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uniformly smooth. Let C and Q be nonempty, closed and convex subsets of E1 and
E2, respectively. Let A : E1 → E2 be a bounded linear operator and A∗ : E

∗

2 → E
∗

1

be its adjoint of A. The split feasibility problem (SFP) is to find an element

x̂ ∈ C such that Ax̂ ∈ Q. (1.1)

The set of solutions of problem (1.1) is denoted by Γ, i.e., Γ := {x ∈ C : Ax ∈ Q}.
It is well known that if Γ is nonempty then Γ is a closed and convex subset of E1.
The SFP was first introduced, in a finite dimensional Hilbert space, by Censor-
Elfving [1] in 1994 for modeling inverse problems in radiation therapy treatment
planning which arise from phase retrieval and in medical image reconstruction
(see [2]). The SFP has also been studied by numerous authors in both finite and
infinite dimensional Hilbert spaces (see, e.g., [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]).

For solving the SFP in Banach spaces, Schöpfer et al. [14] first introduced the
following algorithm for solving the SFP: x1 ∈ E1 and

xn+1 = ΠCJ
∗
E1

[
JE1

(xn)− λnA
∗JE2

(Axn − PQ(Axn))
]
, n ≥ 1, (1.2)

where {λn} is a positive sequence, ΠC denotes the generalized projection on E,
PQ is the metric projection on E2, JE1

is the duality mapping on E1 and J∗
E1

is the duality mapping on E∗
1 . It was proved that the sequence {xn} converges

weakly to a solution of SFP, under some mild conditions, in p-uniformly convex
and uniformly smooth Banach spaces.

Recently, Shehu et al. [15] introduced an iterative scheme for solving the SFP
and the fixed point problem of Bregman strongly nonexpansive mapping T in
the framework of p-uniformly convex real Banach spaces which are also uniformly
smooth as follows: Let u ∈ C, u1 ∈ E1 and{

xn = ΠCJ
E∗

1
q

(
JE1
p (un)− λnA

∗JE2
p (I − PQ)Aun

)
un+1 = ΠCJ

E∗
1

q

[
αnJ

E1
p (u) + (1− αn)

(
βnJ

E1
p (xn) + (1− βn)Txn

)]
, ∀n ≥ 1,

(1.3)
where {αn} and {βn} are sequences in (0, 1) and the step-size λn is chosen by

0 < t ≤ λn ≤ k <
(

q
κq∥A∥q

) 1
q−1 .

They proved that the sequence {xn} and {un} defined by (1.3) converge
strongly to a point in F (T ) ∩ Γ under some mild conditions. However, it is ob-
served that iterative method (1.3) involves step-size that depend on the operator
norm ∥A∥ (matrix in the finite-dimensional space), which may not be calculated
easily in general. It makes the implementation of the iteration process inefficient
when the computation of the operator norm ∥A∥ is not explicit (see [16, 17]).

Motivated by the previous works, we introduce an iterative method for solving
the split feasibility problem and the fixed point problem of countable family of
Bregman relatively nonexpansive mappings in the framework of p-uniformly con-
vex and uniformly smooth Banach spaces. Then, we prove strong convergence
theorem of the sequence generated by our iterative scheme with a new way of
selecting the step-size which does not require the computation on the norm of
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the bounded linear operator. Our result complements the results of Byrne [2],
Schöpfer et al. [14], Wang [18], Shehu et al. [15], Shehu et al. [19] and many other
recent results in the literature.

2 Preliminaries

Let E and E∗ be real Banach spaces and the dual space of E, respectively.
Let E1 and E2 be real Banach spaces and let A : E1 → E2 be a bounded linear
operator with its adjoint operator A∗ : E∗

2 → E∗
1 which is defined by

⟨A∗ȳ, x⟩ := ⟨ȳ, Ax⟩, ∀x ∈ E1, ȳ ∈ E∗
2 .

Let S(E) := {x ∈ E : ∥x∥ = 1} denote the unit sphere of E. The modulus of
convexity of E is the function δE : (0, 2] → [0, 1] defined by

δE(ϵ) = inf

{
1− ∥x+y∥

2 : x, y ∈ S(E), ∥x− y∥ ≥ ϵ

}
.

The space E is said to be uniformly convex if δE(ϵ) > 0 for all ϵ ∈ (0, 2]. Let p > 1.
Then E is said to be p-uniformly convex (or to have a modulus of convexity of
power type p) if there is a cp > 0 such that δE(ϵ) ≥ cpϵ

p for all ϵ ∈ (0, 2].
Observe that every p-uniformly convex space is uniformly convex. The modulus of
smoothness of E is the function ρE : R+ := [0,∞) → R+ defined by

ρE(τ) = sup

{
∥x+τy∥+∥x−τy∥

2 − 1 : x, y ∈ S(E)

}
.

