 € By(Ax)} and suppose
i=1
that Q # 0. Let {x,} be defined by
N
Tp41 1= AUl + Z by, iTiwy + ananl [xn — pn A" (I — Jégnz)Axn}
i=1
for each n € N. Assume that:
(i) nh_}rr;o an =0;>" | ap = 00;

(1) liminf p,, > 0;liminf ¢, > 0;liminf £, > 0;liminfd,; >0 Vi=1,2,...,N.
n—oo n—oo n—oo n—oo

(ii) I —T; are demiclosed at origin for alli=1,2,..., N.

Then lim x, = Z, where T = Pqu.
n— oo

Proof. Let & = Pqu, where Pq is the metric projection from H; onto 2.
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Then, for each n € N it follows from Lemma E=8 that

N
|Tnt1 — Z|| = ||anu + Z by, i Tixn + anﬁBnl [xn — pnAY(I — Jgf)Axn] -

i=1

N
<an flu—2+ > bnillon — ] +cn
=1
N
Sanllu—2)+ oz — |
=1

e ||[JE [0 = puA (T = JE2) Aa) =I5 [ = pud” (1 = 52 A
N
Sanflu—2|+ an’i [#n — 2| + cn [|n — 2|
i=1
N
=anllu—Z| + (D bni+ca) llzn — |
i=1

= ap[lu =z + (1 = an) lzn — ||

This implies by Lemma P10 that {z,} is a bounded sequence. For convenience,
we set y, = J[il (@, — pnA*(I — Jgf)Axn]. By Lemma P72(i7) and 28, we have

2
lym = &1 = || I5* [0 = pud" (I = TF2) Aa] = IE [ = pod” (1 = ) A3
2
< |[fn = puA" (1 = JE2)A,] = 7= pud”(T = J52) A7)
2
< Nlow =3I = 2on = p2 1AIP) || (7 =I5 Az — (1 = T2) 43

2
= llzn = 21 = (200 — 2 1 AP) |2 = I52) Az,

(3.1)

Hence, it follows form Lemma 22 that

N
2ns1 = Z[|° = ||anu + Y bniTitn + cnyn — T
i=1
N 2
< Z bpi(Tixy, —Z) + cn(yn — T)|| +20n(u — T, Tp41 — T)
i=1
2
(1—a,)? (T, — cn(Yn — T)
+ 2an{u — T, Tpy1 — ) (3.2)
where b/, ., = b _ busi e = n

L—an YN bpiten " SN bpiten

‘],BB: [l‘n — pnA*(I — Jgf)Amn} — I
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By (B81),(82) and Lemma P71, we have

N 2

Z n,s Txn_ )+cn(yn_£)

=1

2541 —l‘” +2an(u — 2, Tyt — I)

N

Z nznxn* +anyn* H2

- Z bn,icn Hszn - ynH2 + 2an<u — X, Tpt1 — j>
=1

2

2
<3 b llen =3l +en(llan == @on—p2 A1) || (- T5) Az | )

N
= bnica I Tian = ynll* + 20 (u — T, 2041 — 2)

=1
N 2
12 2
= (00 + X s ) e = 2l = en(2p = 2 141%) |7 - T2 A,
1=1
N
= bnicn [ Tiwn — ynl|* + 2an(u — T, 2011 — F). (3.3)

=1

Since liminf 3,, > 0, we may assume that 3, > 8 > 0 for each n € N.
n—oo

Next, we consider 2 cases

Case I

There exists a natural number ng such taht ||z,41 — Z|| < ||z, — Z| for each

n > ng. Because {x,} is a bounded sequence, we have lim ||z, — Z| exists.
n—oo

From (B33),

N
2
Jnsr — 2] < ( T me) o = 21> = ca(2pn = P2 1IAI) |[(1 = T52) Az,

i=1
+2a,(u— T, Tp41 — T)

2
< llzn = &> = ea(2pn = 02 A1) | (1 = T57) Az,

+ 2a,(u — T, Tpy1 — T).

