Thai Journal of Mathematics : (2018) 252-267
Special Issue (ACFPTO2018) on : Advances in fixed point theory towards real world optimization problems

Strong Convergence Theorems for the Split Variational Inclusion Problem and Common Fixed Point Problem for a Finite Family of Quasi-nonexpansive Mappings in Hilbert Spaces

Varayut Boonyasri ${ }^{\dagger}$, , Suthep Suantai ${ }^{\ddagger}$ and Phakdi Charoensawan ${ }^{\ddagger}$
${ }^{\dagger}$ Graduate Student in Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand e-mail : warayutbj@gmail.com (Varayut Boonyasri)
\ddagger Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand e-mail: suthep.s@cmu.ac.th (Suthep Suantai) : phakdi@hotmail.com (Phakdi Charoensawan)

Abstract

In this work, we introduce and study an algorithm for solving the common fixed point problem of a finite family of quasi-nonexpansive mappings and the split variational inclusion problem in Hilbert spaces. We establish a strong convergence result under some suitable conditions. A numerical example supporting our main result is also given.

Keywords : split feasibility problem; split variational inclusion problem; common fixed point problem; quasi-nonexpansive mappings; resolvent mapping; strong convergence.

2000 Mathematics Subject Classification : 47H09; 47 H 10 (2000 MSC)

[^0]
1 Introduction

Let H be a real Hilbert space and $C_{i} \subseteq H, i=1,2, \ldots, m$ be nonempty closed convex subsets of H. The convex feasibility problem (CFP) is to find a point

$$
\begin{equation*}
x^{*} \in \bigcap_{i=1}^{m} C_{i} \tag{1.1}
\end{equation*}
$$

Given a finite family of nonlinear mappings $T_{i}: H \rightarrow H, i=1,2, \ldots, m$ with Fix $\left(T_{i}\right):=\left\{x \in H: x=T_{i} x\right\} \neq \emptyset$. The common fixed point problem (CFPP) is to find a point

$$
\begin{equation*}
x^{*} \in \bigcap_{i=1}^{m} F i x\left(T_{i}\right) . \tag{1.2}
\end{equation*}
$$

Since each closed convex subset may be considered as a fixed point set of a projection onto the subset, hence the CFPP ($\mathbb{\square} \boldsymbol{2})$ is a generalization of the CFP ($\square . \mathbb{L})$.

Let H_{1} and H_{2} be real Hilbert spaces and let $A: H_{1} \rightarrow H_{2}$ be a bounded linear operator. Let $C_{i}, i=1,2, \ldots, t$ and $Q_{j}, j=1,2, \ldots, r$ be nonempty closed convex subsets of H_{1} and H_{2}, respectively. The multiple-set split feasibility problem (MSSFP) which was introduced by Censor et al. [[] is formulated as finding a point

$$
\begin{equation*}
x^{*} \in \bigcap_{i=1}^{t} C_{i} \quad \text { such that } \quad A x^{*} \in \bigcap_{j=1}^{r} Q_{j} . \tag{1.3}
\end{equation*}
$$

In particular, if $t=r=1$, then the MSSFP (【.3) is reduced to find a point

$$
\begin{equation*}
x^{*} \in C \quad \text { such that } \quad A x^{*} \in Q \tag{1.4}
\end{equation*}
$$

where C and Q are nonempty closed convex subsets of H_{1} and H_{2}, respectively. The problem (L.4) is known as the split feasibility problem (SFP) which was first introduced by Censor and Elfving [Z] for modeling inverse problems in finitedimensional Hilbert spaces. To solve (ㄴ.4), Byrne [3] proposed his CQ algorithm which generates a sequence $\left\{x_{n}\right\}$ by

$$
x_{n+1}=P_{C}\left(x_{n}-\rho_{n} A^{*}\left(I-P_{Q}\right) A x_{n}\right), \quad n \in \mathbb{N}
$$

where $\rho_{n} \in\left(0, \frac{2}{\|A\|^{2}}\right), P_{C}$ and P_{Q} are the (orthogonal) projections onto C and Q, respectively. and A^{*} denotes the adjoint of A.

Let H be a real Hilbert space, and B be a set-valued mapping with domain $\mathcal{D}(B):=\{x \in H: B(x) \neq \emptyset\}$. Recall that B is called monotone if $\langle u-v, x-y\rangle \geq 0$ for any $u \in B x$ and $v \in B y ; B$ is maximal monotone if its graph $\{(x, y): x \in \mathcal{D}(B), y \in B x\}$ is not properly contained in the graph of any other monotone mapping. Further, for each $\beta>0$, let B is a set-valued maximal monotone mapping. Define $J_{\beta}^{B}(x):=(I+\beta B)^{-1}(x)$ for each $x \in H$. J_{β}^{B} is called a resolvent of B order β.

One of the most important problem for set-valued mappings is to find $\bar{x} \in H$
such that $0 \in B \bar{x}, \bar{x}$ is called a zero point of B. This problem contains numerous problems in optimization, economics, physics and several areas of engineering. The proximal point algorithm was first introduced by Martinet [4] which is a method for approximating a zero point of a maximal monotone mapping in a real Hilbert space and generalized by Rockafellar [5]. This iterative algorithm generates $\left\{x_{n}\right\}$ by

$$
\begin{equation*}
x_{n+1}=J_{\beta_{n}}^{B} x_{n} \tag{1.5}
\end{equation*}
$$

where $\left\{\beta_{n}\right\}$ is a sequence in $(0, \infty), B$ is a maximal monotone mapping in a real Hilbert space, and $J_{\beta_{n}}^{B}$ is the resolvent mapping of B.

In 1976, Rockafellar [5] proved that the sequence $\left\{x_{n}\right\}$ in (L.5) converges weakly to an element of $B^{-1}(0)$ if $B^{-1}(0)$ is nonempty and $\liminf _{n \rightarrow \infty} \beta_{n}>0$.

The split variational inclusion problem was proposed by Moudafi [6] since 2011:
(SFVIP) Find $\bar{x} \in H_{1}$ such that $0 \in B_{1}(\bar{x})$ and $0 \in B_{2}(A \bar{x})$
where H_{1} and H_{2} be two real Hilbert spaces, $B_{1}: H_{1} \rightarrow 2^{H_{1}}$ and $B_{2}: H_{2} \rightarrow 2^{H_{2}}$ be two set-valued maximal monotone mappings, $A: H_{1} \rightarrow H_{2}$ be a bounded linear operator.

Moreover, Moudafi [6] introduced the algorithm to solve the SFVIP as following:

$$
\begin{equation*}
x_{n+1}:=J_{\lambda}^{B_{1}}\left[x_{n}+\gamma A^{*}\left(J_{\lambda}^{B_{2}}-I\right) A x_{n}\right] . \tag{1.6}
\end{equation*}
$$

where λ and γ are fixed numbers. He proved that this iteration converges weakly to a some element in the solution set of SFVIP.

In 2013 Chuang [7] gave a strong convergence theorems for problem SFVIP under some conditions, like the Halpern-Mann type iteration method. The following is an iteration process given by Chuang[7]):

$$
\begin{equation*}
x_{n+1}:=a_{n} u+b_{n} x_{n}+c_{n} J_{\beta_{n}}^{B_{1}}\left[x_{n}-\rho_{n} A^{*}\left(I-J_{\beta_{n}}^{B_{2}}\right) A x_{n}\right]+d_{n} v_{n} \tag{1.7}
\end{equation*}
$$

where $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ are sequences of real numbers in $[0,1]$ with $a_{n}+b_{n}+$ $c_{n}+d_{n}=1$ and $0<a_{n}<1$ for each $n \in \mathbb{N},\left\{v_{n}\right\}$ is a bounded sequence in H_{1}, u is fixed and ρ_{n} is chosen in the interval $\left(0, \frac{2}{\|A\|^{2}+1}\right)$.