The space E is said to be uniformly smooth if ρE(τ)
τ → 0 as τ → 0. Suppose that

q > 1, a Banach space E is said to be q-uniformly smooth if there exists a κq > 0
such that ρE(τ) ≤ κqτ

q for all τ > 0. If E is q-uniformly smooth, then q ≤ 2 and
E is uniformly smooth. It is known that E is p-uniformly convex if and only if E∗

is q-uniformly smooth. Moreover, we note that a Banach space E is p-uniformly
convex if and only if E is q-uniformly smooth, where p and q satisfy 1

p + 1
q = 1

(see [20]).
Let p > 1 be a real number. The generalized duality mapping JE

p : E → 2E
∗

is defined by

JE
p (x) = {x̄ ∈ E∗ : ⟨x, x̄⟩ = ∥x∥p, ∥x̄∥ = ∥x∥p−1},

where ⟨·, ·⟩ denotes the duality pairing between E and E∗. In particular, JE
p = JE

2

is called the normalized duality mapping.
In this case, we assume that E is a p-uniformly convex and uniformly smooth,

which implies that its dual space, E∗ is q-uniformly smooth and uniformly convex.
It is known that the generalized duality mapping JE

p is one-to-one, single-valued

and satisfies JE
p = (JE∗

q )−1, where JE∗

q is the generalized duality mapping of E∗.
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Moreover, if E is uniformly smooth then the duality mapping JE
p is norm-to-norm

uniformly continuous on bounded subsets of E. (see [21, 22] for more details).

Definition 2.1. ([23]) Let f : E → R be a convex and Gâteaux differentiable
function. The function Df : E × E → [0,+∞) defined by

Df (x, y) := f(y)− f(x)− ⟨f ′(x), y − x⟩,

is called the Bregman distance with respect to f .

We remark that the Bregman distance Df is not satisfy the well-known prop-
erties of a metric because Df is not symmetric and does not satisfy the triangle
inequality.

It is well known that the duality mapping JE
p is the sub-differential of the

functional fp(·) = 1
p∥ ·∥

p for p > 1 (see [24]). Then, we have the Bregman distance
with respect to fp that

Dp(x, y) =
1

q
∥x∥p − ⟨JE

p x, y⟩+ 1

p
∥y∥p. (2.1)

If p = 2, we get

D2(x, y) := ϕ(x, y) = ∥x∥2 − 2⟨Jx, y⟩+ ∥y∥2,

where ϕ is called the Lyapunov function which was introduced by Alber [25, 26].
Moreover, the Bregman distance has the following properties:

Dp(x, y) = Dp(x, z) +Dp(z, y) + ⟨JE
p x− JE

p z, z − y⟩, (2.2)

Dp(x, y) +Dp(y, x) = ⟨JE
p x− JE

p y, x− y⟩, (2.3)

for all x, y, z ∈ E. For the p-uniformly convex space, the metric and Bregman
distance has the following relation (see [14]):

τ∥x− y∥p ≤ Dp(x, y) ≤ ⟨JE
p x− JE

p y, x− y⟩, (2.4)

where τ > 0 is some fixed number. In what follows, we shall use the following
notations:

• xn → x mean that {xn} converges strongly to x;
• xn ⇀ x mean that {xn} converges weakly to x.
Let C be a closed and convex subset of E and let T be a mapping from C

into itself. We denote F (T ) by the set of all fixed points of T , i.e., F (T ) =
{x ∈ C : x = Tx}. A point z ∈ C called an asymptotic fixed point of T , if there
exists a sequence {xn} in C which xn ⇀ z such that limn→∞ ∥xn−Txn∥ = 0. We

denote by F̂ (T ) by the set of asymptotic fixed points of T .

Definition 2.2. ([27, 28]) A mapping T : C → C is called Bregman relatively
nonexpansive, if the following conditions are satisfied:
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(R1) F (T ) = F̂ (T ) ̸= ∅;

(R2) Dp(Tx, z) ≤ Dp(x, z), ∀z ∈ F (T ), ∀x ∈ C.

Clearly, in a Hilbert space H, Bregman relatively nonexpansive mappings and
quasi-nonexpansive mappings are equivalent, for ϕ(x, y) = ∥x − y∥2, ∀x, y ∈ H,
i.e.,

ϕ(Tx, z) ≤ ϕ(x, z) ⇐⇒ ∥Tx− z∥ ≤ ∥x− z∥, ∀x ∈ C and z ∈ F (T ).

Definition 2.3. ([29]) Let C be a subset of a real p-uniformly convex Banach space
E. Let {Tn}∞n=1 be a sequence of mappings of C into E such that

∩∞
n=1 F (Tn) ̸= ∅.

Then {Tn}∞n=1 is said to satisfy the AKTT-condition if, for any bounded subset B
of C,

∞∑
n=1

sup
z∈B

{∥JE
p (Tn+1z)− JE

p (Tnz)∥} < ∞.

