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1 Introduction

Let E1 and F5 be two p-uniformly convex real Banach spaces which are also
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uniformly smooth. Let C' and @) be nonempty, closed and convex subsets of F; and
E5, respectively. Let A : E; — E5 be a bounded linear operator and A* : E2 — E1
be its adjoint of A. The split feasibility problem (SFP) is to find an element

Z € C such that Az € Q. (1.1)

The set of solutions of problem (IT) is denoted by T, d.e., I := {x € C : Az € Q}.
It is well known that if " is nonempty then I' is a closed and convex subset of Ej.
The SFP was first introduced, in a finite dimensional Hilbert space, by Censor-
Elfving [[0] in 1994 for modeling inverse problems in radiation therapy treatment
planning which arise from phase retrieval and in medical image reconstruction
(see [2]). The SFP has also been studied by numerous authors in both finite and
infinite dimensional Hilbert spaces (see, e.g., [3, 8, B, B, @, B, @, [0, [T, 12, I3]).

For solving the SFP in Banach spaces, Schopfer et al. [4] first introduced the
following algorithm for solving the SFP: x; € E; and

Tn1 = edp, [Je, (2n) — M A" Jg, (Az, — Po(Axy))], n > 1, (1.2)

where {\,} is a positive sequence, Il denotes the generalized projection on F,
Pq is the metric projection on Es, Jg, is the duality mapping on E; and Jg,
is the duality mapping on EF. It was proved that the sequence {x,} converges
weakly to a solution of SFP, under some mild conditions, in p-uniformly convex
and uniformly smooth Banach spaces.

Recently, Shehu et al. [IH] introduced an iterative scheme for solving the SFP
and the fixed point problem of Bregman strongly nonexpansive mapping T in
the framework of p-uniformly convex real Banach spaces which are also uniformly
smooth as follows: Let u € C, uy € Ey and

o = Tady (B (un) — My A*JE2 (I — Po) Auy,)
Ungr = edyt [an B (u) + (1= an) (B JE (20) + (1= Bu)Tx)], Vo> 1,
(1.3)
where {ay,} and {5,} are sequences in (0,1) and the step-size A, is chosen by
1

0<t< I\ <k< (m)qf1

They proved that the sequence {x,} and {u,} defined by (IZ=3) converge
strongly to a point in F'(T) NI under some mild conditions. However, it is ob-
served that iterative method (IZ3) involves step-size that depend on the operator
norm ||A|| (matrix in the finite-dimensional space), which may not be calculated
easily in general. It makes the implementation of the iteration process inefficient
when the computation of the operator norm ||A|| is not explicit (see [I6, I'7]).

Motivated by the previous works, we introduce an iterative method for solving
the split feasibility problem and the fixed point problem of countable family of
Bregman relatively nonexpansive mappings in the framework of p-uniformly con-
vex and uniformly smooth Banach spaces. Then, we prove strong convergence
theorem of the sequence generated by our iterative scheme with a new way of
selecting the step-size which does not require the computation on the norm of
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the bounded linear operator. Our result complements the results of Byrne [2],
Schopfer et al. [T4], Wang [I8], Shehu et al. [T5], Shehu et al. [I9] and many other
recent results in the literature.

2 Preliminaries

Let E and E* be real Banach spaces and the dual space of F, respectively.
Let E; and E5 be real Banach spaces and let A : E4y — FE5 be a bounded linear
operator with its adjoint operator A* : E5 — E} which is defined by

(A*g,x) := (7, Az), Yz € E1, §e€E;.

Let S(E) := {z € E : ||z|| = 1} denote the unit sphere of E. The modulus of
convezity of E is the function dg : (0,2] — [0, 1] defined by

p(e) = inf{l — el oy y € S(B), ||z -yl > e}.