In this work, we introduce and study some algorithms for solving the common fixed point problem of a finite family of quasi-nonexpansive mappings and the split variational inclusion problem in Hilbert spaces. We establish a strong convergence result under some suitable conditions. A numerical example supporting our main result is also given.

2 Preliminaries

Throughout this paper, let \mathbb{N} be the set of positive integers and let \mathbb{R} be the set of real numbers. We shall assume that H be a (real) Hilbert space with the inner product $\langle\cdot, \cdot\rangle$ and the norm $\|\cdot\|$, respectively. We denote the strong convergence
and weak convergence of a sequence $\left\{x_{n}\right\}$ to a point $x \in H$ by $x_{n} \rightarrow x$ and $x_{n} \rightharpoonup x$, respectively. From [[14], for each $x, y, u, v \in H$ and $t \in[0,1]$, we have

$$
\begin{gathered}
\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}+2\langle x, y\rangle \\
\|t x+(1-t) y\|^{2}=t\|x\|^{2}+(1-t)\|y\|^{2}-t(1-t)\|x-y\|^{2} \\
2\langle x-y, u-v\rangle=\|x-v\|^{2}+\|y-u\|^{2}-\|x-u\|^{2}-\|y-v\|^{2}
\end{gathered}
$$

Furthermore, we obtain the following Lemma.
Lemma 2.1. [8] Let H be a real Hilbert space. Then for each $m \in \mathbb{N}$

$$
\left\|\sum_{i=1}^{m} t_{i} x_{i}\right\|^{2}=\sum_{i=1}^{m} t_{i}\left\|x_{i}\right\|^{2}-\sum_{i=1, i \neq j}^{m} t_{i} t_{j}\left\|x_{i}-x_{j}\right\|^{2}
$$

where $x_{i} \in H, t_{i}, t_{j} \in[0,1]$ for all $i, j=1,2, \ldots, m$, and $\sum_{i=1}^{m} t_{i}=1$.
Lemma 2.2. [ㅍ] Let H be a (real) Hilbert space, and let $x, y \in H$. Then $\|x+y\|^{2} \leq$ $\|x\|^{2}+2\langle y, x+y\rangle$.

Let C be a nonempty closed convex subset of a real Hilbert space H. Recall that the (metric) projection from H onto C, denote by P_{C} is defined for each $x \in H, P_{C} x$ is the unique element in C such that

$$
\left\|x-P_{C} x\right\|=\inf \{\|x-y\|: y \in C\}
$$

Lemma 2.3. [[0] Let C be a nonempty closed convex subset of a Hilbert space H. Let P_{C} be the metric projection from H onto C. Then, for each $x \in H$ and $z \in C$, we know that $z=P_{C} x$ if and only if $\langle x-z, z-y\rangle \geq 0$ for all $y \in C$.

Let C be a nonempty closed convex subset of a real Hilbert space H, and let $T: H \rightarrow H$ be a mapping. Let $\operatorname{Fix}(T):=\{x \in H: T x=x\}$. Now let us recall the definitions of some mappings concerned in our study.

Definition 2.4. Let H be a real Hilbert space. A mapping $T: H \rightarrow H$ is said to be
(i) nonexpansive if $\|T x-T y\| \leq\|x-y\|$ for all $x, y \in H$,
(ii) quasi-nonexpansive if

$$
\operatorname{Fix}(T) \neq \emptyset \text { and } \quad\|T x-q\| \leq\|x-q\| \quad \text { for all } x \in H \quad \text { and } \quad q \in \operatorname{Fix}(T)
$$

(iii) firmly nonexpansive if $\|T x-T y\|^{2} \leq\langle x-y, T x-T y\rangle$ for all $x, y \in H$.

It is easy to see that $\operatorname{Fix}(T)$ is a closed convex subset of H if T is a quasinonexpansive mapping.

Lemma 2.5. An mapping $T: H \rightarrow H$ is called demiclosed at the origin if, for any sequence $\left\{x_{n}\right\}$ which weakly converges to w and if the sequence $\left\{T x_{n}\right\}$ strongly converges to 0 , then $T w=0$.
Lemma 2.6. Let C be a nonempty closed convex subset of a real Hilbert space H. If $T: C \rightarrow H$ is a nonexpansive mapping, then $I-T$ is demiclosed at the origin.

The following are important tools to study the split variational inclusion problems.

Lemma 2.7. [[]] Let H be a real Hilbert space. Let $B: H \rightarrow 2^{H}$ be a set-valued maximal monotone mapping, $\beta>0$, and let J_{β}^{B} be a resolvent mapping of B defined by $J_{\beta}^{B}(x)=(I+\beta B)^{-1}(x)$ for each $x \in H$. Thus
(i) J_{β}^{B} is a single-valued and firmly nonexpansive mapping for each $\beta>0$;
(ii) $\mathcal{D}\left(J_{\beta}^{B}\right)=H$ and Fix $\left(J_{\beta}^{B}\right)=\{x \in \mathcal{D}(B): 0 \in B x\}$;
(iii) $\left\|x-J_{\beta}^{B} x\right\| \leq\left\|x-J_{\gamma}^{B} x\right\|$ for all $0<\beta \leq \gamma$ and for all $x \in H$;
(iv) Suppose that $B^{-1}(0) \neq \emptyset$. Then $\left\|x-J_{\beta}^{B} x\right\|^{2}+\left\|J_{\beta}^{B} x-\bar{x}\right\|^{2} \leq\|x-\bar{x}\|^{2}$ for each $x \in H$, each $\bar{x} \in B^{-1}(0)$, and each $\beta>0$.
(v) Suppose that $B^{-1}(0) \neq \emptyset$. Then $\left\langle x-J_{\beta}^{B} x, J_{\beta}^{B} x-w\right\rangle \geq 0$ for each $x \in H$, each $w \in B^{-1}(0)$, and each $\beta>0$.
Lemma 2.8. [7] Let H_{1} and H_{2} be real Hilbert spaces, $A: H_{1} \rightarrow H_{2}$ be linear operator, and A^{*} be the adjiont of A, and let $\beta>0$ be fixed, and let $\rho \in\left(0, \frac{2}{\|A\|^{2}}\right)$. Let $B_{2}: H_{2} \rightarrow 2^{H_{2}}$ be a set-valued maximal monotone mapping, and let $J_{\beta}^{B_{2}}$ be a resolvent mapping of B_{2}. Then

$$
\begin{aligned}
& \left\|\left[x-\rho A^{*}\left(I-J_{\beta}^{B_{2}}\right) A x\right]-\left[y-\rho A^{*}\left(I-J_{\beta}^{B_{2}}\right) A y\right]\right\|^{2} \\
& \quad \leq\|x-y\|^{2}-\left(2 \rho-\rho^{2}\|A\|^{2}\right)\left\|\left(I-J_{\beta}^{B_{2}}\right) A x-\left(I-J_{\beta}^{B_{2}}\right) A y\right\|^{2}
\end{aligned}
$$