As in [30], we can prove the following fact.

Proposition 2.1. Let C be a nonempty, closed and convex subset of a real p-
uniformly convex Banach space E. Let {Tn}∞n=1 be a sequence of mappings of C
into E such that

∩∞
n=1 F (Tn) ̸= ∅. Suppose that {Tn}∞n=1 satisfies the AKTT-

condition. Suppose that for any bounded subset B of C. Then there exists the
mapping T : B → E such that

Tx = lim
n→∞

Tnx, ∀x ∈ B, (2.5)

and

lim
n→∞

sup
z∈B

∥JE
p (Tz)− JE

p (Tnz)∥ = 0.

In the sequel, we say that ({Tn}, T ) satisfies the AKTT-condition if {Tn}∞n=1

satisfies the AKTT-condition and T is defined by (2.5) with
∩∞

n=1 F (Tn) = F (T ).
Recall that the metric projection from E onto C, denote by PCx, satisfying

the property

∥x− PCx∥ ≤ inf
y∈C

∥x− y∥, ∀x ∈ E.

It is well known that PCx is the unique minimizer of the norm distance. Moreover,
PCx is characterized by the following properties: PCx ∈ C and

⟨JE
p (x− PCx), y − PCx⟩ ≤ 0, ∀y ∈ C. (2.6)

Similarly, one can define the Bregman projection from E onto C, denote by ΠC ,
satisfying the property

Dp

(
x,ΠC(x)

)
= inf

y∈C
Dp(x, y), ∀x ∈ E. (2.7)
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Lemma 2.2. ([19]) Let C be a nonempty, closed and convex subset of a p-
uniformly convex and uniformly smooth Banach space E and let x ∈ E. Then
the following assertions hold:

(i) z = ΠCx if and only if ⟨JE
p (x)− JE

p (z), y − z⟩ ≤ 0, ∀y ∈ C.

(ii) Dp(ΠCx, y) +Dp(x,ΠCx) ≤ Dp(x, y), ∀y ∈ C.

Lemma 2.3. [31] Let 1 < q ≤ 2 and E be a Banach space. Then the following
are equivalent.

(i) E is q-uniformly smooth;

(ii) There is a constant κq > 0 such that for all x, y ∈ E

∥x− y∥q ≤ ∥x∥q − q⟨jq(x), y⟩+ κq∥y∥q. (2.8)

Remark 2.4. The constant κq satisfying (2.8) is called the q-uniform smoothness
coefficient of E.

The following Lemma can be obtained from Theorem 2.8.17 of [21] (see also
Lemma 5 of [32]).

Lemma 2.5. Let p > 1, r > 0 and E be a Banach space. Then the following
statements are equivalent:

(i) E is uniformly convex;

(ii) There exists a strictly increasing convex function g∗r : R+ → R+ with g∗r (0) =
0 such that∥∥ N∑

k=1

αkxk

∥∥p ≤
N∑

k=1

αk∥xk∥p − αiαjg
∗
r (∥xi − xj∥),

for all i, j ∈ {1, 2, ..., N}, xk ∈ Br := {x ∈ E : ∥x∥ ≤ r}, αk ∈ (0, 1) with∑N
k=1 αk = 1, where k ∈ {1, 2, ..., N}.

Lemma 2.6. ([19]) Let E be a real p-uniformly convex and uniformly smooth
Banach space. Thus, for all z ∈ E, we have

Dp

(
JE∗

q

( N∑
i=1

tiJ
E
p (xi)

)
, z

)
≤

N∑
i=1

tiDp(xi, z),

where {xi}Ni=1 ⊂ E and {ti}Ni=1 ⊂ (0, 1) with
∑N

i=1 ti = 1.

The following lemmas can be found in [15, 19].

Lemma 2.7. Let E be a real p-uniformly convex and uniformly smooth Banach
space. Let Vp : E∗ × E → [0,+∞) be defined by

Vp(x
∗, x) =

1

q
∥x∗∥q − ⟨x∗, x⟩+ 1

p
∥x∥p, ∀x ∈ E, x∗ ∈ E∗.

Then the following assertions hold:
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(i) Vp is nonnegative and convex in the first variable;

(ii) Dp(J
E∗

q (x∗), x) = Vp(x
∗, x), ∀x ∈ E, x∗ ∈ E∗.

(iii) Vp(x
∗, x) + ⟨y∗, JE∗

q (x∗)− x⟩ ≤ Vp(x
∗ + y∗, x), ∀x ∈ E, x∗, y∗ ∈ E∗.

Following the proof line as in Proposition 2.5 of [33], we obtain the following
result:

Lemma 2.8. Let E be a real p-uniformly convex and uniformly smooth Banach
space. Suppose that x ∈ E and {xn} is a sequence in E. If {Dp(xn, x)} is bounded,
then the sequence {xn} is bounded.

