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1 Introduction

Let C be a nonempty closed convex subset of a real Hilbert spaces H. A
mapping T : C → C is called

(i) nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥,

(ii) firmly nonexpansive if

∥Tx− Ty∥2 ≤ ⟨x− y, Tx− Ty⟩,

(iii) quasi-nonexpansive if

∥Tx− z∥ ≤ ∥x− z∥,

(iv) nonspreading if

2∥Tx− Ty∥2 ≤ ∥Tx− y∥2 + ∥x− Ty∥2,

for all x, y ∈ C and z ∈ F (T ) where F (T ) denotes the set of fixed points of T (i.e.,
F (T ) = {x ∈ C : Tx = x}).

A mapping A : C → H is called α-inverse strongly monotone, see [15] if there
exists a positive real number α such that

⟨x− y,Ax−Ay⟩ ≥ α∥Ax−Ay∥2,∀x, y ∈ C.

Let G : C × C → R be a bifunction. The equilibrium problem for G is to
determine a point x∗ ∈ C such that

G(x∗, y) ≥ 0, ∀y ∈ C. (1.1)

The set of all solution of (1.1) is denoted by

EP (G) = {x∗ ∈ C : G(x∗, y) ≥ 0}. (1.2)

For solving the equilibrium problem for a bifunction F : C × C → R, let us
assume that F satisfies the following conditions:

(A1) F (x, x) = 0 for all x ∈ C;
(A2) F is monotone, that is, F (x, y) + F (y, x) ≤ 0, ∀x, y ∈ C;
(A3) for all x, y, z ∈ C,

lim
t→0+

F (tz + (1− t)x, y) ≤ F (x, y);

(A4) for all x ∈ C,y → F (x, y) is convex and lower semicontinuous.
Many problems in physics, optimization, and economics reduce to find a so-

lution of EP (G), see, for instance [2]-[7]. In 2007, Takahashi and Takahashi [7]
proved the following theorem:
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Theorem 1.1. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let G : C × C → R be a bifunction satisfying (A1) − (A4) and let S be
a nonexpansive mapping of C into H such that F (S) ∩ EP (G) ̸= ∅. Let f be
a contraction of H into itself and let {xn} and {un} be sequences generated by
x1 ∈ H and {

G(un, y) +
1
rn
⟨y − un, un − xn⟩, ∀y ∈ C,

xn+1 = αnf(xn) + (1− αn)Sun, ∀n ∈ N,

where {αn} ⊂ [0, 1] and {rn} ⊂ (0, 1) satisfying
(C1) αn → 0 as n → ∞,
(C2)

∑∞
n=0 αn = ∞,

(C3) either
∑∞

n=0 |αn+1 − αn| < ∞ or limn→∞
αn+1

αn
= 1,

lim infn→∞ rn > 0 and
∑∞

n=0 |rn+1 − rn| < ∞. Then {xn} and {un} converge
strongly to z ∈ F (S) ∩ EP (G), where z = PF (S)∩EP (G)f(z).

Let B : C → H be a nonlinear mapping. The variational inequality problems
is to find a point u ∈ C such that

⟨v − u,Bu⟩ ≥ 0, for all v ∈ C. (1.3)

The set of solutions of the variational inequality is denoted V I(C,B). Nu-
merous problems in physics, optimization, minimax problems are reduced to vari-
ational inequality problems, see, for instance [17]-[18].

In 2009, Kumam [17] introduced an iterative algorithm as follows:

Algorithm 1.2. Let C be a closed convex subset of a real Hilbert space H. Let F be
a bifunction satifying (A1)− (A4) and let A be a monotone k-Lipschitz continuous
mapping and let S be a nonexpansive maping. Suppose x1 = u ∈ C and {xn},
{yn} and {un} are guven by

F (un, y) +
1
rn
⟨y − un, un − xn⟩ ≥ 0,∀y ∈ C,

yn = PC(un − λnAun),

xn+1 = αnu+ βnxn + γnSPC(xn − λnAyn),

(1.4)

for all n ∈ N.

He proved under some control conditions on {αn}, {βn}, {γn} and {rn} that
the sequence {xn} generated by (1.4) convergence strongly to PF (S)∩V I(C,A)∩EP (F )u.