for all $x, y \in H_{1}$. Furthermore, $I-\rho A^{*}\left(I-J_{\beta}^{B_{2}}\right) A$ is a nonexpansive mapping.
Lemma 2.9. [【2] Let $\left\{a_{n}\right\}$ be a sequence of real numbers such that there exists a subsequence $\left\{a_{n_{i}}\right\}$ of $\left\{a_{n}\right\}$ which satisfies $a_{n_{i}} \leq a_{n_{i}+1}$ for all $i \in \mathbb{N}$. Then there exists a nondecreasing sequence $\left\{m_{k}\right\} \subseteq \mathbb{N}$ such that $m_{k} \rightarrow \infty, a_{m_{k}} \leq a_{m_{k}+1}$ and $a_{k} \leq a_{m_{k}+1}$ are satisfied by all (sufficiently large) numbers $k \in \mathbb{N}$. In fact, $m_{k}=\max \left\{j \leq k: a_{j}<a_{j+1}\right\}$.
Lemma 2.10. [9] Let $\left\{a_{n}\right\}$ and $\left\{c_{n}\right\}$ are sequences of nonnegative real numbers such that

$$
a_{n+1} \leq\left(1-\delta_{n}\right) a_{n}+b_{n}+c_{n}, \quad n \geq 1
$$

where $\left\{\delta_{n}\right\}$ is a sequence in $(0,1)$ and $\left\{b_{n}\right\}$ is a real sequence. Assume $\sum_{n=1}^{\infty} c_{n}<$ ∞. Then the following result hold:
(i) If $b_{n} \leq \delta_{n} M$ for some $M \geq 0$, then $\left\{a_{n}\right\}$ is a bounded sequence.
(ii) If $\sum_{n=1}^{\infty} \delta_{n}=\infty$ and $\limsup _{n \rightarrow \infty} b_{n} / \delta_{n} \leq 0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.

Lemma 2.11. [7] Let H_{1} and H_{2} be real Hilbert spaces, $A: H_{1} \rightarrow H_{2}$ be linear operator, and A^{*} be the adjiont of A, and let $\beta>0, \gamma>0, B_{1}: H_{1} \rightarrow 2^{H_{1}}$ and $B_{2}: H_{2} \rightarrow 2^{H_{2}}$ be a set-valued maximal monotone mappings. Given any $\bar{x} \in H_{1}$.
(i) If \bar{x} is a solution of (SFVIP), then $J_{\beta}^{B_{1}}\left[\bar{x}-\gamma A^{*}\left(I-J_{\beta}^{B_{2}}\right) A \bar{x}\right]=\bar{x}$.
(ii) Suppose that $J_{\beta}^{B_{1}}\left[\bar{x}-\gamma A^{*}\left(I-J_{\beta}^{B_{2}}\right) A \bar{x}\right]=\bar{x}$ and the solution set of (SFVIP) is nonempty. Then \bar{x} is a solution of (SFVIP).

3 Main Results

Theorem 3.1. Let H_{1} and H_{2} be two real Hilbert spaces, $A: H_{1} \rightarrow H_{2}$ be a bounded linear operator, and let A^{*} denote the adjoint of A. Let $B_{1}: H_{1} \rightarrow 2^{H_{1}}$ and $B_{2}: H_{2} \rightarrow 2^{H_{2}}$ be two set-valued maximal monotone mappings. Let $\left\{T_{i}\right.$: $i=1,2, \ldots, N\}$ be family of quasi-nonexpansive mappings of H_{1} into itself. Let $\left\{a_{n}\right\},\left\{b_{n, i}\right\}, i=1,2, \ldots, N$ and $\left\{c_{n}\right\}$ be sequences of real numbers in $[0,1]$ with $a_{n}+\sum_{i=1}^{N} b_{n, i}+c_{n}=1$ and $0<a_{n}<1$ for all $n \in \mathbb{N}$. Let $\left\{\beta_{n}\right\}$ be a sequence in $(0, \infty)$. Let $x_{1}, u \in H_{1}$ be fixed. Let $\left\{\rho_{n}\right\} \subseteq\left(0, \frac{2}{\|A\|^{2}+1}\right)$.
Let $\Omega:=\left\{x \in H_{1}: x \in \bigcap_{i=1}^{N} F i x\left(T_{i}\right), 0 \in B_{1}(x)\right.$ and $\left.0 \in B_{2}(A x)\right\}$ and suppose that $\Omega \neq \emptyset$. Let $\left\{x_{n}\right\}$ be defined by

$$
x_{n+1}:=a_{n} u+\sum_{i=1}^{N} b_{n, i} T_{i} x_{n}+c_{n} J_{\beta_{n}}^{B_{1}}\left[x_{n}-\rho_{n} A^{*}\left(I-J_{\beta_{n}}^{B_{2}}\right) A x_{n}\right]
$$

for each $n \in \mathbb{N}$. Assume that:
(i) $\lim _{n \rightarrow \infty} a_{n}=0 ; \sum_{n=1}^{\infty} a_{n}=\infty ;$
(ii) $\liminf _{n \rightarrow \infty} \rho_{n}>0 ; \liminf _{n \rightarrow \infty} c_{n}>0 ; \liminf _{n \rightarrow \infty} \beta_{n}>0 ; \liminf _{n \rightarrow \infty} b_{n, i}>0 \quad \forall i=1,2, \ldots, N$.
(iii) $I-T_{i}$ are demiclosed at origin for all $i=1,2, \ldots, N$.

Then $\lim _{n \rightarrow \infty} x_{n}=\bar{x}$, where $\bar{x}=P_{\Omega} u$.
Proof. Let $\bar{x}=P_{\Omega} u$, where P_{Ω} is the metric projection from H_{1} onto Ω.

Then, for each $n \in \mathbb{N}$, it follows from Lemma 2.8 that

$$
\begin{aligned}
\left\|x_{n+1}-\bar{x}\right\|= & \left\|a_{n} u+\sum_{i=1}^{N} b_{n, i} T_{i} x_{n}+c_{n} J_{\beta_{n}}^{B_{1}}\left[x_{n}-\rho_{n} A^{*}\left(I-J_{\beta_{n}}^{B_{2}}\right) A x_{n}\right]-\bar{x}\right\| \\
\leq & a_{n}\|u-\bar{x}\|+\sum_{i=1}^{N} b_{n, i}\left\|x_{n}-\bar{x}\right\|+c_{n}\left\|J_{\beta_{n}}^{B_{1}}\left[x_{n}-\rho_{n} A^{*}\left(I-J_{\beta_{n}}^{B_{2}}\right) A x_{n}\right]-\bar{x}\right\| \\
\leq & a_{n}\|u-\bar{x}\|+\sum_{i=1}^{N} b_{n, i}\left\|x_{n}-\bar{x}\right\| \\
& +c_{n}\left\|J_{\beta_{n}}^{B_{1}}\left[x_{n}-\rho_{n} A^{*}\left(I-J_{\beta_{n}}^{B_{2}}\right) A x_{n}\right]-J_{\beta_{n}}^{B_{1}}\left[\bar{x}-\rho_{n} A^{*}\left(I-J_{\beta_{n}}^{B_{2}}\right) A \bar{x}\right]\right\| \\
\leq & a_{n}\|u-\bar{x}\|+\sum_{i=1}^{N} b_{n, i}\left\|x_{n}-\bar{x}\right\|+c_{n}\left\|x_{n}-\bar{x}\right\| \\
= & a_{n}\|u-\bar{x}\|+\left(\sum_{i=1}^{N} b_{n, i}+c_{n}\right)\left\|x_{n}-\bar{x}\right\| \\
= & a_{n}\|u-\bar{x}\|+\left(1-a_{n}\right)\left\|x_{n}-\bar{x}\right\| .
\end{aligned}
$$