Lemma 2.9. Let E be a real p-uniformly convex and uniformly smooth Banach
space. Suppose that {xn} and {yn} are bounded sequences in E. Then the following
assertions are equivalent:

(a) limn→∞ Dp(xn, yn) = 0;

(b) limn→∞ ∥xn − yn∥ = 0.

Proof. Let {xn} and {yn} be bounded sequences in E. For the implication
(a) =⇒ (b). Suppose that limn→∞ Dp(xn, yn) = 0. From (2.4), we have

0 ≤ τ∥xn − yn∥p ≤ Dp(xn, yn),

where τ > 0 is a fixed number. It follows that limn→∞ ∥xn − yn∥ = 0.
For the converse implication (b) =⇒ (a), we assume that limn→∞ ∥xn− yn∥ =

0. From (2.4), we observe that

0 ≤ Dp(xn, yn) ≤ ⟨JE
p xn − JE

p yn, xn − yn⟩
≤ ∥JE

p xn − JE
p yn∥∥xn − yn∥

≤ ∥xn − yn∥M,

where M = supn≥1{∥xn∥p−1, ∥yn∥p−1}. It follows that limn→∞ Dp(xn, yn) = 0.
This completes the proof. 2

Lemma 2.10. ([34]) Assume that {an} is a sequence of nonnegative real numbers
such that

an+1 ≤ (1− γn)an + γnδn, ∀n ≥ 1,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that limn→∞ γn =
0,

∑∞
n=1 γn = ∞ and lim supn→∞ δn ≤ 0. Then, limn→∞ an = 0.

Lemma 2.11. ([35]) Let {Γn} be a sequence of real numbers that does not decrease
at infinity in the sense that there exists a subsequence {Γni

} of {Γn} which satisfies
Γni

< Γni+1 for all i ∈ N. Define the sequence {τ(n)}n≥n0
of integers as follows:

τ(n) = max{k ≤ n : Γk < Γk+1},

where n0 ∈ N such that {k ≤ n0 : Γk < Γk+1} ̸= ∅. Then, the following hold:
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(i) τ(n0) ≤ τ(n0 + 1) ≤ ... and τ(n) → ∞;

(ii) Γτn ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1, ∀n ≥ n0.

Lemma 2.12. Let E be a real p-uniformly convex and uniformly smooth Banach
space. Let z, xk ∈ E (k = 1, 2, ..., N) and αk ∈ (0, 1) with

∑N
k=1 αk = 1. Then, we

have

Dp

(
JE∗

q

( N∑
k=1

αkJ
E
p (xk)

)
, z

)
≤

N∑
k=1

αkDp(xk, z)− αiαjg
∗
r

(
∥JE

p (xi)− JE
p (xj)∥

)
,

for all i, j ∈ {1, 2, ..., N}.

Proof. Let z, xk ∈ E (k = 1, 2, ..., N) and αk ∈ (0, 1) with
∑N

k=1 αk = 1. Since
p-uniformly convex, hence it is uniformly convex. From Lemmas 2.5 and 2.6, we
have

Dp

(
JE∗

q

( N∑
k=1

αkJ
E
p (xk)

)
, z

)

= Vp

( N∑
k=1

αkJ
E
p (xk), z

)

=
1

q

∥∥ N∑
k=1

αkJ
E
p (xk)

∥∥q − ⟨ N∑
k=1

αkJ
E
p (xk), z

⟩
+

1

p
∥z∥p

≤ 1

q

N∑
k=1

αk∥JE
p (xk)∥q − αiαjg

∗
r (∥JE

p (xi)− JE
p (xj)∥)

−
⟨ N∑
k=1

αkJ
E
p (xk), z

⟩
+

1

p
∥z∥p

=
1

q

N∑
k=1

αk∥JE
p (xk)∥q −

N∑
k=1

αk⟨JE
p (xk), z⟩+

1

p
∥z∥p

−αiαjg
∗
r (∥JE

p (xi)− JE
p (xj)∥)

=

N∑
k=1

αkDp(xk, z)− αiαjg
∗
r (∥JE

p (xi)− JE
p (xj)∥),

for all i, j ∈ {1, 2, ..., N}. This completes the proof. 2

3 Main Results

Theorem 3.1. Let E1 and E2 be two real p-uniformly convex and uniformly
smooth Banach spaces and let C and Q be nonempty, closed and convex subsets
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of E1 and E2, respectively. Let A : E1 → E2 be a bounded linear operator and
A∗ : E∗

2 → E∗
1 be its adjoint of A. Let {Tn}∞n=1 be a countable family of Bregman

relatively nonexpansive mappings of C into E1 such that F (Tn) = F̂ (Tn) for all
n ≥ 1. Suppose that Ω :=