The space F is said to be uniformly convez if 6g(e) > 0 for all € € (0,2]. Let p > 1.
Then F is said to be p-uniformly convex (or to have a modulus of convexity of
power type p) if there is a ¢, > 0 such that dg(e) > c,e? for all € € (0,2].
Observe that every p-uniformly convex space is uniformly convex. The modulus of
smoothness of E is the function pg : RT :=[0,00) — R defined by

pe(T) = sup {lerTleerxTyl —1l:z,y€ S(E)}

The space F is said to be uniformly smooth if p%m — 0 as 7 — 0. Suppose that

g > 1, a Banach space E is said to be g-uniformly smooth if there exists a kg > 0
such that pg(7) < k479 for all 7 > 0. If E is g-uniformly smooth, then ¢ < 2 and
E is uniformly smooth. It is known that F is p-uniformly convex if and only if E*
is g-uniformly smooth. Moreover, we note that a Banach space E is p-uniformly
convex if and only if E is g-uniformly smooth, where p and ¢ satisfy ]% + % =1
(see [om]).

Let p > 1 be a real number. The generalized duality mapping Jf : B — 2F

is defined by

Ty (z) ={z € E*: (2,7) = ||=||P, |z]| = [l=]P~ '},
where (-, -) denotes the duality pairing between E and E*. In particular, JI;E =JF
is called the normalized duality mapping.

In this case, we assume that F is a p-uniformly convex and uniformly smooth,
which implies that its dual space, E* is g-uniformly smooth and uniformly convex.
It is known that the generalized duality mapping Jf is one-to-one, single-valued
and satisfies JF = (JE)~1, where JE' is the generalized duality mapping of E*.



On Solving the Split Feasibility Problem and the Fixed Point problem 237

Moreover, if E is uniformly smooth then the duality mapping Jf is norm-to-norm
uniformly continuous on bounded subsets of E. (see [Z1, 22| for more details).

Definition 2.1. ([23]) Let f : E — R be a conver and Gateauz differentiable
function. The function Dy : E x E — [0,400) defined by

Dy(z,y) = f(y) — f(z) = (f'(x),y — ),
is called the Bregman distance with respect to f.

We remark that the Bregman distance D¢ is not satisfy the well-known prop-
erties of a metric because Dy is not symmetric and does not satisfy the triangle
inequality.

It is well known that the duality mapping Jf is the sub-differential of the
functional f,(-) = %H -||P for p > 1 (see [24]). Then, we have the Bregman distance
with respect to f, that

1 1
Dyp(z,y) = 5||$||” — (Jyw,y) + ]gllpr' (2.1)

If p =2, we get

Do(z,y) = ¢(x,y) = ||=|* — 2(Jz, y) + ||y,

where ¢ is called the Lyapunov function which was introduced by Alber [Z5, P6).
Moreover, the Bregman distance has the following properties:

Dy(@,y) = Dy(x,2) + Dp(2,y) + (Jyw = I 2,2 —y), (2.2)

Dp(xvy)—’_Dp(y,x): <JpEx_JpEy7x_y>v (23)

for all z,y,z € E. For the p-uniformly convex space, the metric and Bregman
distance has the following relation (see [I4]):

Tllz = ylI” < Dyl,y) < (Jyw = Ty, @ —y), (2.4)

where 7 > 0 is some fixed number. In what follows, we shall use the following
notations:

e 1, — x mean that {z,} converges strongly to z;

e x, — x mean that {z,} converges weakly to x.

Let C be a closed and convex subset of F and let T" be a mapping from C
into itself. We denote F(T) by the set of all fixed points of T, i.e., F'(T) =
{r € C:2 =Tx}. A point z € C called an asymptotic fixed point of T, if there
exists a sequence {x,} in C which z,, — 2z such that lim, . ||2, — T2, || = 0. We
denote by F (T') by the set of asymptotic fixed points of T.

Definition 2.2. (|27, 28]) A mapping T : C — C is called Bregman relatively
nonexpansive, if the following conditions are satisfied:
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(R1) F(T) = F(T) #0;
(R2) D,(Tx,z) < Dp(z,2), Yze F(T), Vz e C.
Clearly, in a Hilbert space H, Bregman relatively nonexpansive mappings and

quasi-nonexpansive mappings are equivalent, for ¢(z,y) = ||z — y||?, Vo,y € H,
i.€.,

d(Tx,2) < Pp(x,2) < |Tx — 2| < lx — z||, Vee C and z € F(T).