The generalized equilibrium problem is to find z ∈ C such that G(x, y) +
⟨Bz, y − z⟩ ≥ 0, ∀y ∈ C.

The set of all solutions of generalized equilibrium problem is denoted by

EP (G,B) = {z ∈ C : G(z, y) + ⟨Bz, y − z⟩ ≥ 0, ∀y ∈ C}. (1.5)

In the case of B = 0, EP (G,B) = EP (G).
Let CB(H) be a family of all nonempty closed bounded subsets of H and
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H(., .) be the Hausdorff metric on CB(H) defined as

H(U, V ) = max{sup
u∈U

d(u, V ), sup
v∈V

d(U, v)},∀U, V ∈ CB(H),

where d(u, V ) = infv∈V d(u, v), d(U, v) = infu∈U d(u, v) and d(u, v) = ∥u− v∥.
Let φ : C → H be a real-valued function, T : C → CB(H) be a multivalued

map and Φ : H ×C ×C → R be an equilibrium-like function, that is, Φ(w, u, v)+
Φ(w, v, u) = 0 for all (w, u, v) ∈ H×C×C which satisfies the following conditions
with respect to the multivalued T : C → CB(H);

(H1) For each fixed v ∈ C, (w, u) 7→ Φ(w, u, v) is an upper semicontinuous
function from H × C to R, that is, for (w, u) ∈ H × C, wherever wn → w and
un → u as n → ∞,

lim
n→∞

sup(wn, un, v) → Φ(w, u, v),

(H2) For each fixed (w, v) ∈ H ×C ×C, u 7→ Φ(w, u, v) is a concave function,
(H3) For each fixed (w, u) ∈ H × C × C, v 7→ Φ(w, u, v) is a convex function.
In 2009, Ceng et al.[8] introduced the following generalized equilibrium prob-

lem (GEP ) as follows:

(GEP )

{
Find u ∈ C and w ∈ T (u) such that

Φ(w, u, v) + φ(v)− φ(u) ≥ 0,∀v ∈ C.
(1.6)

The set of solutions of (GEP ) is denoted by (GEP )s(Φ, φ), see, for instance
[4]. In the case of φ ≡ 0 and Φ(w, u, v) ≡ G(u, v), then (GEP )s(Φ, φ) is denoted
by EP (G).

In 2012, Kangtunyakarn [14] introduced an iterative algorithm as follows:

Algorithm 1.3. Let Ti, i = 1, 2, ..., N , be κi−pseudo-contraction mappings of
C into itself and κ = max{κi : i = 1, 2, ..., N} and let Sn be the S-mappings