∩∞
n=1 F (Tn) ∩ Γ ̸= ∅. For given u ∈ E1, let {un} be a

sequence generated by u1 ∈ C and

{
xn = ΠCJ

E∗
1

q

(
JE1
p (un)− λnA

∗JE2
p (I − PQ)Aun

)
un+1 = ΠCJ

E∗
1

q

[
αnJ

E1
p (u) + (1− αn)

(
βnJ

E1
p (xn) + (1− βn)J

E1
p (Tnxn)

)]
,

(3.1)
where {αn} and {βn} are sequences in (0, 1). Suppose that the step-size {λn} is a
bounded sequence chosen in such a way that for small enough ϵ > 0,

0 < ϵ < λn <

(
q∥(I − PQ)Aun∥p

κq∥A∗JE2
p (I − PQ)Aun∥q

− ϵ

) 1
q−1

, n ∈ N, (3.2)

where the index set N := {n ∈ N : (I − PQ)Aun ̸= 0} and λn = λ (λ being any
nonnegative value), otherwise. Suppose that the following conditions hold:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;

(C2) 0 < a ≤ βn ≤ b < 1.

Suppose in addition that ({Tn}, T ) satisfies the AKTT-condition. Then, {xn}∞n=1

and {un}∞n=1 converge strongly to an element x∗ = ΠΩu, where ΠΩ is the Bregman
projection from C onto Ω.

Proof. By the choice of λn, we observe that

λq−1
n <

q∥(I − PQ)Aun∥p

κq∥A∗JE2
p (I − PQ)Aun∥q

− ϵ

⇐⇒ κqλ
q−1
n ∥A∗JE2

p (I − PQ)Aun∥q

< q∥(I − PQ)Aun∥p − ϵκq∥A∗JE2
p (I − PQ)Aun∥q

⇐⇒ ϵκq

q
∥A∗JE2

p (I − PQ)Aun∥q

< ∥(I − PQ)Aun∥p −
κqλ

q−1
n

q
∥A∗JE2

p (I − PQ)Aun∥q. (3.3)

For each n ≥ 1, we put xn = ΠCvn, where

vn := J
E∗

1
q

(
JE1
p (un)− λnA

∗JE2
p (Aun − PQ(Aun))

)
.
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Let z ∈ Ω :=
∩∞

n=1 F (Tn) ∩ Γ. From (2.6), we observe that

⟨JE2
p (Aun − PQ(Aun)), Aun −Az⟩

= ⟨JE2
p (Aun − PQ(Aun)), Aun − PQ(Aun)⟩

+⟨JE2
p (Aun − PQ(Aun)), PQ(Aun)−Az⟩

= ∥Aun − PQ(Aun)∥p

+⟨JE2
p (Aun − PQ(Aun)), PQ(Aun)−Az⟩

≥ ∥Aun − PQ(Aun)∥p. (3.4)

Then from Lemma 2.3 and (3.4), we have

Dp(xn, z)

≤ Dp

(
J
E∗

1
q (JE1

p (un)− λnA
∗JE2

p (I − PQ)Aun), z
)

=
1

q
∥JE∗

1
q (JE1

p (un)− λnA
∗JE2

p (I − PQ)Aun)∥p

−⟨JE1
p (un)− λnA

∗JE2
p (I − PQ)Aun, z⟩+

1

p
∥z∥p

=
1

q
∥JE1

p (un)− λnA
∗JE2

p (I − PQ)Aun∥q

−⟨JE1
p (un)− λnA

∗JE2
p (I − PQ)Aun, z⟩+

1

p
∥z∥p

≤ 1

q
∥JE1

p (un)∥q − λn⟨JE2
p (I − PQ)Aun, Aun⟩

+
κqλ

q
n

q
∥A∗JE2

p (I − PQ)Aun∥q − ⟨JE1
p (un), z⟩

+λn⟨JE2
p (I − PQ)Aun, Az⟩+ 1

p
∥z∥p

=
1

q
∥un∥p − ⟨JE1

p (un), z⟩+
1

p
∥z∥p + λn⟨JE2

p (I − PQ)Aun, Az −Aun⟩

+
κqλ

q
n

q
∥A∗JE2

p (I − PQ)Aun∥q

= Dp(un, z) + λn⟨JE2
p (I − PQ)Aun, Az −Aun⟩

+
κqλ

q
n

q
∥A∗JE2

p (I − PQ)Aun∥q

≤ Dp(un, z)− λn

(
∥(I − PQ)Aun∥p −

κqλ
q−1
n

q
∥A∗JE2

p (I − PQ)Aun∥q
)
, (3.5)

which implies that

Dp(xn, z) ≤ Dp(un, z).