2
This implies that lim en(2pn — P2 | AII%) H I-— JBQ)A:U” =0.

Since ¢, (2p, — p2 HAH ) > HAQHH for all n € N and hmmf cnpn > 0, it follows
that
=0. (3.4)

n—oo

lim ’A:z:n — J,gi?Axn
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By Lemma 270(47),
Hence,

Az, — Jg"‘Axn

< HAwn — Jngxn

lim ‘Axn - Jéngxn = 0. (3.5)

n—oo

From (B3), we have

N N
|um1—w2§Q%+§jmgwmn—ﬂf—}jmﬁuumn—%w
=1 =1

+ 2an{u — T, Tpy1 — T)
N
< ||3?n - j‘lz - an,icn ||szn - yn||2 + 2an<u — T, Tpq1 — 'i‘>

i=1
Thus, for each i =1,2,..., N,
|1 = 217 < [l — 2l = bnsen [ Tian — yul® + 200w — 2,211 — 7).
This implies lim b, ;e |[Tixn —yn|| =0 Vi=1,2,...,N.
n—oo

Since liminf¢,, >0 and liminfb,; >0 Vi=1,2,...,N, it follows that

n—oo n—oo

lim ||Tix, —yn|| =0 Vi=1,2,...,N. (3.6)
n—oo

Further, there exists a subsequence {zy,} of {z,} such that z,, — z for some
z € Hy and

limsup(u — Z,2p41 — Z) = lim (u — T, 2, — ) = (u— T,z — T). (3.7)
n—o00 k—o0

Clearly, Az,,, — Az. From (BH) and nonexpansiveness of .J 5 2, we have, by Lemma
ras Jég?Az = Az. That is Az € Fi:z:(ng). By Lemma 272(ii), Az € By *(0).

. B B .
Since J 3 ! and J 3 2 are nonexpansive for each n, we have

‘ Yn — Jﬁ'i:xn = HJ;;;1 [xn — pnA*(I — Jgf)Axn] - JBB:xn
< o ot~ 72 Az,
= pn ||A*(I = J5?) Az,
2]A4
< # . HAxn - JéBzAxn (3.8)
[A]I7+1 "
By (&3),
. 1B _
nh_}ng() Yn — Jg || = 0. (3.9)
From (B7),

lyn — Z))* < |l — 2% (3.10)
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Moreover,

2
lym = 1> = |15 [on = puA” (L = J52) Awa] — 3
< <yn —T,xp — T — pnA*(I - JELz)Axn)

1 2 1 _ N 2
:§||yn—$|| + - |zn —T— prd4 (I—Jgf)Agcn
1 — * Bs 2
_5 + 2+ pn AL — J5 ) Azy

= IIyn—xII +5 IIIn—xII
1

2
pnA*(I — JF?) Axy|| —

1
2
—(xn — T, ppA*(I = J5?) Axy,)

pnA* (I — Jgj)Axn

_n2
I

1 12
=S v — 7 [

- « 1
+ 9 [n = Z[|" = (yn — 2, pn A" (I — JE?)ALQ D) [y — $n||2 :
By (BOM), we have
_ ) . . 1
[y = 21 < llzn = 21 + (& = g pu A" = T52) Azn) = 5 llgm = al®. - (3.10)

By (B3) and (811),
N
|Zn41 — x|| < Z n,i || Tn — j”2 + cn |yn — sz +2an(u — %, 41 — T)

< e

2 L - * 1 2
|Tn — Z[|” + (T — Yn, pn A" (I — J512)Axn> D) yn — za| )2
N
+ me |2n — Z||* + 200 (u — &, Tpi1 — Z)
i=1

:(anerm) |20 = 212 + (T — Yo, pu A (I — TE2) Azy)

— Hyn —xn|| +2ap(u — T, Tpy1 — )
< ||x71 - x” + Cn< ynapnA*(I - Jgf)Axn>
— 3 lyn fa:n|| +2ap(u — T, Tpi1 — T). (3.12)