Definition 2.3. ([29]) Let C be a subset of a real p-uniformly convex Banach space
E. Let {T,,}52 be a sequence of mappings of C into E such that (., F(T,) # 0.
Then {T,,}52, is said to satisfy the AKTT-condition if, for any bounded subset B
of C,

o0
S sup{IF (Tsr2) = JE (@) [} < oc.
S

n=17%
As in [BO], we can prove the following fact.

Proposition 2.1. Let C be a nonempty, closed and convexr subset of a real p-
uniformly convex Banach space E. Let {T,,}2; be a sequence of mappings of C
into E such that (., F(T,,) # 0. Suppose that {T,,}32, satisfies the AKTT-
condition. Suppose that for any bounded subset B of C'. Then there exists the
mapping T : B — E such that

Tz = lim T,z, Vz € B, (2.5)

n—oo

and

lim sup [|J) (Tz) — JJ(T,2)|| = 0.

n—o0 2€B

In the sequel, we say that ({1}, T) satisfies the AKTT-condition if {7}, }5>,
satisfies the AKTT-condition and 7T is defined by (E33) with (2, F(T,,) = F(T).

Recall that the metric projection from E onto C, denote by Pcx, satisfying
the property

lx — Pox|| < inf ||z —y||, Vx € E.
yel

It is well known that Pox is the unique minimizer of the norm distance. Moreover,
Pex is characterized by the following properties: Pox € C' and

(Jf(a: — Pox),y — Pox) <0, VyeC. (2.6)

Similarly, one can define the Bregman projection from E onto C, denote by Il¢,
satisfying the property

Dy (z,1e(z)) = yireﬂ"CDp(Jc,y)7 Yz € E. (2.7)
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Lemma 2.2. ([[4U]) Let C be a nonempty, closed and convex subset of a p-
uniformly convex and uniformly smooth Banach space E and let x € E. Then
the following assertions hold:

(i) z=Tcx if and only if (JF(x) — JF(2),y —2) <0, Vy € C.
(ii) Dy(ox,y) + Dp(z, M) < Dy(x,y), Vy € C.

Lemma 2.3. [B1] Let 1 < ¢ < 2 and E be a Banach space. Then the following
are equivalent.

(i) E is g-uniformly smooth;
(11) There is a constant kg > 0 such that for all x,y € E
[z —yl|? < [lz]|? = q{iq(x), y) + Kqllyl?. (2.8)

Remark 2.4. The constant kg satisfying (23) is called the g-uniform smoothness
coefficient of F.

The following Lemma can be obtained from Theorem 2.8.17 of [21] (see also
Lemma 5 of [87]).

Lemma 2.5. Let p > 1, r > 0 and F be a Banach space. Then the following
statements are equivalent:

(i) E is uniformly convex;

(ii) There exists a strictly increasing convex function g : RY — RT with g¥(0) =
0 such that

N N
1> i’ < onllaell? — ciegr(llzi — ),
k=1 k=1

foralli,j € {1,2,...N}, o € B, :={z € E: ||z|| <7}, a € (0,1) with
Zi\;l ap =1, where k € {1,2,..., N}.

Lemma 2.6. ([[9]) Let E be a real p-uniformly convexr and uniformly smooth
Banach space. Thus, for all z € E, we have

N N
Dp (JqE* (thjpE(xz))vz> S ZtiDp('riaZ)7
i=1 i=1

where {x;}N., C E and {t;}}; C (0,1) with vazl t; =1.
The following lemmas can be found in [, [9].