This implies by Lemma [.]D that $\left\{x_{n}\right\}$ is a bounded sequence. For convenience, we set $y_{n}=J_{\beta_{n}}^{B_{1}}\left[x_{n}-\rho_{n} A^{*}\left(I-J_{\beta_{n}}^{B_{2}}\right) A x_{n}\right]$. By Lemma [2.7(ii) and [2.8, we have

$$
\begin{align*}
\left\|y_{n}-\bar{x}\right\|^{2} & =\left\|J_{\beta_{n}}^{B_{1}}\left[x_{n}-\rho_{n} A^{*}\left(I-J_{\beta_{n}}^{B_{2}}\right) A x_{n}\right]-J_{\beta_{n}}^{B_{1}}\left[\bar{x}-\rho_{n} A^{*}\left(I-J_{\beta_{n}}^{B_{2}}\right) A \bar{x}\right]\right\|^{2} \\
& \leq\left\|\left[x_{n}-\rho_{n} A^{*}\left(I-J_{\beta_{n}}^{B_{2}}\right) A x_{n}\right]-\left[\bar{x}-\rho_{n} A^{*}\left(I-J_{\beta_{n}}^{B_{2}}\right) A \bar{x}\right]\right\|^{2} \\
& \leq\left\|x_{n}-\bar{x}\right\|^{2}-\left(2 \rho_{n}-\rho_{n}^{2}\|A\|^{2}\right)\left\|\left(I-J_{\beta_{n}}^{B_{2}}\right) A x_{n}-\left(I-J_{\beta_{n}}^{B_{2}}\right) A \bar{x}\right\|^{2} \\
& =\left\|x_{n}-\bar{x}\right\|^{2}-\left(2 \rho_{n}-\rho_{n}^{2}\|A\|^{2}\right)\left\|\left(I-J_{\beta_{n}}^{B_{2}}\right) A x_{n}\right\|^{2} . \tag{3.1}
\end{align*}
$$

Hence, it follows form Lemma 2.2 that

$$
\begin{align*}
\left\|x_{n+1}-\bar{x}\right\|^{2}= & \left\|a_{n} u+\sum_{i=1}^{N} b_{n, i} T_{i} x_{n}+c_{n} y_{n}-\bar{x}\right\|^{2} \\
\leq & \left\|\sum_{i=1}^{N} b_{n, i}\left(T_{i} x_{n}-\bar{x}\right)+c_{n}\left(y_{n}-\bar{x}\right)\right\|^{2}+2 a_{n}\left\langle u-\bar{x}, x_{n+1}-\bar{x}\right\rangle \\
= & \left(1-a_{n}\right)^{2}\left\|\sum_{i=1}^{N} b_{n, i}^{\prime}\left(T_{i} x_{n}-\bar{x}\right)+c_{n}^{\prime}\left(y_{n}-\bar{x}\right)\right\|^{2} \\
& +2 a_{n}\left\langle u-\bar{x}, x_{n+1}-\bar{x}\right\rangle \tag{3.2}
\end{align*}
$$

where $b_{n, i}^{\prime}=\frac{b_{n, i}}{1-a_{n}}=\frac{b_{n, i}}{\sum_{i=1}^{N} b_{n, i}+c_{n}}, c_{n}^{\prime}=\frac{c_{n}}{\sum_{i=1}^{N} b_{n, i}+c_{n}}$.

By (3.1), (B.2) and Lemma [.]. , we have

$$
\begin{align*}
\left\|x_{n+1}-\bar{x}\right\|^{2} \leq & \left\|\sum_{i=1}^{N} b_{n, i}\left(T_{i} x_{n}-\bar{x}\right)+c_{n}\left(y_{n}-\bar{x}\right)\right\|^{2}+2 a_{n}\left\langle u-\bar{x}, x_{n+1}-\bar{x}\right\rangle \\
\leq & \sum_{i=1}^{N} b_{n, i}\left\|x_{n}-\bar{x}\right\|^{2}+c_{n}\left\|y_{n}-\bar{x}\right\|^{2} \\
& -\sum_{i=1}^{N} b_{n, i} c_{n}\left\|T_{i} x_{n}-y_{n}\right\|^{2}+2 a_{n}\left\langle u-\bar{x}, x_{n+1}-\bar{x}\right\rangle \\
\leq & \sum_{i=1}^{N} b_{n, i}\left\|x_{n}-\bar{x}\right\|^{2}+c_{n}\left(\left\|x_{n}-\bar{x}\right\|^{2}-\left(2 \rho_{n}-\rho_{n}^{2}\|A\|^{2}\right)\left\|\left(I-J_{\beta_{n}}^{B_{2}}\right) A x_{n}\right\|^{2}\right) \\
& -\sum_{i=1}^{N} b_{n, i} c_{n}\left\|T_{i} x_{n}-y_{n}\right\|^{2}+2 a_{n}\left\langle u-\bar{x}, x_{n+1}-\bar{x}\right\rangle \\
= & \left(c_{n}+\sum_{i=1}^{N} b_{n, i}\right)\left\|x_{n}-\bar{x}\right\|^{2}-c_{n}\left(2 \rho_{n}-\rho_{n}^{2}\|A\|^{2}\right)\left\|\left(I-J_{\beta_{n}}^{B_{2}}\right) A x_{n}\right\|^{2} \\
& -\sum_{i=1}^{N} b_{n, i} c_{n}\left\|T_{i} x_{n}-y_{n}\right\|^{2}+2 a_{n}\left\langle u-\bar{x}, x_{n+1}-\bar{x}\right\rangle . \tag{3.3}
\end{align*}
$$

Since $\liminf _{n \rightarrow \infty} \beta_{n}>0$, we may assume that $\beta_{n}>\beta>0$ for each $n \in \mathbb{N}$.
Next, we consider 2 cases

Case I

There exists a natural number n_{0} such taht $\left\|x_{n+1}-\bar{x}\right\| \leq\left\|x_{n}-\bar{x}\right\|$ for each $n \geq n_{0}$. Because $\left\{x_{n}\right\}$ is a bounded sequence, we have $\lim _{n \rightarrow \infty}\left\|x_{n}-\bar{x}\right\|$ exists.
From (3.3),

$$
\begin{aligned}
\left\|x_{n+1}-\bar{x}\right\|^{2} \leq & \left(c_{n}+\sum_{i=1}^{N} b_{n, i}\right)\left\|x_{n}-\bar{x}\right\|^{2}-c_{n}\left(2 \rho_{n}-\rho_{n}^{2}\|A\|^{2}\right)\left\|\left(I-J_{\beta_{n}}^{B_{2}}\right) A x_{n}\right\|^{2} \\
& +2 a_{n}\left\langle u-\bar{x}, x_{n+1}-\bar{x}\right\rangle \\
\leq & \left\|x_{n}-\bar{x}\right\|^{2}-c_{n}\left(2 \rho_{n}-\rho_{n}^{2}\|A\|^{2}\right)\left\|\left(I-J_{\beta_{n}}^{B_{2}}\right) A x_{n}\right\|^{2} \\
& +2 a_{n}\left\langle u-\bar{x}, x_{n+1}-\bar{x}\right\rangle .
\end{aligned}
$$