This together with the condition liminf ¢, > 0, we get

n—0o0
nl;rr;o lyn — zn]| = 0. (3.13)
From (BM) and (B13), we obtain
lim |z, — Tizn|| =0  Vi=1,2,...,N. (3.14)

n—
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Again, by (Bd) and (BL3), we get

lim ||z, — J3' @) =0 (3.15)
By (BTH) and Lemma BZ2(i44),
. B _
nh_}n;o Tn — Jg5 | =0 (3.16)

By Lemma P8, we obtain ng (2) = z. That is z € Fz’x(JﬁBl). By Lemma PZ4(i3),
z € Bfl(O). So, z is a solution of (SFVIP). Since I — T; are demiclosed at origin
foralli=1,2,..., N, we also get z € ﬂfvzl FixT;. Thus z € Q. From T = Pqu, we
obtain that (v — Z,Z — z) > 0 by Lemma P33. Hence

limsup(u — Z,xp11 — ) = (u—Z,2 — ) < 0. (3.17)
n—oo

From (B3R), we get N
i =2l < (e 35 s )l =l + 200 (0 = 2,000~ )
i=1
= (1 —an) ||#n — 2> + 200 (u — T, Ty — T).

By Lemma 10, we have lim ||z, — Z||. Therefore lim z, = Z.
n—oo n—oo

Case II

Suppose that there exists a subsequence {z,,} of {x,} such that for each j € N
Hxnj — iH < HxnjH — £’| By Lemma P, there exists a nondecreasing sequence
{m} in N such that mj — oo,

[@me = Z|| < [Jzmer =2 and - flzg = 2] < 2mer =2l VEEN. (3.18)
By (B3) and (BIH), we have

_112 _2
[Zme — 2" < lTm,+1 — Z||
N
S (ka + mekﬂ) ||'rmk - j:Hz + 2a‘mk <’LL — T, Tmy41 — i‘>
i=1

2
2
= e (2, = o2, A1) (T =I5 YAz,
N
- Z bmy.iCmy, ||Ti$mk — Ymy ||2

i=1
—112 2 B
< Nmy = 217 = e 20m, = o2, 1AP) (1= IE2 ) A,
N

- Z bmkﬂcmk ||T7‘ka — Ymy, ”2 + 2amk <u -, LTmp+1 — g_j> (319)
1=1

2
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2
It follows that m ey, (2pm, — p2,, [ A]°) H(I —JB YAz, | =o0.
k—o0 Mk
Following a similar argument as the proof of case I, we have
. B
lim HAxmk — JB A, | = 0. (3.20)

and

klim ITim, — Ym, ]l =0 Vi=1,2,...,N. (3.21)

— 00

Further, there exists a subsequence {@y,, } of {y,, } such that z,,, — z for some
z € Hy and

limsup(u — Z, Ty 41 — ) = lim (u — Z, T, — T). (3.22)
k— o0 l—o0 !
Clearly, Az, — Az. From (BH) and nonexpansiveness of Jffz, by Lemma I8,
we have J§2Az = Az. That is Az € Fix(ng). By Lemma 272(ii), Az € By *(0).
Moreover, by (B9),

lim Hymk —JB | =0 (3.23)

From (B12) and (BIX), we have

”xmk-‘rl - jHQ < ||xmk - j”2 + Cmy, <j - ymk7pmkA*(I - ']B2 )Axmk>
Bmy,

c _ _
- ;k Hymk - xmkHz + 2a’mk <u T, Tmp+1 — {E>
< ||"I"mk+1 - ‘f||2 + Cmy, <§j — Ymy> pmkA*(I - JBB:W )Axmk>
Cmy, _ _
= iy, = T |I® + 2, (4= Ty =T (3.24)
This implies
Hm ||Ym, — Tm, || =0. (3.25)
k—o0

< mek = Ymy, + Ymy, — Jgikxmk
by (B23) and (BZ3), we get

B1
From mek - ‘]Bmk Ty

)

. B -
Jim [z, = JE 2, || = 0. (3.26)
By Lemma B7(7i7),we also get
. B o
klglgo Ha@mk — J5 Ty || = 0. (3.27)