Now, we put

yn := J
E∗

1
q (βnJ

E1
p (xn) + (1− βn)J

E1
p (Tnxn))
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for all n ≥ 1. From Lemma 2.12, we have

Dp(yn, z)

= Dp(J
E∗

1
q (βnJ

E1
p (xn) + (1− βn)J

E1
p (Tnxn)), z)

≤ βnDp(xn, v) + (1− βn)Dp(Tnxn, z)− βn(1− βn)g
∗
r (∥JE1

p (xn)− JE1
p (Tnxn)∥)

≤ Dp(xn, z)− βn(1− βn)g
∗
r (∥JE1

p (xn)− JE1
p (Tnxn)∥) (3.6)

≤ Dp(xn, z) (3.7)

It follows from (3.7) that

Dp(xn+1, z) ≤ Dp(un+1, z)

≤ Dp

(
J
E∗

1
q (αnJ

E1
p (u) + (1− αn)J

E1
p (yn)), z

)
≤ αnDp(u, z) + (1− αn)Dp(yn, z)

≤ αnDp(u, z) + (1− αn)Dp(xn, z)

≤ max{Dp(u, z), Dp(xn, z)}
...

≤ max{Dp(u, z), Dp(x1, z)}. (3.8)

Hence, {Dp(xn, z)} is bounded, which implies by Lemma 2.8 that {xn} is bounded.
Put un+1 = ΠCzn, where zn := J

E∗
1

q

[
αnJ

E1
p (u) + (1 − αn)J

E1
p (yn)

]
for all

n ≥ 1. From Lemma 2.7 and (3.6), we have

Dp(xn+1, z)

≤ Dp(un+1, z)

≤ Dp(zn, z)

= Vp

(
αnJ

E1
p (u) + (1− αn)J

E1
p (yn), z

)
≤ Vp(αnJ

E1
p (u) + (1− αn)J

E1
p (yn)− αn(J

E1
p (u)− JE1

p (z), z))

+αn⟨JE1
p (u)− JE1

p (z), zn − z⟩
= Vp(αnJ

E1
p (z) + (1− αn)J

E1
p (yn), z) + αn⟨JE1

p (u)− JE1
p (z), zn − z⟩

≤ αnVp(J
E1
p (z), z) + (1− αn)Vp(J

E1
p (yn), z) + αn⟨JE1

p (u)− JE1
p (z), zn − v⟩

= αnDp(z, z) + (1− αn)Dp(yn, z) + αn⟨JE1
p (u)− JE1

p (z), zn − z⟩
≤ (1− αn)[Dp(xn, z)− βn(1− βn)g

∗
r (∥JE1

p (xn)− JE1
p (Tnxn)∥)]

+αn⟨JE1
p (u)− JE1

p (v), zn − z⟩
≤ (1− αn)Dp(xn, z)− βn(1− βn)g

∗
r (∥JE1

p (xn)− JE1
p (Tnxn)∥)]

+αn⟨JE1
p (u)− JE1

p (z), zn − z⟩ (3.9)

≤ (1− αn)Dp(xn, z) + αn⟨JE1
p (u)− JE1

p (z), zn − z⟩. (3.10)

Next, we will divide the proof into two cases:
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Case 1. Suppose that there exists n0 ∈ N such that {Dp(xn, z)}∞n=n0
is non-

increasing. By the boundedness of {Dp(xn, z)}∞n=1, we have {Dp(xn, z)}∞n=1 is
convergent. Furthermore, we have

Dp(xn, z)−Dp(xn+1, z) → 0 as n → ∞.

Then, from (3.9), we have

0 ≤ a(1− b)g∗r (∥JE1
p (xn)− JE1

p (Tnxn)∥)
≤ βn(1− βn)g

∗
r (∥JE1

p (xn)− JE1
p (Tnxn)∥)

≤ Dp(xn, z)−Dp(xn+1, z) + αn⟨JE1
p (u)− JE1

p (z), zn − z⟩ → 0 as n → ∞,

which implies by the property of g∗r that

lim
n→∞

∥JE1
p (xn)− JE1

p (Tnxn)∥ = 0. (3.11)

Since J
E∗

1
q is uniformly norm-to-norm continuous on bounded subsets of E∗

1 , then

lim
n→∞

∥xn − Tnxn∥ = 0. (3.12)

From Lemma 2.9, we also have

lim
n→∞

Dp(Tnxn, xn) = 0. (3.13)

Since JE1
p is uniformly continuous on bounded subsets of E1, we have

lim
n→∞

∥JE1
p (xn)− JE1

p (Tnxn)∥ = 0.

By Proposition 2.1, we observe that

∥JE1
p (xn)− JE1

p (Txn)∥
≤ ∥JE1

p (xn)− JE1
p (Tnxn)∥+ ∥JE1

p (Tnxn)− JE1
p (Txn)∥

≤ ∥JE1
p (xn)− JE1

p (Tnxn)∥+ sup
x∈{xn}

∥JE1
p (Tnx)− JE1

p (Tx)∥ → 0 as n → ∞,

which implies that

lim
n→∞

∥xn − Txn∥ = 0.