This implies that $\lim _{n \rightarrow \infty} c_{n}\left(2 \rho_{n}-\rho_{n}^{2}\|A\|^{2}\right)\left\|\left(I-J_{\beta_{n}}^{B_{2}}\right) A x_{n}\right\|^{2}=0$.
Since $c_{n}\left(2 \rho_{n}-\rho_{n}^{2}\|A\|^{2}\right) \geq \frac{c_{n} \rho_{n}}{\left\|A^{2}\right\|+1}$ for all $n \in \mathbb{N}$ and $\liminf _{n \rightarrow \infty} c_{n} \rho_{n}>0$, it follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|A x_{n}-J_{\beta_{n}}^{B_{2}} A x_{n}\right\|=0 \tag{3.4}
\end{equation*}
$$

By Lemma 【.2(iii), $\left\|A x_{n}-J_{\beta}^{B_{2}} A x_{n}\right\| \leq\left\|A x_{n}-J_{\beta_{n}}^{B_{2}} A x_{n}\right\|$
Hence,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|A x_{n}-J_{\beta}^{B_{2}} A x_{n}\right\|=0 . \tag{3.5}
\end{equation*}
$$

From (3.3), we have

$$
\begin{aligned}
\left\|x_{n+1}-\bar{x}\right\|^{2} \leq & \left(c_{n}+\sum_{i=1}^{N} b_{n, i}\right)\left\|x_{n}-\bar{x}\right\|^{2}-\sum_{i=1}^{N} b_{n, i} c_{n}\left\|T_{i} x_{n}-y_{n}\right\|^{2} \\
& +2 a_{n}\left\langle u-\bar{x}, x_{n+1}-\bar{x}\right\rangle \\
\leq & \left\|x_{n}-\bar{x}\right\|^{2}-\sum_{i=1}^{N} b_{n, i} c_{n}\left\|T_{i} x_{n}-y_{n}\right\|^{2}+2 a_{n}\left\langle u-\bar{x}, x_{n+1}-\bar{x}\right\rangle .
\end{aligned}
$$

Thus, for each $i=1,2, \ldots, N$,

$$
\left\|x_{n+1}-\bar{x}\right\|^{2} \leq\left\|x_{n}-\bar{x}\right\|^{2}-b_{n, i} c_{n}\left\|T_{i} x_{n}-y_{n}\right\|^{2}+2 a_{n}\left\langle u-\bar{x}, x_{n+1}-\bar{x}\right\rangle .
$$

This implies $\lim _{n \rightarrow \infty} b_{n, i} c_{n}\left\|T_{i} x_{n}-y_{n}\right\|=0 \quad \forall i=1,2, \ldots, N$.
Since $\liminf _{n \rightarrow \infty} c_{n}>0$ and $\liminf _{n \rightarrow \infty} b_{n, i}>0 \quad \forall i=1,2, \ldots, N$, it follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T_{i} x_{n}-y_{n}\right\|=0 \quad \forall i=1,2, \ldots, N \tag{3.6}
\end{equation*}
$$

Further, there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n_{k}} \rightharpoonup z$ for some $z \in H_{1}$ and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle u-\bar{x}, x_{n+1}-\bar{x}\right\rangle=\lim _{k \rightarrow \infty}\left\langle u-\bar{x}, x_{n_{k}}-\bar{x}\right\rangle=\langle u-\bar{x}, z-\bar{x}\rangle . \tag{3.7}
\end{equation*}
$$

Clearly, $A x_{n_{k}} \rightharpoonup A z$. From (3.5) and nonexpansiveness of $J_{\beta}^{B 2}$, we have, by Lemma [2.6, $J_{\beta}^{B_{2}} A z=A z$. That is $A z \in \operatorname{Fix}\left(J_{\beta}^{B_{2}}\right)$. By Lemma $\Sigma z(i i), A z \in B_{2}^{-1}(0)$.
Since $J_{\beta_{n}}^{B_{1}}$ and $J_{\beta_{n}}^{B_{2}}$ are nonexpansive for each n, we have

$$
\begin{align*}
\left\|y_{n}-J_{\beta_{n}}^{B_{1}} x_{n}\right\| & =\left\|J_{\beta_{n}}^{B_{1}}\left[x_{n}-\rho_{n} A^{*}\left(I-J_{\beta_{n}}^{B_{2}}\right) A x_{n}\right]-J_{\beta_{n}}^{B_{1}} x_{n}\right\| \\
& \leq\left\|x_{n}-\rho_{n} A^{*}\left(I-J_{\beta_{n}}^{B_{2}}\right) A x_{n}-x_{n}\right\| \\
& =\rho_{n}\left\|A^{*}\left(I-J_{\beta_{n}}^{B_{2}}\right) A x_{n}\right\| \\
& \leq \frac{2\|A\|}{\|A\|^{2}+1} \cdot\left\|A x_{n}-J_{\beta_{n}}^{B_{2}} A x_{n}\right\| . \tag{3.8}
\end{align*}
$$

By (3.4),

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}-J_{\beta_{n}}^{B_{1}} x_{n}\right\|=0 \tag{3.9}
\end{equation*}
$$

From (BI),

$$
\begin{equation*}
\left\|y_{n}-\bar{x}\right\|^{2} \leq\left\|x_{n}-\bar{x}\right\|^{2} . \tag{3.10}
\end{equation*}
$$

Moreover,

$$
\begin{aligned}
\left\|y_{n}-\bar{x}\right\|^{2}= & \left\|J_{\beta_{n}}^{B_{1}}\left[x_{n}-\rho_{n} A^{*}\left(I-J_{\beta_{n}}^{B_{2}}\right) A x_{n}\right]-\bar{x}\right\|^{2} \\
\leq & \left\langle y_{n}-\bar{x}, x_{n}-\bar{x}-\rho_{n} A^{*}\left(I-J_{\beta_{n}}^{B_{2}}\right) A x_{n}\right\rangle \\
= & \frac{1}{2}\left\|y_{n}-\bar{x}\right\|^{2}+\frac{1}{2}\left\|x_{n}-\bar{x}-\rho_{n} A^{*}\left(I-J_{\beta_{n}}^{B_{2}}\right) A x_{n}\right\|^{2} \\
& -\frac{1}{2}\left\|y_{n}-\bar{x}-x_{n}+\bar{x}+\rho_{n} A^{*}\left(I-J_{\beta_{n}}^{B_{2}}\right) A x_{n}\right\|^{2} \\
= & \frac{1}{2}\left\|y_{n}-\bar{x}\right\|^{2}+\frac{1}{2}\left\|x_{n}-\bar{x}\right\|^{2}+\frac{1}{2}\left\|\rho_{n} A^{*}\left(I-J_{\beta_{n}}^{B_{2}}\right) A x_{n}\right\|^{2}-\frac{1}{2}\left\|y_{n}-x_{n}\right\|^{2} \\
& -\frac{1}{2}\left\|\rho_{n} A^{*}\left(I-J_{\beta_{n}}^{B_{2}}\right) A x_{n}\right\|^{2}-\left\langle x_{n}-\bar{x}, \rho_{n} A^{*}\left(I-J_{\beta_{n}}^{B_{2}}\right) A x_{n}\right\rangle \\
& -\left\langle y_{n}-x_{n}, \rho_{n} A^{*}\left(I-J_{\beta_{n}}^{B_{2}}\right) A x_{n}\right\rangle \\
= & \frac{1}{2}\left\|y_{n}-\bar{x}\right\|^{2}+\frac{1}{2}\left\|x_{n}-\bar{x}\right\|^{2}-\left\langle y_{n}-\bar{x}, \rho_{n} A^{*}\left(I-J_{\beta_{n}}^{B_{2}}\right) A x_{n}\right\rangle-\frac{1}{2}\left\|y_{n}-x_{n}\right\|^{2} .
\end{aligned}
$$