By Lemma P8 and nonexpansiveness of Jf ', we have J? '(2) = z. That is z €
Fiz(JF"). By Lemma 27(ii), = € By '(0). So, z is a solution of (SFVIP). Since

I — T; are demiclosed at origin for all + = 1,2,..., N, we have z € ﬂf\il FixT;.
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Thus z € Q. From & = Pqu, we obtain that (u — Z,Z — z) > 0, by Lemma EZZ3.
Hence

limsup(u — Z, Ty 41 — T) = (u — T,z — ) < 0. (3.28)
k—o00

By (819),

N
e — 7l° < (m T mek,i) e — 2 + 2, (1 — &,y — 7)
=1

< (1 - a’mk) mek - ‘f”2 + 2amk <u =T, Tmp41 — ‘f> (329)

It follows that ||z, — Z||° < 2(u — Z, &, 41 — Z).
By (B228) and (B=29), we get

lim ||z, —Z| = 0. (3.30)
k—o0
For each k € N, we have
N
||£L'mk+1 - xmk || - amku + Z bmk,zT‘zxmk + kaymk - xmk
i=1
N

< Ay, Hu — Ty, ” + Z bmk,i HTZ"Bmk — Tmy H + Cmy Hymk — Tmy, H :

i=1
It follows by (B14),(82H) and lim a, = 0 that
n—0o0
lim || Zm,+1 — Tm, || = 0. (3.31)
k—oo

Therefore,

[Zmt1 = 2 < [Zmisr = 2 || + [2m, — 2 (3.32)

Hence, by (BIR) and (8532),
lim |z —Z| = 0.
k—oo

It implies that klim xp = Z. Moreover, by Lemma P8, T;z = z forall i =
—00
1,2,..., N. Therefore,

N
z € ()| Fia(T).
1=1

Therefore, the proof is completed. U
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4 Numerical example

In this section, we give a numerical example to demonstrate the convergence of
our algorithm.
Let H; = R?, Hy = R3. Let B; : R? = R2, By : R? = R? be defined by

. 9 9] [ x 3 2 2| |z
B = ,B =14 31
' {y] {_2 2} Lj] ? 4 5 3 o

z z

<

3 -3
and By are maximal monotone mappings and A is a bounded linear operator. For
each i =1,2,..., N, define a mapping T; : R? — R? by

{H_il(xsin;,ysin;)—r, if x#0andy #0;

2 =2
and let A : R? — R3 defined by A B] = {—1 1 [ﬂ . We see that both B;

Ti(z,y)" =
i@y) (0,0)T, otherwise.

Then T) and T, are quasi-nonexpansive mapping (but not nonexpansive) with a
unique fixed point (0,0)". It’s not hard to see that I —7} and I —T} are demiclosed
at origin. Let Q := {z € R? : z € Fiz(T1)NFiz(T3),0 € By(z) and 0 € By(Ax)}.
We see that (0,0)7 € Q. Choose a, = ﬁm_pbn’l = bpo = i — ﬁ,cn =
%—i—ﬁ—an,pn:mandﬂn:%forallneN.

First, we start with the initial point z; = (4,—7)"T and u = (=5,5)". The
stopping criterion for our testing method is taken as: ||,.1 — x,| < 10~%. Now,
a convergence of our algorithm is shown in Table 1.

Table 1: Numerical experiment of the algorithm in Theorem 3.1
n Tn [#n+1 — @]
(1.6007,-3.956146) 2.007613
(0.48182,-2.289227) 1.336871
(-0.350435,-1.243007) 0.703085
(-0.18089,-0.560671) 0.608410
(-0.28325,0.039067) 0.30006

S U W N

60 | (-0.000817,0.001026) 0.000498
61 | (-0.001045,0.001468) 0.000864
62 | (-0.000540,0.000767) 9.29E-05

From Table 1, we observe that a sequence {x,} strongly converges to (0,0)"
and (0,0)T is a solution of SFVIP and common fixed point of T} and Tb.
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Figure 1: Figure of error ||z,4+1 — xy||
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