—

Lemma 2.7. Let E be a real p-uniformly conver and uniformly smooth Banach
space. Let V, : E* X E — [0,400) be defined by

1 1
Vp(@®s2) = lla”|l* = (@, @) + Jllall”, Vo € Byt € B

Then the following assertions hold:
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(i) V), is nonnegative and convex in the first variable;
(ii) Dp(Jf* (x*),z) = Vp(a*,2), Ve e E, z* e E*.
(i11) Vy(x*,z) + (y*7JqE*(:L‘*) —z) <Vp(z*+y*,z), VeeE, z*y"eFE*

Following the proof line as in Proposition 2.5 of [33], we obtain the following
result:

Lemma 2.8. Let E be a real p-uniformly convex and uniformly smooth Banach
space. Suppose that x € E and {x,} is a sequence in E. If {D,(x,, )} is bounded,
then the sequence {x,} is bounded.

Lemma 2.9. Let E be a real p-uniformly convex and uniformly smooth Banach
space. Suppose that {x,} and {y,} are bounded sequences in E. Then the following
assertions are equivalent:

(a) lim,, 00 Dp(xnyyn) =0;
(b) lim,, o0 ||@n — ynl = 0.
Proof. Let {z,} and {y,} be bounded sequences in E. For the implication
(a) = (b). Suppose that lim, . Dy(2y, yn) = 0. From (24), we have
0< 7z, — yan < Dp($n,yn)7

where 7 > 0 is a fixed number. It follows that lim, ., |27 — yn|| = 0.
For the converse implication (b) = (a), we assume that lim, o ||2n — Y| =
0. From (24), we observe that

0< Dp(xrwyn) <JpE'rn - JpEyna-Tn - yn>
H‘fon - nynH”xn - ynH

[ — ynl| M,

IN A A

where M = sup,,> {[|lzn[/P~", [lyn

[P=1}. Tt follows that limy, oo Dp(@n,yn) = 0.
This completes the proof. O

Lemma 2.10. ([34]) Assume that {a,} is a sequence of nonnegative real numbers
such that

Ap+1 é (]- _’Yn)an +7n5na V’I”L 2 ]-v

where {v,} is a sequence in (0,1) and {0,,} is a sequence in R such that lim,, o v, =
0, Y07 ¥n = 00 and limsup,,_, . 0, < 0. Then, lim,_, a, = 0.

Lemma 2.11. ([B5]) Let {T',,} be a sequence of real numbers that does not decrease
at infinity in the sense that there exists a subsequence {I',,} of {I'y,} which satisfies
Iy, <Tp,41 for all i € N. Define the sequence {T(n)}n>n, of integers as follows:

7(n) =max{k <n:Ty <Tii1},

where ng € N such that {k < mng: Ty <Tgy1} # 0. Then, the following hold:



On Solving the Split Feasibility Problem and the Fixed Point problem 241

(i) T(no) < 71(npg+1) < ... and 7(n) = oco;
(ZZ) FTn < 1ﬂT(n)«H and I'y, < F‘r(’rL)JrI; Vn > ng.
Lemma 2.12. Let E be a real p-uniformly convex and uniformly smooth Banach

space. Let z,xp, € E (k=1,2,..,N) and oy, € (0,1) with Z,Igv:l ag = 1. Then, we
have

0, (7f <Zau SIBE zaw 21 2) — aiayg (195 () — 2 ().

foralli,j€{1,2,...,N}.

Proof. Let z,2, € E (k=1,2,...,N) and oy, € (0,1) with Zszl aj = 1. Since
p-uniformly convex, hence it is uniformly convex. From Lemmas E8 and Z8, we

have
N
Dp (JqE* (ZakaE(xk)>,Z>
k=1
N
= Vp(ZakaE(xk),Z)
k=1
1 N N 1
= > e @)l = (O ey (@), 2) + a1l
q k=1 k=1 p

N

1 .
gzakHJpE(ﬂck)Hq —azagr (|5 (2s) — TF ()]
k=1

al E 1 P
—(D ard (k) 2) + 5||Z||
k=1
1 al 1
= > all TP @) =Y e JF (), 2) + =l2]P
7= k=1 P

—aaigr (15 (2s) — TF ()]

IA

= > awDpler, 2) — aiajgi (17 (@) = I (@)|),
for all i,5 € {1,2,..., N}. This completes the proof. o

