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1 Introduction and preliminaries

A fundamental result in fixed point theory is the Banach contraction mapping
principle. Several extensions of this result have appeared in the literatures. Let
A,B be two nonempty subsets of a metric space (X, d) and T : A → B be a
mapping. If A ∩B = ∅, then the equation Tx = x might have no solution. Under
this circumstance, it is meaningful to find a point x ∈ A such that d(x, Tx) is
minimum. If d(x, Tx) = d(A,B) := inf{d(a, b) : a ∈ A, b ∈ B}, we get d(x, Tx)
is the global minimum value d(A,B) and so x is an approximate solution of the
equation Tx = x with the least possible error. Such a solution is known as a
best proximity point of the mapping T . That is, a point x ∈ A is called the best
proximity point of T if

d(x, Tx) = d(A,B).

Throughout this paper, (X, d) denotes a metric space, ⪯ denotes a partial
order on X, A,B ⊆ X. We also use the following notations:

A0 = {x ∈ A : d(x, y) = d(A,B) for some y ∈ B},
B0 = {y ∈ B : d(x, y) = d(A,B) for some x ∈ A}.

A metric space (X, d) with a partial order ⪯ defined on X is called a partially
ordered metric space. It is denoted by (X, d,⪯).

In 2011, Sankar Raj [4] introduced the new property called P-property as
follows:

Definition 1.1 ([4]). Let A and B be two nonempty subsets of a metric space
(X, d) with A0 ̸= ∅. Then the pair (A,B) is said to have the P-property if for any
x1, x2 ∈ A0 and y1, y2 ∈ B0, the following condition holds:

d(x1, y1) = d(A,B),
d(x2, y2) = d(A,B)

}
=⇒ d(x1, x2) = d(y1, y2).

Example 1.2. Let X = R2 with the Euclidian metric. Assume that

A :=
{( 2

n+ 1
, 0
)
: n ∈ N

}
∪ (0, 0),

B :=
{( 2

n+ 1
, 1
)
: n ∈ N

}
∪ (0, 1).

It is easy to see that d(A,B) = 1. Suppose that (x1, 0), (x2, 0) ∈ A0 and (y1, 1), (y2, 1) ∈
B0 such that

d((x1, 0), (y1, 1)) = d(A,B) and d((x2, 0), (y2, 1)) = d(A,B).

Then we have √
(x1 − y1)2 + 1 = 1 and

√
(x2 − y2)2 + 1 = 1.
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Therefore, x1 = y1 and x2 = y2 and so

d((x1, 0), (x2, 0)) = |x1 − x2| = |y1 − y2| = d((y1, 1), (y2, 1)).

Thus, the pair (A,B) has the P-property.

In 2012, Basha [2] introduced the following ideas.

Definition 1.3 ([2]). Let A,B be nonempty subsets of a metric space (X, d) and
⪯ be a partial order on X. A mapping T : A → B is called proximally increasing
on A if for all x1, x2, y1, y2 ∈ A, the following condition holds:

y1 ⪯ y2,
d(x1, T y1) = d(A,B),
d(x2, T y2) = d(A,B)

 =⇒ x1 ⪯ x2.

Definition 1.4 ([2]). Let A,B be nonempty subsets of a metric space (X, d) and
⪯ be a partial order on X. A mapping T : A → B is called proximally increasing
on A0 if for all x1, x2, y1, y2 ∈ A0, the following condition holds:

y1 ⪯ y2,
d(x1, T y1) = d(A,B),
d(x2, T y2) = d(A,B)

 =⇒ x1 ⪯ x2.

Example 1.5. Let X = R2 with the taxicab metric d on X. We define a partial
order ⪯ on X by

(x1, x2) ⪯ (y1, y2) if and only if x1 ≤ y1 and x2 ≤ y2

for all (x1, y1), (x2, y2) ∈ X. Let

A = {(x, 1) : 1 ≤ x ≤ 10},
B = {(x, 5) : 1 ≤ x ≤ 10}.