By (3.T0), we have

$$
\begin{equation*}
\left\|y_{n}-\bar{x}\right\|^{2} \leq\left\|x_{n}-\bar{x}\right\|^{2}+\left\langle\bar{x}-y_{n}, \rho_{n} A^{*}\left(I-J_{\beta_{n}}^{B_{2}}\right) A x_{n}\right\rangle-\frac{1}{2}\left\|y_{n}-x_{n}\right\|^{2} \tag{3.11}
\end{equation*}
$$

By (3.3) and (3.士几),

$$
\begin{align*}
\left\|x_{n+1}-\bar{x}\right\|^{2} \leq & \sum_{i=1}^{N} b_{n, i}\left\|x_{n}-\bar{x}\right\|^{2}+c_{n}\left\|y_{n}-\bar{x}\right\|^{2}+2 a_{n}\left\langle u-\bar{x}, x_{n+1}-\bar{x}\right\rangle \\
\leq & c_{n}\left(\left\|x_{n}-\bar{x}\right\|^{2}+\left\langle\bar{x}-y_{n}, \rho_{n} A^{*}\left(I-J_{\beta_{n}}^{B_{2}}\right) A x_{n}\right\rangle-\frac{1}{2}\left\|y_{n}-x_{n}\right\|^{2}\right)^{2} \\
& +\sum_{i=1}^{N} b_{n, i}\left\|x_{n}-\bar{x}\right\|^{2}+2 a_{n}\left\langle u-\bar{x}, x_{n+1}-\bar{x}\right\rangle \\
= & \left(c_{n}+\sum_{i=1}^{N} b_{n, i}\right)\left\|x_{n}-\bar{x}\right\|^{2}+c_{n}\left\langle\bar{x}-y_{n}, \rho_{n} A^{*}\left(I-J_{\beta_{n}}^{B_{2}}\right) A x_{n}\right\rangle \\
& -\frac{c_{n}}{2}\left\|y_{n}-x_{n}\right\|^{2}+2 a_{n}\left\langle u-\bar{x}, x_{n+1}-\bar{x}\right\rangle \\
\leq & \left\|x_{n}-\bar{x}\right\|^{2}+c_{n}\left\langle\bar{x}-y_{n}, \rho_{n} A^{*}\left(I-J_{\beta_{n}}^{B_{2}}\right) A x_{n}\right\rangle \\
& -\frac{c_{n}}{2}\left\|y_{n}-x_{n}\right\|^{2}+2 a_{n}\left\langle u-\bar{x}, x_{n+1}-\bar{x}\right\rangle . \tag{3.12}
\end{align*}
$$

This together with the condition $\liminf _{n \rightarrow \infty} c_{n}>0$, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0 \tag{3.13}
\end{equation*}
$$

From (3.6) and (3.5), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{i} x_{n}\right\|=0 \quad \forall i=1,2, \ldots, N \tag{3.14}
\end{equation*}
$$

Again, by (ㅍ..) and (3.53), we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-J_{\beta_{n}}^{B_{1}} x_{n}\right\|=0 \tag{3.15}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-J_{\beta}^{B_{1}} x_{n}\right\|=0 \tag{3.16}
\end{equation*}
$$

By Lemma [2.6, we obtain $J_{\beta}^{B_{1}}(z)=z$. That is $z \in F i x\left(J_{\beta}^{B_{1}}\right)$. By Lemma 区.7(ii), $z \in B_{1}^{-1}(0)$. So, z is a solution of (SFVIP). Since $I-T_{i}$ are demiclosed at origin for all $i=1,2, \ldots, N$, we also get $z \in \bigcap_{i=1}^{N} F i x T_{i}$. Thus $z \in \Omega$. From $\bar{x}=P_{\Omega} u$, we obtain that $\langle u-\bar{x}, \bar{x}-z\rangle \geq 0$ by Lemma [2.3. Hence

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle u-\bar{x}, x_{n+1}-\bar{x}\right\rangle=\langle u-\bar{x}, z-\bar{x}\rangle \leq 0 \tag{3.17}
\end{equation*}
$$

From (3.3), we get

$$
\begin{aligned}
\left\|x_{n+1}-\bar{x}\right\|^{2} & \leq\left(c_{n}+\sum_{i=1}^{N} b_{n, i}\right)\left\|x_{n}-\bar{x}\right\|^{2}+2 a_{n}\left\langle u-\bar{x}, x_{n+1}-\bar{x}\right\rangle \\
& =\left(1-a_{n}\right)\left\|x_{n}-\bar{x}\right\|^{2}+2 a_{n}\left\langle u-\bar{x}, x_{n+1}-\bar{x}\right\rangle .
\end{aligned}
$$

By Lemma [2.10, we have $\lim _{n \rightarrow \infty}\left\|x_{n}-\bar{x}\right\|$. Therefore $\lim _{n \rightarrow \infty} x_{n}=\bar{x}$.

Case II

Suppose that there exists a subsequence $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$ such that for each $j \in \mathbb{N}$ $\left\|x_{n_{j}}-\bar{x}\right\| \leq\left\|x_{n_{j}+1}-\bar{x}\right\|$. By Lemma [...1, there exists a nondecreasing sequence $\left\{m_{k}\right\}$ in \mathbb{N} such that $m_{k} \rightarrow \infty$,

$$
\begin{equation*}
\left\|x_{m_{k}}-\bar{x}\right\| \leq\left\|x_{m_{k}+1}-\bar{x}\right\| \quad \text { and } \quad\left\|x_{k}-\bar{x}\right\| \leq\left\|x_{m_{k}+1}-\bar{x}\right\| \quad \forall k \in \mathbb{N} \tag{3.18}
\end{equation*}
$$

By (3.3) and (3.58), we have

$$
\begin{align*}
\left\|x_{m_{k}}-\bar{x}\right\|^{2} \leq & \left\|x_{m_{k}+1}-\bar{x}\right\|^{2} \\
\leq & \left(c_{m_{k}}+\sum_{i=1}^{N} b_{m_{k}, i}\right)\left\|x_{m_{k}}-\bar{x}\right\|^{2}+2 a_{m_{k}}\left\langle u-\bar{x}, x_{m_{k}+1}-\bar{x}\right\rangle \\
& -c_{m_{k}}\left(2 \rho_{m_{k}}-\rho_{m_{k}}^{2}\|A\|^{2}\right)\left\|\left(I-J_{\beta_{m_{k}}}^{B_{2}}\right) A x_{m_{k}}\right\|^{2} \\
& -\sum_{i=1}^{N} b_{m_{k}, i} c_{m_{k}}\left\|T_{i} x_{m_{k}}-y_{m_{k}}\right\|^{2} \\
\leq & \left\|x_{m_{k}}-\bar{x}\right\|^{2}-c_{m_{k}}\left(2 \rho_{m_{k}}-\rho_{m_{k}}^{2}\|A\|^{2}\right)\left\|\left(I-J_{\beta_{m_{k}}}^{B_{2}}\right) A x_{m_{k}}\right\|^{2} \\
& -\sum_{i=1}^{N} b_{m_{k}, i} c_{m_{k}}\left\|T_{i} x_{m_{k}}-y_{m_{k}}\right\|^{2}+2 a_{m_{k}}\left\langle u-\bar{x}, x_{m_{k}+1}-\bar{x}\right\rangle \tag{3.19}
\end{align*}
$$