3 Main Results

Theorem 3.1. Let Fy and Es be two real p-uniformly conver and uniformly
smooth Banach spaces and let C' and @ be nonempty, closed and convex subsets
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of E1 and Es, respectively. Let A : E1 — Es5 be a bounded linear operator and
A* : E5 — EY be its adjoint of A. Let {T,,}°2, be a countable family of Bregman
relatively nonexpansive mappings of C into Ey such that F(T,) = ﬁ(Tn) for all
n > 1. Suppose that Q := (., F(T,,) N\T # 0. For given u € Ey, let {u,} be a
sequence generated by u; € C' and

Tn = Mo dgt (TP (u,) — A A" T2 (I — Pg) Auy,)
Unp4+1 = HCJ;EI [aanEl (u) + (1 - an)(ﬁanEl (xn) + (1 - Bn)‘]pEl (Tnxn))]v
(3.1)
where {a,} and {Bn} are sequences in (0,1). Suppose that the step-size {\,} is a
bounded sequence chosen in such a way that for small enough € > 0,

I — Po)Au,|? 1
0<e< A, < < q”(E2 Q) Au| —e> , n€N, (3.2)
gl A*Jp ™ (I = PQ) Aug |4

where the index set N := {n € N : (I — Pg)Au,, # 0} and A\, = X (X being any
nonnegative value), otherwise. Suppose that the following conditions hold:

(C1) limy, oo, =0 and Y07 | oy = 00;
(C2) 0<a<fB,<b<1.

Suppose in addition that ({T,,},T) satisfies the AKTT-condition. Then, {x,}5>,
and {u, }52 1 converge strongly to an element x* = Ilqu, where Ilq is the Bregman
projection from C onto €.

Proof. By the choice of \,, we observe that

N1 < qll(I — Pg)Aun | .
" Kqll A=y (I = Pg) Auy |7
= KA AT (I - Pg)Au, ||
< ql|(I = Po)Aug||” — erg||A*J2(I — Pq) Au||?

— %HA*J;B (I — Pg)Auy|?

R AT
<0 = Po)Aug|l? — R AT (T~ Po)Awa|lt. (33)

For each n > 1, we put z,, = llcv,, where

on = I (T () = A AT (Auy — Po(Auy))).
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Let z € Q:=(._, F(T,,) NT. From (Z8), we observe that
<Jf2 (Au,, — Po(Auy,)), Au,, — Az)
= (JP2(Au, — Po(Auy)), Au, — Po(Auy))
+<J52 (Au,, — Po(Auy)), Po(Au,) — Az)
= [ Aun — Po(Aun)|?
+(J P2 (Aup, — Po(Auy)), Po(Auy,) — Az)
> | Aun — Po(Auy)|P. (3.4
Then from Lemma 223 and (B4), we have
D, (n,z)
Dy (T3 (P (un) = A A* TP (I = Po)Auy,), 2)

IN

1 *
= U () = M AT T = Po) Aua) |
1
—(JpEl (un) — )an*JpEQ (I — Pg)Auy, z) + EHZHP
1
= 5|\Jfl (un) — A A*JE2(I — Pg) Auy, |7

1
= (" (un) = A AT (I = Po) Aup, 2) + EIIZII”

IN

1
5|\J,;El (un)[|* = ATy (I = Pg) Aun, Auy)
HQA% * 7Ho q E;
+T||A Jp 2 (I = PQ)Aug || — (J, (un), 2)
1
A (I (1 = P)Auy, Az) + ;)||z||”
1 1
= 5|\Uan — (g (un), 2) + Z;||Z||p + A (2 (I = Po) Auy, Az — Auy)
AL
+‘IT||A Ty 2 (I = Pg)Aup||?
= Dy(un,z)+ )\n<J52 (I — Pg)Auy,, Az — Auy,)

)\q
+“qT"||A*sz(1— Po) Auy||?

q—1
KgAd

< Dylun.2) - An(w - Po) A — a1 - P@Aunnq), (3.5)
which implies that
Dp(mnv Z) S Dp(unv Z)