Clearly, d(A,B) = 4. We define T : A→ B by

T (x, 1) =
(x
5
, 5
)

for all (x, 1) ∈ [1, 10].

It is easy to see that d(A,B) = 4. Let (x1, 1), (x2, 1), (y1, 1), (y2, 1) ∈ A with
(y1, 1) ⪯ (y2, 1). Assume that d

(
(x1, 1), T (y1, 1)

)
= d(A,B) and d

(
(x2, 1), T (y2, 1)

)
=

d(A,B). Then

4 = d
(
(x1, 1), T (y1, 1)

)
= d

(
(x1, 1),

(y1
5
, 5
))

=
∣∣∣x1 − y1

5

∣∣∣+ 4

and

4 = d
(
(x2, 1), T (y2, 1)

)
= d

(
(x2, 1),

(y2
5
, 5
))

=
∣∣∣x2 − y2

5

∣∣∣+ 4,

which imply that x1 = y1

5 and x2 = y2

5 . Since (y1, 1) ⪯ (y2, 1), we get y1 ≤ y2 and
then y1

5 ≤ y2

5 . This implies that x1 ≤ x2 and so (x1, 1) ⪯ (x2, 1). Hence, T is
proximally increasing on A.
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In addition, we will give some notations for using in our results.

Let Ψ be the set of all functions ψ : [0,∞) → [0,∞) satisfying the following
conditions:

(i) ψ is continuous and

(ii) ψ(t) = 0 if and only if t = 0.

Let Θ be the set of all functions θ : [0,∞) → [0,∞) satisfying the following
conditions:

(i) θ is bounded on any bounded interval in [0,∞) and

(ii) θ is continuous at 0 and θ(0) = 0.

In recently, Babu and Leta [1] introduced the new weak contraction mapping
called a (ψ − φ− θ)-almost weakly contractive mapping as follows:

Definition 1.6 ([1]). Let (X, d,⪯) be a partially ordered metric space and A,B
be nonempty subsets of X. A nonself-mapping T : A→ B is called a (ψ − φ− θ)-
almost weakly contractive mapping if there exist ψ ∈ Ψ, φ, θ ∈ Θ and L ≥ 0 such
that for all x, y ∈ A0 with x ⪰ y

=⇒ ψ(d(Tx, Ty)) ≤ φ(d(x, y))− θ(d(x, y)) + Ln(x, y), (1.1)

where

n(x, y) = min{d(x, Tx)− d(A,B), d(y, Ty)− d(A,B), d(x, Ty)− d(A,B),

d(y, Tx)− d(A,B)}.

If L = 0 in (1.1), then T is called a (ψ − φ− θ)-weakly contractive mapping.

Moreover, they obtained some best proximity point result for mappings sat-
isfying the almost contractive condition with three control functions in partially
ordered metric spaces as follows:

Theorem 1.7 ([1]). Let (X, d,⪯) be a partially ordered complete metric space and
(A,B) be a pair of nonempty closed subsets of X such that A0 is nonempty closed
and (A,B) satisfies the P-property. Let T : A → B be a mapping which satisfies
the (ψ − φ− θ)-almost weakly contractive condition such that T (A0) ⊆ B0 and T
is proximally increasing on A0. Suppose that the following condition holds:

(i) for all x, y ∈ [0,∞),

ψ(x) ≤ φ(y) =⇒ x ⪯ y; (1.2)

(ii) for any sequence {xn} in [0,∞) with xn → t > 0,

ψ(t)− lim
n→∞

φ(xn) + lim
n→∞

θ(xn) > 0. (1.3)
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Furthermore, assume that either

(a) T is continuous or

(b) if {xn} is a nondecreasing sequence in X such that xn → x, then xn ⪯ x
for all n ∈ N.

Also, suppose that there exist elements x0, x1 ∈ A0 such that d(x1, Tx0) = d(A,B)
and x0 ⪯ x1. Then T has a best proximity point in A0, that is, there exists an
element x∗ ∈ A0 such that d(x∗, Tx∗) = d(A,B).