By the reflexivity of a Banach space E and the boundedness of {xn}, without
loss of generality, we may assume that xni

⇀ v ∈ C as i → ∞. Then, we get

v ∈ F̂ (Tn) = F (Tn) for all n ≥ 1, i.e., v ∈
∩∞

n=1 F (Tn). Further, we show that
v ∈ Γ. From (3.3) and (3.5), we have

ϵ2κq

q
∥A∗JE2

p (I − PQ)Aun∥q

< λn

(
∥(I − PQ)Aun∥p −

κqλ
q−1
n

q
∥A∗JE2

p (I − PQ)Aun∥q
)

≤ Dp(un, v)−Dp(xn, v)

≤ αn−1Dp(u, v) +Dp(xn−1, v)−Dp(xn, v),
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which implies that

lim
n→∞

∥Aun − PQ(Aun)∥ = 0. (3.14)

Since vn := J
E∗

1
q

(
JE1
p (un) − λnA

∗JE2
p (Aun − PQ(Aun))

)
for all n ≥ 1, it follows

that

0 ≤ ∥JE1
p (vn)− JE1

p (un)∥ ≤ λn∥A∗∥∥JE2
p (Aun − PQ(Aun))∥

≤
(

q

κq∥A∥q

) 1
q−1

∥A∗∥∥Aun − PQ(Aun)∥p−1,

which implies that

lim
n→∞

∥JE1
p (vn)− JE1

p (un)∥ = 0, (3.15)

and hence

lim
n→∞

∥vn − un∥ = 0. (3.16)

By Lemma 2.2 (ii) and (3.6), we have

Dp(vn, xn) = Dp(vn,ΠCvn) ≤ Dp(vn, v)−Dp(xn, xv)

≤ Dp(un, v)−Dp(xn, v)

≤ αn−1Dp(u, v) +Dp(xn−1, v)−Dp(xn, v) → 0 as n → ∞.

By Lemma 2.9, we get

lim
n→∞

∥vn − xn∥ = 0. (3.17)

Then from (3.16) and (3.17), we have

∥xn − un∥ ≤ ∥vn − un∥+ ∥vn − xn∥ → 0 as n → ∞. (3.18)

Since xni ⇀ v ∈ C and from (3.18), we also get uni ⇀ v ∈ C. From (2.6), we have

∥(I − PQ)Av∥p

= ⟨JE2
p (Av − PQ(Av)), Av − PQ(Av)⟩

= ⟨JE2
p (Av − PQ(Av)), Av −Auni⟩+ ⟨JE2

p (Av − PQ(Av)), Auni − PQ(Auni)⟩
+⟨JE2

p (Av − PQ(Av)), PQ(Auni)− PQ(Av)⟩
≤ ⟨JE2

p (Av − PQ(Av)), Av −Auni⟩+ ⟨JE2
p (Av − PQ(Av)), Auni − PQ(Auni)⟩.

Since A is continuous, we have Auni
⇀ Av as i → ∞. From (3.14), we obtain

∥(I − PQ)Av∥ = 0,
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i.e., Av = PQ(Av), this shows that Av ∈ Q. Thus v ∈ Ω := F (T ) ∩ Γ. From
Lemma 2.6 and (3.13), we have

Dp(yn, xn) = Dp(J
E∗

1
q (βnJ

E1
p (xn) + (1− βn)J

E1
p (Tnxn)), xn)

≤ βnDp(xn, xn) + (1− βn)Dp(Tnxn, xn) → 0 as n → ∞.

It follows that

Dp(zn, xn) = Dp(J
E∗

1
q (αnJ

E1
p (u) + (1− αn)J

E1
p (yn)), xn)

≤ αnDp(u, xn) + (1− αn)Dp(yn, xn) → 0 as n → ∞,

and hence

lim
n→∞

∥xn − zn∥ = 0. (3.19)

Next, we show that

lim sup
n→∞

⟨JE1
p (u)− JE1

p (x∗), zn − x∗⟩ ≤ 0,

where x∗ = ΠΩu. From (3.19), we have

lim sup
n→∞

⟨JE1
p (u)− JE1

p (x∗), zn − x∗⟩ = lim sup
n→∞

⟨JE1
p (u)− JE1

p (x∗), xn − x∗⟩

= lim
i→∞

⟨JE1
p (u)− JE1

p (x∗), xni
− x∗⟩.