It follows that $\lim _{k \rightarrow \infty} c_{m_{k}}\left(2 \rho_{m_{k}}-\rho_{m_{k}}^{2}\|A\|^{2}\right)\left\|\left(I-J_{\beta_{m_{k}}}^{B_{2}}\right) A x_{m_{k}}\right\|^{2}=0$.
Following a similar argument as the proof of case I, we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|A x_{m_{k}}-J_{\beta}^{B_{2}} A x_{m_{k}}\right\|=0 \tag{3.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|T_{i} x_{m_{k}}-y_{m_{k}}\right\|=0 \quad \forall i=1,2, \ldots, N \tag{3.21}
\end{equation*}
$$

Further, there exists a subsequence $\left\{x_{m_{k_{l}}}\right\}$ of $\left\{x_{m_{k}}\right\}$ such that $x_{m_{k_{l}}} \rightharpoonup z$ for some $z \in H_{1}$ and

$$
\begin{equation*}
\limsup _{k \rightarrow \infty}\left\langle u-\bar{x}, x_{m_{k}+1}-\bar{x}\right\rangle=\lim _{l \rightarrow \infty}\left\langle u-\bar{x}, x_{m_{k_{l}}}-\bar{x}\right\rangle . \tag{3.22}
\end{equation*}
$$

Clearly, $A x_{m_{k_{l}}} \rightharpoonup A z$. From (B.5) and nonexpansiveness of $J_{\beta}^{B_{2}}$, by Lemma [2.6], we have $J_{\beta}^{B_{2}} A z=A z$. That is $A z \in F i x\left(J_{\beta}^{B_{2}}\right)$. By Lemma 区.7(ii), $A z \in B_{2}^{-1}(0)$. Moreover, by (5.9),

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|y_{m_{k}}-J_{\beta_{m_{k}}}^{B_{1}} x_{m_{k}}\right\|=0 \tag{3.23}
\end{equation*}
$$

From (3.22) and (3.18), we have

$$
\begin{align*}
\left\|x_{m_{k}+1}-\bar{x}\right\|^{2} \leq & \left\|x_{m_{k}}-\bar{x}\right\|^{2}+c_{m_{k}}\left\langle\bar{x}-y_{m_{k}}, \rho_{m_{k}} A^{*}\left(I-J_{\beta_{m_{k}}}^{B_{2}}\right) A x_{m_{k}}\right\rangle \\
& \quad-\frac{c_{m_{k}}}{2}\left\|y_{m_{k}}-x_{m_{k}}\right\|^{2}+2 a_{m_{k}}\left\langle u-\bar{x}, x_{m_{k}+1}-\bar{x}\right\rangle \\
\leq & \left\|x_{m_{k}+1}-\bar{x}\right\|^{2}+c_{m_{k}}\left\langle\bar{x}-y_{m_{k}}, \rho_{m_{k}} A^{*}\left(I-J_{\beta_{m_{k}}}^{B_{2}}\right) A x_{m_{k}}\right\rangle \\
& \quad-\frac{c_{m_{k}}}{2}\left\|y_{m_{k}}-x_{m_{k}}\right\|^{2}+2 a_{m_{k}}\left\langle u-\bar{x}, x_{m_{k}+1}-\bar{x}\right\rangle \tag{3.24}
\end{align*}
$$

This implies

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|y_{m_{k}}-x_{m_{k}}\right\|=0 \tag{3.25}
\end{equation*}
$$

From $\left\|x_{m_{k}}-J_{\beta_{m_{k}}}^{B_{1}} x_{m_{k}}\right\| \leq\left\|x_{m_{k}}-y_{m_{k}}+y_{m_{k}}-J_{\beta_{m_{k}}}^{B_{1}} x_{m_{k}}\right\|$,
by (3.2.3) and (3.25), we get

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|x_{m_{k}}-J_{\beta_{m_{k}}}^{B_{1}} x_{m_{k}}\right\|=0 \tag{3.26}
\end{equation*}
$$

By Lemma $\mathbb{L . 7}($ iii) , we also get

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|x_{m_{k}}-J_{\beta}^{B_{1}} x_{m_{k}}\right\|=0 \tag{3.27}
\end{equation*}
$$

By Lemma [.6 and nonexpansiveness of $J_{\beta}^{B_{1}}$, we have $J_{\beta}^{B_{1}}(z)=z$. That is $z \in$ Fix $\left(J_{\beta}^{B_{1}}\right)$. By Lemma $\mathbb{Z . 7}(i i), z \in B_{1}^{-1}(0)$. So, z is a solution of (SFVIP). Since $I-T_{i}$ are demiclosed at origin for all $i=1,2, \ldots, N$, we have $z \in \bigcap_{i=1}^{N} F i x T_{i}$.

Thus $z \in \Omega$. From $\bar{x}=P_{\Omega} u$, we obtain that $\langle u-\bar{x}, \bar{x}-z\rangle \geq 0$, by Lemma $\quad 2.3$. Hence

$$
\begin{equation*}
\limsup _{k \rightarrow \infty}\left\langle u-\bar{x}, x_{m_{k}+1}-\bar{x}\right\rangle=\langle u-\bar{x}, z-\bar{x}\rangle \leq 0 \tag{3.28}
\end{equation*}
$$

By (3.c|9),

$$
\begin{align*}
\left\|x_{m_{k}}-\bar{x}\right\|^{2} & \leq\left(c_{m_{k}}+\sum_{i=1}^{N} b_{m_{k}, i}\right)\left\|x_{m_{k}}-\bar{x}\right\|^{2}+2 a_{m_{k}}\left\langle u-\bar{x}, x_{m_{k}+1}-\bar{x}\right\rangle \\
& \leq\left(1-a_{m_{k}}\right)\left\|x_{m_{k}}-\bar{x}\right\|^{2}+2 a_{m_{k}}\left\langle u-\bar{x}, x_{m_{k}+1}-\bar{x}\right\rangle \tag{3.29}
\end{align*}
$$

It follows that $\left\|x_{m_{k}}-\bar{x}\right\|^{2} \leq 2\left\langle u-\bar{x}, x_{m_{k}+1}-\bar{x}\right\rangle$.
By (3.28) and (3.29), we get

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|x_{m_{k}}-\bar{x}\right\|=0 \tag{3.30}
\end{equation*}
$$

For each $k \in \mathbb{N}$, we have

$$
\begin{aligned}
\left\|x_{m_{k}+1}-x_{m_{k}}\right\| & =\left\|a_{m_{k}} u+\sum_{i=1}^{N} b_{m_{k}, i} T_{i} x_{m_{k}}+c_{m_{k}} y_{m_{k}}-x_{m_{k}}\right\| \\
& \leq a_{m_{k}}\left\|u-x_{m_{k}}\right\|+\sum_{i=1}^{N} b_{m_{k}, i}\left\|T_{i} x_{m_{k}}-x_{m_{k}}\right\|+c_{m_{k}}\left\|y_{m_{k}}-x_{m_{k}}\right\|
\end{aligned}
$$