In this paper, we introduce a generalized weakly contractive mapping and
utilize such mapping to establish some best proximity point results in partially
ordered metric spaces without the P-property. Our results generalize the main
theorem of Babu and Leta [1].

2 Main Results

We establish new best proximity point theorems for some weak contraction
mapping in partially ordered metric spaces as follows:

Theorem 2.1. Let (X, d,⪯) be a partially ordered complete metric space and
(A,B) be a pair of nonempty closed subsets of X such that A0 is nonempty and
closed. Suppose that T : A → B is a mapping such that T (A0) ⊆ B0 and T is
proximally increasing on A0. Assume that there exist L ≥ 0, ψ ∈ Ψ and ϕ, θ ∈ Θ
satisfying the following conditions:

(i) for all x, y ∈ [0,∞),

ψ(x) ≤ ϕ(y) =⇒ x ⪯ y; (2.1)

(ii) for all sequence {xn} in [0,∞) with xn → t > 0,

ψ(t)− lim
n→∞

ϕ(xn) + lim
n→∞

θ(xn) > 0; (2.2)

(iii) for all x, y, u, v ∈ A0,

x ⪯ y,
d(u, Tx) = d(A,B),
d(v, Ty) = d(A,B)

 =⇒ ψ
(
d(u, v)

)
≤

ϕ
(
M(x, y, u, v)

)
−θ

(
M(x, y, u, v)

)
+Ln(x, y),

(2.3)

where

M(x, y, u, v) = max
{
d(x, y),

d(x, u) + d(y, v)

2
,
d(y, u) + d(x, v)

2

}
and

n(x, y) = min {d(x, Tx)− d(A,B), d(y, Ty)− d(A,B), d(x, Ty)− d(A,B),

d(y, Tx)− d(A,B)} ;
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(iv) there exist elements x0, x1 ∈ A0 such that x0 ⪯ x1 and d(x1, Tx0) = d(A,B).

Furthermore, suppose that either

(a) T is continuous or

(b) if {xn} is a nondecreasing sequence in X such that xn → x, then xn ⪯ x
for all n ∈ N.

Then T has a best proximity point in A0, that is, there exists an element z ∈ A0

such that d(z, Tz) = d(A,B).

Proof. From (iv), there exist x0, x1 ∈ A0 such that x0 ⪯ x1 and

d(x1, Tx0) = d(A,B). (2.4)

Since T (A0) ⊆ B0, there exists an element x2 ∈ A0 such that

d(x2, Tx1) = d(A,B). (2.5)

As T is proximally increasing on A0, using (2.4) and (2.5), we have x1 ⪯ x2. By
continuing this process, we can constract a sequence {xn} in A0 such that

xn ⪯ xn+1 (2.6)

and

d(xn+1, Txn) = d(A,B) (2.7)

for all n ∈ N ∪ {0}. By using the hypothesis (iii), we obtain

ψ(d(xn+1, xn+2)) ≤ ϕ
(
M(xn, xn+1, xn+1, xn+2)

)
− θ

(
M(xn, xn+1, xn+1, xn+2)

)
+Ln(xn, xn+1), (2.8)

where

M(xn, xn+1, xn+1, xn+2) = max
{
d(xn, xn+1),

d(xn, xn+1) + d(xn+1, xn+2)

2
,

d(xn+1, xn+1) + d(xn, xn+2)

2

}
= max

{
d(xn, xn+1),

d(xn, xn+1) + d(xn+1, xn+2)

2
,

d(xn, xn+2)

2

}
= max

{
d(xn, xn+1),

d(xn, xn+1) + d(xn+1, xn+2)

2

}
and

n(xn, xn+1) = min
{
d(xn+1, Txn+1)− d(A,B), d(xn, Txn)− d(A,B),

d(xn+1, Txn)− d(A,B), d(xn, Txn+1)− d(A,B)
}

= 0.
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Let αn := d(xn, xn+1) for all n ∈ N.