Since E is reflexive and {xn} is bounded, there exists a subsequence {xni} of {xn}
such that xni ⇀ v ∈ C. It follows from Lemma 2.2 that

lim sup
n→∞

⟨JE1
p (u)− JE1

p (x∗), xn − x∗⟩ = lim
i→∞

⟨JE1
p (u)− JE1

p (x∗), xni
− x∗⟩

= ⟨JE1
p (u)− JE1

p (x∗), v − x∗⟩ ≤ 0.(3.20)

Applying Lemma 2.10 to (3.10) and (3.20), we can conclude that Dp(xn, x
∗) → 0

as n → ∞. Therefore, xn → x∗ as n → ∞.
Case 2. Suppose that there exists a subsequence {Γni

} of {Γn} such that Γni
<

Γni+1 for all i ∈ N. Let us define a mapping τ : N → N by

τ(n) = max{k ≤ n : Γk < Γk+1}.

Then, by Lemma 2.11, we obtain

Γτ(n) ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1.

Put Γn := Dp(xn, x
∗) for all n ∈ N. Then, we have from (3.8) that

0 ≤ lim
n→∞

(Dp(xτ(n)+1, x
∗)−Dp(xτ(n), x

∗))

≤ lim
n→∞

(Dp(u, x
∗) + (1− ατ(n))Dp(xτ(n), x

∗)−Dp(xτ(n), x
∗))

= lim
n→∞

ατ(n)

(
Dp(u, x

∗)−Dp(xτ(n), x
∗)) = 0,
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which implies that

lim
n→∞

(Dp(xτ(n)+1, x
∗)−Dp(xτ(n), x

∗)) = 0. (3.21)

Following the proof line in Case 1, we can show that

lim
n→∞

∥xτ(n) − Txτ(n)∥ = 0,

lim
n→∞

∥Auτ(n) − PQ(Auτ(n))∥ = 0.

Further, we can show that

lim sup
n→∞

⟨JE1
p (u)− JE1

p (x∗), zτ(n) − x∗⟩ ≤ 0.

From (3.10), we have

Dp(xτ(n)+1, x
∗) ≤ (1− ατ(n))Dp(xτ(n), x

∗)

+ατ(n)⟨JE1
p (u)− JE1

p (x∗), zτ(n) − x∗⟩,

which implies that

ατ(n)Dp(xτ(n), x
∗) ≤ Dp(xτ(n), x

∗)−Dp(xτ(n)+1, x
∗)

+ ατ(n)⟨JE1
p (u)− JE1

p (x∗), zτ(n) − x∗⟩.

Since Γτ(n) ≤ Γτ(n)+1 and ατ(n) > 0, we get

Dp(xτ(n), x
∗) ≤ ⟨JE1

p (u)− JE1
p (x∗), zτ(n) − x∗⟩.

Hence, limn→∞ Dp(xτ(n), x
∗) = 0. From (3.21), we have

Dp(xn, x
∗) ≤ Dp(xτ(n)+1, x

∗) = Dp(xτ(n), x
∗) + (Dp(xτ(n)+1, x

∗)−Dp(xτ(n), x
∗))

→ 0 as n → ∞,

which implies that Dp(xn, x
∗) → 0. Therefore xn → x∗ as n → ∞. Thus from

above two cases, we conclude that {xn} and {un} converge strongly to x∗ = ΠΩu.
This completes the proof. 2

We consequently obtain the following result in Hilbert spaces.

Corollary 3.2. Let H1 and H2 be two real Hilbert spaces and let C and Q be
nonempty, closed and convex subsets of H1 and H2, respectively. Let A : E1 →
E2 be a bounded linear operator and A∗ : E∗

2 → E∗
1 be its adjoint of A. Let

{Tn}∞n=1 be a countable family of quasi-nonexpansive mappings of C into E1 such

that F (Tn) = F̂ (Tn) for all n ≥ 1. Suppose that Ω :=
∩∞

n=1 F (Tn) ∩ Γ ̸= ∅. For
given u ∈ E1, let {un} be a sequence generated by u1 ∈ C and{

xn = PC(un − λnA
∗(I − PQ)Aun)

un+1 = PC(αnu+ (1− αn)(βnxn + (1− βn)Tnxn)), ∀n ≥ 1,
(3.22)
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where {αn} and {βn} are sequences in (0, 1). Suppose that the step-size {λn} is a
bounded sequence chosen in such a way that for small enough ϵ > 0,

0 < ϵ < λn <
2∥(I − PQ)Aun∥2

∥A∗(I − PQ)Aun∥2
− ϵ, n ∈ N, (3.23)

where the index set N := {n ∈ N : (I − PQ)Aun ̸= 0} and λn = λ (λ being any
nonnegative value), otherwise. Suppose that the following conditions hold:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;

(C2) 0 < a ≤ βn ≤ b < 1.

Suppose in addition that ({Tn}, T ) satisfies the AKTT-condition. Then, {xn}∞n=1

and {un}∞n=1 converge strongly to an element x∗ = PΩu, where PΩ is the metric
projection from C onto Ω.
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