Now, we put
Yn = Jo " (B d P () + (1= B) JP (Ta))
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for all n > 1. From Lemma -T2, we have

Dp(ynvz)

Dy(Jg (B E (20) + (1 = Ba) TP (Tyn)), 2)

BuDy(,0) + (1 = Ba) Dy(Tuit, 2) — Bu(l = B)gi (1TF () — TP (T )||)
FEq

Dp(wnv Z) - Bn(l - ﬁn)g:(HJfl (xn) - Jp (Tnxn)H) (3'6)
Dy(an, 2) (3.7)

IN AN A

It follows from (B77) that

Dp(l'n-i-laz) < Dp(un-i-lvz)
< Dp(Jg (o (w) 4 (1= @) 7 (), 2)
< anDp(u,2) + (1 — an)Dp(yn, 2)
< apDp(u,2) + (1 — ay)Dp(zp, 2)
< max{D,(u, z), Dp(zn,2)}
< max{D,(u, z), Dp(x1,2)}. (3.8)

Hence, {D,(zn, 2)} is bounded, which implies by Lemma P8 that {x,, } is bounded.
Put upy1 = ez, where z, = Jfl [ J P (u) + (1 — an)JE (yn)] for all

n > 1. From Lemma P72 and (BM), we have

Dy(wpi1,2)
< Dp(un+1 z)
< D,(zn,2)
= Vp(andy (w) + (1 = an) Iy (yn), 2)
< Vplan JyH (w) + (1= an) Iy (yn) — an (T (w) = 7 (2), 2))
—|—an<JE1 (u) — JpEl( ), Zn — 2)
= (OanEl(Z) + (1= an) Iy (yn), 2) + an (S (1) = T3 (2), 20 = 2)
< anVp(Jy(2),2) + (1= an) VoI (yn), 2) + an ()7 (u) = T3 (2), 20 — )
= p( 2) + (1= @) Dy(yn, 2) + an{ Ty (u) = T (2), 20 — 2)
< (1 — an)[Dp(n, 2) = Bu(1L = Ba)gr (157 (2n) = T (Tnzn) )]
o (g (1) = T (0), 2 — 2)
< (1= an)Dy(n, 2) = Ba(1 = Ba)gr (1,7 (20) — T (T |])]
—l—an(JEl(u) JEl( ), 2n — 2) (3.9)
< (L= an)Dp(xn, 2) + an () (u) = I (2), 20 — 2). (3.10)

Next, we will divide the proof into two cases:
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Case 1. Suppose that there exists ng € N such that {D,(z,,2)}5%,, is non-
increasing. By the boundedness of {D,(xy,2)}52;, we have {D,(xy,,2)}52, is
convergent. Furthermore, we have

D,(2n,2) — Dp(zn41,2) > 0 as n — oo.
Then, from (B), we have
0 a(1 = b)g; (17 (wn) — I (Tuzn) )
< Bu(1 = Ba)gr (19,7 (n) = I (Tnza)ll)
< Dp(xn,2) — Dp(zpt1,2) + ozn<Jfl (u) — Jfl (2),2n —2) = 0 as n — o0,

VARVAN

which implies by the property of g’ that
: E E
nh—{%o IS, (2n) — J, " (Thwn)|| = 0. (3.11)

Since Jg ' is uniformly norm-to-norm continuous on bounded subsets of E{, then

lim |z, — Thz,| =0. (3.12)

n—0o0

From Lemma E9, we also have

lim D,(T,xn,x,) = 0. (3.13)

n—oo

Since Jfl is uniformly continuous on bounded subsets of E;, we have
. E E _
nl;rr;o ||Jp Yay) — Iy YThzy)|| = 0.
By Proposition I, we observe that
157 (n) = T (T |

< N @n) = T (Tazn) | + 197 (Tazn) — I (T) |
< ||Jf1 (zn) — Jfl (Thzn)|| + sup HJfl (Thx) — Jfl (Tz)|]] =0 as n — oo,
TE{Tn
which implies that
lim ||z, —Tz,| =0.
n—oo