Case 1: Assume thatM(xn, xn+1, xn+1, xn+2) = d(xn, xn+1) for some n ∈ N∪{0}.
It follows from (2.8) that

ψ(d(xn+1, xn+2)) ≤ ϕ(d(xn, xn+1))− θ(d(xn, xn+1)),

that is,

ψ(αn+1) ≤ ϕ(αn)− θ(αn), (2.9)

which implies that ψ(αn+1) ≤ ϕ(αn). By the hypothesis (i), we obtain αn+1 ≤ αn.

Case 2: Assume that M(xn, xn+1, xn+1, xn+2) =
d(xn, xn+1) + d(xn+1, xn+2)

2
=

αn + αn+1

2
=: βn. It follows from (2.8) that

ψ(αn+1) ≤ ϕ(βn)− θ(βn), (2.10)

which implies that ψ(αn+1) ≤ ϕ
(αn+1 + αn

2

)
. By the hypothesis (i), we obtain

αn+1 ≤ αn + αn+1

2
, that is, αn+1 ≤ αn.

From Case 1 and Case 2, we obtain {αn} is a monotone decreasing sequence
of nonnegative real numbers. Since {αn} is bounded below by zero, there exists
t ≥ 0 such that

lim
n→∞

αn = lim
n→∞

d(xn, xn+1) = t (2.11)

and so

lim
n→∞

βn = lim
n→∞

d(xn, xn+1) + d(xn+1, xn+2)

2
=
t+ t

2
= t. (2.12)

Taking the limit superior in both sides of the inequality (2.8), using (2.11), the
continuity of ψ, and the property of ϕ and θ, we get

ψ(t) ≤ lim
n→∞

ϕ(max{αn, βn}) + lim
n→∞

(−θ(max{αn, βn})).

Since lim
n→∞

(−θ(max{αn, βn})) = − lim
n→∞

θ(max{αn, βn}), it follows that

ψ(t) ≤ lim
n→∞

ϕ(max{αn, βn})− lim
n→∞

(θ(max{αn, βn})),

that is,

ψ(t)− lim
n→∞

ϕ(max{αn, βn}) + lim
n→∞

θ(max{αn, βn}) ≤ 0.
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By the hypothesis (ii), (2.11) and (2.12), it is a contradiction unless t = 0. There-
fore,

αn = d(xn, xn+1) → 0 as n→ ∞. (2.13)

Next, we will show that {xn} is a Cauchy sequence. Suppose that {xn} is not
a Cauchy sequence. Then there exist δ > 0 and two sequences {mk} and {nk} of
positive integers such that for each positive integer k,

nk > mk > k and d(xmk
xnk

) ≥ δ.

Assuming that nk is the smallest such positive integer, we get

d(xmk
, xnk−1) < δ.

Using the triangle inequality, we get

δ ≤ d(xmk
, xnk

) ≤ d(xmk
, xnk−1) + d(xnk−1, xnk

) < δ + d(xnk−1, xnk
). (2.14)

From (2.13) and (2.14), we obtain

lim
k→∞

d(xmk
, xnk

) = δ. (2.15)

Using the triangle inequality again, we get

d(xmk
, xnk

) ≤ d(xmk
, xmk+1) + d(xmk+1, xnk+1) + d(xnk+1, xnk

)

and

d(xmk+1, xnk+1) ≤ d(xmk+1, xmk
) + d(xmk

, xnk
) + d(xnk

, xnk+1).

The above two inequalities imply that

d(xmk
, xnk

)− d(xmk
, xmk+1)− d(xnk+1, xnk

) ≤ d(xmk+1, xnk+1)

≤ d(xmk+1, xmk
) + d(xmk

, xnk
)

+d(xnk
, xnk+1).