It follows by (3.54),(3.2.5) and $\lim _{n \rightarrow \infty} a_{n}=0$ that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|x_{m_{k}+1}-x_{m_{k}}\right\|=0 \tag{3.31}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\left\|x_{m_{k}+1}-\bar{x}\right\| \leq\left\|x_{m_{k}+1}-x_{m_{k}}\right\|+\left\|x_{m_{k}}-\bar{x}\right\| \tag{3.32}
\end{equation*}
$$

Hence, by (3.18) and (3.32),

$$
\lim _{k \rightarrow \infty}\left\|x_{k}-\bar{x}\right\|=0
$$

It implies that $\lim _{k \rightarrow \infty} x_{k}=\bar{x}$. Moreover, by Lemma [2.6], $T_{i} \bar{x}=\bar{x}$ for all $i=$ $1,2, \ldots, N$. Therefore,

$$
\bar{x} \in \bigcap_{i=1}^{N} \operatorname{Fix}\left(T_{i}\right)
$$

Therefore, the proof is completed.

4 Numerical example

In this section, we give a numerical example to demonstrate the convergence of our algorithm.
Let $H_{1}=\mathbb{R}^{2}, H_{2}=\mathbb{R}^{3}$. Let $B_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, B_{2}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by

$$
B_{1}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
2 & -2 \\
-2 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right], B_{2}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{lll}
3 & 2 & 2 \\
4 & 3 & 1 \\
4 & 5 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

and let $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by $A\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{cc}2 & -2 \\ -1 & 1 \\ 3 & -3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$. We see that both B_{1} and B_{2} are maximal monotone mappings and A is a bounded linear operator. For each $i=1,2, \ldots, N$, define a mapping $T_{i}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
T_{i}(x, y)^{\top}= \begin{cases}\frac{i}{i+1}\left(x \sin \frac{1}{x}, y \sin \frac{1}{y}\right)^{\top}, & \text { if } x \neq 0 \text { and } y \neq 0 \\ (0,0)^{\top}, & \text { otherwise }\end{cases}
$$

Then T_{1} and T_{2} are quasi-nonexpansive mapping (but not nonexpansive) with a unique fixed point $(0,0)^{\top}$. It's not hard to see that $I-T_{1}$ and $I-T_{2}$ are demiclosed at origin. Let $\Omega:=\left\{x \in \mathbb{R}^{2}: x \in \operatorname{Fix}\left(T_{1}\right) \cap F i x\left(T_{2}\right), 0 \in B_{1}(x)\right.$ and $\left.0 \in B_{2}(A x)\right\}$. We see that $(0,0)^{\top} \in \Omega$. Choose $a_{n}=\frac{1}{100 n+1}, b_{n, 1}=b_{n, 2}=\frac{1}{4}-\frac{1}{200 n}, c_{n}=$ $\frac{1}{2}+\frac{1}{100 n}-a_{n}, \rho_{n}=\frac{1}{\|A\|^{2}+1}$ and $\beta_{n}=\frac{n+1}{2 n}$ for all $n \in \mathbb{N}$.

First, we start with the initial point $x_{1}=(4,-7)^{\top}$ and $u=(-5,5)^{\top}$. The stopping criterion for our testing method is taken as: $\left\|x_{n+1}-x_{n}\right\|<10^{-4}$. Now, a convergence of our algorithm is shown in Table 1.

Table 1: Numerical experiment of the algorithm in Theorem 3.1

n	x_{n}	$\left\\|x_{n+1}-x_{n}\right\\|$
2	$(1.6007,-3.956146)$	2.007613
3	$(0.48182,-2.289227)$	1.336871
4	$(-0.350435,-1.243007)$	0.703085
5	$(-0.18089,-0.560671)$	0.608410
6	$(-0.28325,0.039067)$	0.30006
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
60	$(-0.000817,0.001026)$	0.000498
61	$(-0.001045,0.001468)$	0.000864
62	$(-0.000540,0.000767)$	$9.29 \mathrm{E}-05$

From Table 1, we observe that a sequence $\left\{x_{n}\right\}$ strongly converges to $(0,0)^{\top}$ and $(0,0)^{\top}$ is a solution of SFVIP and common fixed point of T_{1} and T_{2}.

Figure 1: Figure of error $\left\|x_{n+1}-x_{n}\right\|$

Acknowledgement(s) : The first author would like to thank the Human Resource Development in Science Project (Science Achievement Scholarship of Thailand, SAST) and Chiang Mai University for the financial support.

References

[1] Y. Censor, T. Elfving, N. Kopf, T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Probl. 21 (2005) 2071-2084.
[2] Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms 8 (1994) 221-239.
[3] C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Probl. 18 (2002) 441-453.
[4] B. Martinet, Rgularisation dinquations variationnelles par approximations successives, Rev. Fr. Autom. Inform. Rech.Opr. 4 (1970) 154-158.
[5] RT. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1976) 877-898.
[6] A. Moudafi, Split monotone variational inclusions, J. Optim. Theory Appl. 150 (2011) 275-283.
[7] C.S. Chuang, Strong convergence theorems for the split variational inclusion problem in Hilbert spaces, Fixed Point Theory Appl. 350 (2013).
[8] W. Cholamjiak, P. Cholamjiak, S. Suantai, Convergence of iterative schemes for solving fixed point problems for multi-valued nonself mappings and equilibrium problems, J. Nonlinear Sci. Appl. 8 (2015) 1245-1256.
[9] H.K. Xu, Iterative algorithm for nonlinear operators, J. Lond. Math. Soc. 2 (2002) 240-256.
[10] W. Takahashi, Nonlinear Functional Analysis-Fixed Point Theory and Its Applications, Yokohama Publishers, Yokohama (2000).
[11] Z. He, W-S. Du, Nonlinear algorithms approach to split common solution problems, Fixed Point Theory Appl. 130 (2012).
[12] P.E. Maing, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal. 16 (2008) 899912.
[13] K. Aoyama, Y. Kimura, W. Takahashi, M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal. 67 (2007) 2350-2360.
[14] W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publishers, Yokohama (2009).
[15] U. Witthayarat, Y.J. Cho, P. Cholamjiak, On solving proximal split feasibility problems and applications, Ann. Funct. Anal. 9 (2018) 111-122.
[16] S. Suantai, N. Pholasa, P. Cholamjiak, The modified inertial relaxed CQ algorithm for solving the split feasibility problems, J. Indust. Manag.Optim. 14 (2018) 1595-1615.
[17] N.T. Vinh, P. Cholamjiak, S. Suantai, A new CQ algorithm for solving split feasibility problems in Hilbert spaces, Bull. Malays. Math. Sci. Soc. (2018), https://doi.org/10.1007/s40840-018-0614-0.
[18] S. Suantai, N. Pholasa, P. Cholamjiak, Relaxed CQ algorithms involving the inertial technique for multiple-sets split feasibility problems, RACSAM (2018), https://doi.org/10.1007/s13398-018-0535-7.
(Received 29 August 2018)
(Accepted 16 October 2018)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright (c) 2018 by the Mathematical Association of Thailand. All rights reserved.