By the reflexivity of a Banach space E and the boundedness of {z,}, without
loss of generality, we may assume that x,, = v € C as i — co. Then, we get
v € ﬁ(Tn) = F(T,) for all n > 1, i.e., v € ()o—, F(T},). Further, we show that
v € T'. From (B33) and (B3), we have

62'%(1 * 7o q
THA Jp (I—PQ)AUnH

KgATh
A (|<I — Po)Aun P = M4 (1 - P@Aunq)

D, (tn,v) — Dp(xp,v)
QN—lDP(u’ U) + Dp(mn—lav) - DP(I»,L,U),

ININ A
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which implies that

lim | Au, — Po(Auy)| = 0. (3.14)

Since v,, 1= Jfl* (Jfl (un) = A A* T2 (Auy, — Pg(Auy,))) for all n > 1, it follows
that

0 < 7 (wa) = I (wa)ll < M| A1 (Auy, — Po(Auy))|
_1
q ot * —1
< [A™[[[| A — Po(Aun)|[P~,
<ﬁq|A||q> ¢
which implies that
Tim_ (|77 (0,) — JE ()| = 0, (3.15)
and hence
nlgr;o |vn, — unll = 0. (3.16)
By Lemma P2 (i7) and (B@), we have
Dp(vnvxn) = Dp(vnancvn) < Dp(vnav) - Dp(acn,xv)

D, (tun,v) — Dy(zp,v)
an—1Dp(u,v) + Dp(2n—1,v) — Dp(zpn,v) =0 as n — oo.

<
<
By Lemma P, we get
nh_}n;o |vn, — zn] = 0. (3.17)
Then from (BTH) and (BA), we have
lxn — unll < ||vn — tnll + [|[on, — 2n|| = 0 as n — oo. (3.18)

Since z,,, — v € C and from (BIR), we also get u,, — v € C. From (E8), we have

(I = Po)Av|?

= (J2(Av — Po(Av)), Av — Po(Av))

= (JP2(Av— Po(Av)), Av — Auy,) + (JF2 (Av — Po(Av)), Au, — Po(Auy,))
+(J}? (Av — Py(Av)), Po(Auy,) — Po(Av))

< (I (Av— Po(Av)), Av — Auy,,) + (J22(Av — Po(Av)), Auy, — Po(Auy,)).

Since A is continuous, we have Au,, — Av as i — co. From (814), we obtain

I(I = Pg)Av|| =0,
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i.e., Av = Pg(Av), this shows that Av € Q. Thus v € Q := F(T)NTI. From
Lemma P8 and (BT3), we have

Dp(ynvmn) = D;D(Jt;Ef (ﬁanl (zn) + (1 - Bn)Jfl (Thzn)), Tn)
< BaDp(an,zn) + (1 — Bn)Dp(Than, z,) = 0 as n — oo.

It follows that

EY 1 1
Dy(zn,zn) = Dy(Jq (O‘an (U)"‘(l_an)J;;E (Yn))s Tn)
anDp(u,zn) + (1 — ) Dp (Y, ) = 0 as n — oo,

IN

and hence
nhﬁngo |€n — zn|| = 0. (3.19)
Next, we show that

limsup<Jf1 (u) — Jfl (), zp — ™) <0,

n—roo

where z* = IIqu. From (BT9), we have

limsup<JpE1 (u) — Jfl ("), 2n — ™) = limsup<Jf1 (u) — JI;El ("), xp — ™)
n—0o0 n—oo
= lim (J7' (u) = JJ' (2*), 2, — 37).
11— 00

Since FE is reflexive and {x,} is bounded, there exists a subsequence {x,, } of {x,}
such that z,,, — v € C. It follows from Lemma 22 that

limsup(JIiEl (u) — Jfl ("), 2, —2*) = lim (Jfl (u) — Jfl (), p, — ")
n—oo 1—> 00

= (JP(u) = I (a%),v — 2¥) < ((3.20)

Applying Lemma P10 to (B00) and (820), we can conclude that D, (x,,z*) — 0
as n — o0o. Therefore, x,, — z* as n — oo.