From the above inequality, (2.13) and (2.15), we have

lim
k→∞

d(xmk+1, xnk+1) = δ. (2.16)

Again, we have

d(xmk
, xnk

) ≤ d(xmk
, xnk+1) + d(xnk+1, xnk

)

and

d(xmk
, xnk+1) ≤ d(xmk

, xnk
) + d(xnk

, xnk+1).
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The above two inequalities imply that

d(xmk
, xnk

)− d(xnk+1, xnk
) ≤ d(xmk

, xnk+1)

≤ d(xmk
, xnk

) + d(xnk
, xnk+1).

From the above inequality, (2.13) and (2.15), we have

lim
k→∞

d(xmk
, xnk+1) = δ. (2.17)

Similarly, we can prove that

lim
k→∞

d(xnk
, xmk+1) = δ. (2.18)

By the construction of the sequence {xn}, we have

xmk
⪯ xnk

, d(xmk+1, Txmk
) = d(A,B) and d(xnk+1, Txnk

) = d(A,B),

which, by the hypothesis (iii), imply that

ψ(d(xmk+1, xnk+1)) ≤ ϕ(M(xmk
, xnk

, xmk+1, xnk+1))

−θ(M(xmk
, xnk

, xmk+1, xnk+1))

+Ln(xmk
, xnk

), (2.19)

where

M(xmk
, xnk

, xmk+1, xnk+1) = max
{
d(xmk

, xnk
),

d(xmk
, xmk+1) + d(xnk

, xnk+1)

2
,

d(xnk
, xmk+1) + d(xmk

, xnk+1)

2

}
and

n(xmk
, xnk

) = min
{
d(xmk

, Txmk
)− d(A,B), d(xnk

, Txnk
)− d(A,B),

d(xnk
, Txmk

)− d(A,B), d(xmk
, Txnk

)− d(A,B)
}
.

Using the triangle inequality, it follows that

n(xmk
, xnk

) = min{d(xmk
, Txmk

)− d(A,B), d(xnk
, Txnk

)− d(A,B),

d(xnk
, Txmk

)− d(A,B), d(xmk
, Txnk

)− d(A,B)}
≤ min{d(xnk

, xnk+1) + d(xnk+1, Txnk
)− d(A,B),

d(xmk
, xmk+1) + d(xmk+1, Txmk

)− d(A,B), d(xnk
, xmk+1)

+d(xmk+1, Txmk
)− d(A,B), d(xmk

, xnk+1) + d(xnk+1, Txnk
)− d(A,B)}

= min{d(xnk
, xnk+1), d(xmk

, xmk+1), d(xnk
, xmk+1), d(xmk

, xnk+1)}.
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Therefore, we get

ψ(d(xmk+1, xnk+1)) ≤ ϕ(M(xmk
, xnk

, xmk+1, xnk+1))− θ(M(xmk
, xnk

, xmk+1, xnk+1))

+Lmin{d(xnk
, xnk+1), d(xmk

, xmk+1), d(xnk
, xmk+1),

d(xmk
, xnk+1)}, (2.20)

Consider

M(xmk
, xnk

, xmk+1, xnk+1) = max
{
d(xmk

, xnk
),
d(xmk

, xmk+1) + d(xnk
, xnk+1)

2
,

d(xnk
, xmk+1) + d(xmk

, xnk+1)

2

}
.

From (2.13), (2.15), (2.22), and (2.18), it follows that

lim
k→∞

M(xmk
, xnk

, xmk+1, xnk+1) = δ. (2.21)

Taking the limit superior in both sides of the inequality (2.20), using (2.16), (2.21),
the continuity of ψ, and the property of ϕ and θ, we obtain

ψ(δ) ≤ lim
n→∞

ϕ(M(xmk
, xnk

, xmk+1, xnk+1)) + lim
n→∞

(−θ(M(xmk
, xnk

, xmk+1, xnk+1))).

As lim
n→∞

(−θ(M(xmk
, xnk

, xmk+1, xnk+1))) = − lim
n→∞

θ(M(xmk
, xnk

, xmk+1, xnk+1)),

it follows that

ψ(δ) ≤ lim
n→∞

ϕ(M(xmk
, xnk

, xmk+1, xnk+1))− lim
n→∞

θ(M(xmk
, xnk

, xmk+1, xnk+1)),

that is,

ψ(δ)− lim
n→∞

ϕ(M(xmk
, xnk

, xmk+1, xnk+1)) + lim
n→∞

θ(M(xmk
, xnk

, xmk+1, xnk+1)) ≤ 0,

which, by the hypothesis (ii) and (2.16), it is a contradiction. Therefore, {xn} is
a Cauchy sequence in A0. Since X is complete and A0 is a closed subset of X and
hence complete. From the completeness of A0, there exists z ∈ A0 such that

lim
n→∞

xn = z, that is, lim
n→∞

d(xn, z) = 0. (2.22)

First, we assume that T is continuous. On taking limit as n→ ∞ in (2.7) and
using the continuity of T , we obtain d(z, Tz) = d(A,B). Therefore z is the best
proximity point of T .

We now assume that the condition (b) holds. By (2.6) and (2.22), we have

xn ⪯ z for all n ∈ N. (2.23)

Since z ∈ A0 and T (A0) ⊆ B0, there exists a point w ∈ A0 for which

d(w, Tz) = d(A,B). (2.24)
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By (2.7), (2.23) and (2.24), we have

xn ⪯ z, d(xn+1, Txn)

for all n ∈ N and

d(w, Tz) = d(A,B),

which, by the hypothesis (iii), imply that

ψ(d(xn+1, w)) ≤ ϕ(M(xn, z, xn+1, w))− θ(M(xn, z, xn+1, w)) + Ln(xn, z),(2.25)

where

M(xn, z, xn+1, w) = max
{
d(xn, z),

d(xn, xn+1) + d(z, w)

2
,
d(z, xn+1) + d(xn, w)

2

}
and

n(xn, z) = min{d(z, Tz)− d(A,B), d(xn, Txn)− d(A,B), d(z, Txn)− d(A,B),

d(xn, T z)− d(A,B)}.

Using the triangle inequality, it follows that

n(xn, z) = min{d(z, Tz)− d(A,B), d(xn, Txn)− d(A,B), d(z, Txn)− d(A,B),

d(xn, T z)− d(A,B)}
≤ min{d(z, Tz)− d(A,B), d(xn, Txn)− d(A,B),

d(z, xn+1) + d(xn+1, Txn)− d(A,B), d(xn, T z)− d(A,B)}
= min{d(z, Tz)− d(A,B), d(xn, Txn)− d(A,B),

d(z, xn+1), d(xn, T z)− d(A,B)}.

Therefore

ψ(d(xn+1, w)) ≤ ϕ(M(xn, z, xn+1, w))− θ(M(xn, z, xn+1, w))

+Lmin{d(z, Tz)− d(A,B), d(xn, Txn)− d(A,B),

d(z, xn+1), d(xn, T z)− d(A,B)}. (2.26)

From (2.22), we obtain that

lim
n→∞

M(xn, z, xn+1, w) =
d(z, w)

2
. (2.27)

Taking the limit superior in both sides of the inequality (2.26), using (2.22), (2.27),
the properties of ψ, and the property of ϕ and θ, we obtain

ψ
(d(z, w)

2

)
≤ ψ(d(z, w)) ≤ lim

n→∞
ϕ(M(xn, z, xn+1, w)) + lim

n→∞
(−θ(M(xn, z, xn+1, w))).
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Argument similarly as discussed above, we have

ψ
(d(z, w)

2

)
− lim

n→∞
ϕ(M(xn, z, xn+1, w)) + lim

n→∞
θ(M(xn, z, xn+1, w)) ≤ 0,

which, by the hyprothesis (ii) and (2.27), it is a contraction unless d(z, w) = 0,
that is, z = w. By (2.24), we have d(z, Tz) = d(A,B), that is, z is a best proximity
point of T .

By using the same technique in the proof of Theorem 2.1, we get the following
result.