Case 2. Suppose that there exists a subsequence {I'y,} of {I',} such that I',,, <
Iy, 41 for all ¢ € N. Let us define a mapping 7 : N — N by

7(n) = max{k <n:T) < Tk}
Then, by Lemma 211, we obtain
Ty < Trgmysr and Ty < Tpoypr.
Put Ty, := Dp(zy,2*) for all n € N. Then, we have from (838) that

0 < Hm (Dp(zr(n)41,2") — Dp(@r(n), %))

n—oo

IN

lim (Dp(ua I*) + (1 - aT(n))DZD(‘rT(’ﬂ)?I*) - DP(xT(n); :L'*))

n—oo

lim Olr(n) (Dp(u’g;*) — Dp(lj.,.(n),gj*)) =0,

n—oo



248 P. Cholamjiak and P. Sunthrayuth

which implies that

lim (Dp(2r(n)+1,2") — Dp(T7(n),2%)) = 0. (3.21)

n— oo

Following the proof line in Case 1, we can show that

lim ||$T(n) — TCC,,-(n)H = 0,

n— oo

lim ||Au7.(n) - PQ(AUT(n))|| =0.

n—oo

Further, we can show that

limsup<JpE1 (u) — Jfl (%), 2r(ny — ™) < 0.

n—oQ

From (BTM), we have

Dp(xT(n)Jrhx*) < (1 - aT(n))Dp(xT(n)vx*)
+0¢T(n)<Jfl (u) — JpEl (2%), 27(n) — 27),

which implies that

O‘T(n)Dp(xT(n)vx*) < Dp(xr(n)ax*> - DP(IT(n)-i-lv'r*)
+ aT(n) <JpE1 (U) - JpE1 ($*>7 ZT(TL) - $*>

Since I'7(n) < T'rny41 and ar,) > 0, we get

Dyp(zr(n), ") < <Jf1 (u) — Jfl (), 2r(n) — 7).

Hence, lim,, ;oo Dp(27(n), ") = 0. From (8221), we have

Dyp(xn,2") < Dp(Tr(n)y41, ") = Dp(Tr(n), ) + (Dp(r(ny11, %) = Dp(T7(n), "))
— 0 as n — oo,

which implies that Dp(zn,2*) — 0. Therefore z, — 2* as n — oo. Thus from

above two cases, we conclude that {z,} and {u,} converge strongly to z* = Ilgu.

This completes the proof. O
We consequently obtain the following result in Hilbert spaces.

Corollary 3.2. Let H; and Hs be two real Hilbert spaces and let C and @ be
nonempty, closed and conver subsets of Hy and Hs, respectively. Let A : Fy —
E5 be a bounded linear operator and A* : E5 — ET be its adjoint of A. Let
{T,}52, be a countable family of quasi-nonezpansive mappings of C into Ey such
that F(T,) = F(T,) for all n > 1. Suppose that Q := (°°, F(T,,) NT # . For
given u € Ey, let {u,} be a sequence generated by u; € C' and

{ Tn = Po(un — A A™(I — Po)Auy) (3.22)

Un+1 = PC(Oén’LL + (1 - an)(/Bnmn + (1 - ﬁn)Tnxn))y Vn > 1a
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where {a,} and {8} are sequences in (0,1). Suppose that the step-size {\,} is a
bounded sequence chosen in such a way that for small enough € > 0,

2|[( — Po)Aun|®

0<e< A, <
[A*(I — Pg)Aun|®

—¢, neN, (3.23)

where the index set N := {n € N: (I — Pg)Au, # 0} and \, = A (X being any
nonnegative value), otherwise. Suppose that the following conditions hold:

(C1) limy, o0 o, =0 and Y07 | = 00;
(C2) 0<a<pB,<b<l.

Suppose in addition that ({T),},T) satisfies the AKTT-condition. Then, {x,}5,
and {u,}$2, converge strongly to an element x* = Pqu, where Pq is the meltric
projection from C' onto ).
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