Theorem 2.2. Let (X, d,⪯) be a partially ordered complete metric space and
(A,B) be a pair of nonempty closed subsets of X such that A0 is nonempty and
closed. Suppose that T : A → B is a mapping such that T (A0) ⊆ B0 and T is
proximally increasing on A0. Assume that there exist L ≥ 0, ψ ∈ Ψ and ϕ, θ ∈ Θ
satisfying the following conditions:

(i) for all x, y ∈ [0,∞),

ψ(x) ≤ ϕ(y) =⇒ x ⪯ y; (2.28)

(ii) for all sequence {xn} in [0,∞) with xn → t > 0,

ψ(t)− lim
n→∞

ϕ(xn) + lim
n→∞

θ(xn) > 0; (2.29)

(iii) for all x, y, u, v ∈ A0,

x ⪯ y,
d(u, Tx) = d(A,B),
d(v, Ty) = d(A,B)

 =⇒ ψ
(
d(u, v)

)
≤

ϕ
(
d(x, y)

)
−θ

(
d(x, y)

)
+Ln(x, y),

(2.30)

where

n(x, y) = min {d(x, Tx)− d(A,B), d(y, Ty)− d(A,B), d(x, Ty)− d(A,B),

d(y, Tx)− d(A,B)} ;

(iv) there exist elements x0, x1 ∈ A0 such that x0 ⪯ x1 and d(x1, Tx0) = d(A,B).

Furthermore, suppose that either

(a) T is continuous or

(b) if {xn} is a nondecreasing sequence in X such that xn → x, then xn ⪯ x
for all n ∈ N.

Then T has a best proximity point in A0, that is, there exists an element z ∈ A0

such that d(z, Tz) = d(A,B).
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Next, we apply Theorem 2.2 which is the best proximity point result without
the P-property for proving the best proximity point with the P-property via the
following useful lemma due to Gabeleh [3].

Lemma 2.3 ([3]). Let (A,B) be a pair of nonempty closed subsets of a complete
metric space (X, d) such that A0 is nonempty and (A,B) has the P-property. Then
(A0, B0) is a closed pair of subsets of X.

Corollary 2.4 ([1]). Let (X, d,⪯) be a partially ordered complete metric space
and (A,B) be a pair of nonempty closed subsets of X such that A0 is nonempty
and (A,B) satisfies the P-property. Suppose that T : A → B is a mapping such
that T (A0) ⊆ B0 and T is proximally increasing on A0. Assume that there exist
L ≥ 0, ψ ∈ Ψ and ϕ, θ ∈ Θ satisfying the following conditions:

(i) for all x, y ∈ [0,∞),

ψ(x) ≤ ϕ(y) =⇒ x ⪯ y; (2.31)

(ii) for all sequence {xn} in [0,∞) with xn → t > 0,

ψ(t)− lim
n→∞

ϕ(xn) + lim
n→∞

θ(xn) > 0; (2.32)

(iii) T satisfies the (ψ − φ− θ)-almost weakly contractive condition, that is,

ψ(d(Tx, Ty)) ≤ ϕ
(
d(x, y)

)
− θ

(
d(x, y)

)
+ Ln(x, y), (2.33)

for all x, y, u, v ∈ A0 with x ⪯ y, where

n(x, y) = min {d(x, Tx)− d(A,B), d(y, Ty)− d(A,B), d(x, Ty)− d(A,B),

d(y, Tx)− d(A,B)} ;

(iv) there exist elements x0, x1 ∈ A0 such that d(x1, Tx0) = d(A,B) and x0 ⪯ x1.

Furthermore, assume that either

(a) T is continuous or

(b) if {xn} is a nondecreasing sequence in X such that xn → x, then xn ⪯ x
for all n ∈ N.

Then T has a best proximity point in A0, that is, there exists an element z ∈ A0

such that d(z, Tz) = d(A,B).

Proof. Since (A,B) satisfies the P-property, the contractive condition (2.33) im-
plies the condition (2.30). By using Lemma 2.3 and applying Theorem 2.2, we get
this result.
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