generated by {Ti}Ni=1 and λ
(n)
1 , ..., λ

(n)
N , where α

(n)
j = (α

(n),j
1 , α

(n),j
2 , α

(n)
3 , j) ∈ I ×

I × I, I = [0, 1], αn,j
1 + αn,j

2 + αn,j
3 = 1 and κ < a ≤ αn,j

1 , αn,j
3 ≤ b < 1 for all

j = 1, 2, ..., N − 1, κ ≤ αn,N
1 ≤ 1, κ ≤ αn,N

3 ≤ d < 1, κ ≤ αn,N
2 ≤ e < 1 for

all j = 1, 2, ..., N . Let x1 ∈ C = C1 and w1
1 ∈ T (x1), w

2
1 ∈ D(x1), there exist

sequences {w1
n}, {w2

n} ∈ H and {xn}, {un}, {vn} ⊆ C such that

w1
n ∈ T (xn), ∥w1

n − w1
n+1∥ ≤

(
1 + 1

n

)
H(T (xn), T (xn+1)),

w2
n ∈ D(xn), ∥w2

n − w2
n+1∥ ≤

(
1 + 1

n

)
H(D(xn), D(xn+1)),

Φ1(w
1
n, un, u) + φ1(u)− φ1(un) +

1
rn
⟨un − xn, u− un⟩ ≥ 0,∀u ∈ C, rn > 0,

Φ2(w
2
n, vn, v) + φ2(v)− φ2(vn) +

1
sn
⟨vn − xn, v − vn⟩ ≥ 0,∀v ∈ C, sn > 0,

zn = δnPC(I − λA)un + (1− δn)PC(I − ηB)vn,

yn = αnzn + (1− αn)Snzn,

Cn+1 = {z ∈ Cn : ∥yn − z∥ ≤ ∥xn − z∥},
xn+1 = PCn+1

x1,∀n ≥ 1,

(1.7)
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where D,T : C → CB(H) are H-Lipschitz continuous with constant µ1, µ2, re-
spectively, Φ1, Φ2 : H × C × C → R are equilibrium-like functions satisfying
(H1) − (H3), φ1, φ2 : C → R be a lower semicontinuous and convex functional,
A : C → H is α-inverse strongly monotone mapping and B : C → H is β-inverse
strongly monotone mapping.

He proved under some control conditions on {δn}, {αn}, {rn} and {sn} that
the sequence {xn} generated by (1.7) convergence strongly to PFx1, where F =∩N

i=1 F (Ti)∩ (GEP )s(Φ1, φ1)∩ (GEP )s(Φ2, φ2)∩F (G1)∩F (G2), G1, G2 : C×C
are defined by G1(x) = PC(x− λAx), G2(x) = PC(x− ηBx), ∀x ∈ C and PFx1 is
a solution of the following system of variational inequalities:{

⟨Ax∗, x− x∗⟩ ≥ 0,

⟨Bx∗, x− x∗⟩ ≥ 0.

By motived of Algorithm 1.2 and Algorithm 1.3, we define the following algo-
rithm as follows:

Algorithm 1.4. Let Ti, i = 1, 2, ..., N , be nonspreading mappings of C into itself
and let K be the K−mappings generated by T1, T2, ..., TN and λ1, λ2, ..., λN . Let
x1 ∈ C = C1 and w1 ∈ T (x1), there exist sequences {xn}, {un}, {un} ⊆ C and
{wn.}} ∈ H such that

wn ∈ T (xn), ∥wn − wn+1∥ ≤
(
1 + 1

n

)
H(T (xn), T (xn+1)),

Φ(wn, un, u) + φ(u)− φ(un) +
1
rn
⟨un − xn, u− un⟩ ≥ 0,∀u ∈ C, rn > 0,

F (un, u) + ⟨Axn, u− un⟩+ 1
r ⟨u− un, un − xn⟩ ≥ 0,∀u ∈ C,

yn = αnun + γnun + ηnKxn,

Cn+1 = {z ∈ Cn : ∥yn − z∥ ≤ ∥xn − z∥},
xn+1 = PCn+1

x1,∀n ≥ 1,

(1.8)
where T : C → CB(H) is H-Lipschitz continuous with constant µ, respectively,
Φ : H×C×C → R is equilibrium-like function satisfying (H1)− (H3), φ : C → R
be a lower semicontinuous and convex function, F : C × C → R is a bifunction
and A : C → H is an α-inverse strongly monotone mapping.

In this article, we prove a sequence {xn} generated by (1.8) converges strongly
to an element of the set of solutions of equilibrium problems, generalized equi-
librium problems and fixed points problems by using the K-mapping generated
by a finite family of nonspreading mappings and a finite real number introduced
by Kangtunyakarn and Suantai [10]. Furthermore, we apply our main result to
obtain a strong convergence theorem for finding a solutions of minimization prob-
lems, generalized equilibrium problems and fixed points problems of nonlinear
mappings.
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2 Preliminaries

In this section, we need the following lemmas and definitions to prove our
main result.

Let C be a nonempty closed convex subset of H. Then for any x ∈ H, there
exists a unique nearest point in C, denoted by PCx, such that

∥x− PCx∥ ≤ ∥x− y∥, ∀y ∈ C.

The following lemma is a property of PC .

Lemma 2.1. (See [9].)Given x ∈ H and y ∈ C, then PCx = y if and only if the
following inequality holds

⟨x− z, z − y⟩ ≥ 0, ∀z ∈ C.

Lemma 2.2. (See [1].)Let H be a Hilbert space and C a nonempty closed convex
subset of H. Let T be a nonspreading mapping of C into itself. Then F (T ) is
closed and convex.

In 2009, Kangtunyakarn and Suantai [10] introduced K-mapping generated by
T1, T2, ..., TN and λ1, λ2, ..., λN as follows:

Definition 2.3. Let C be a nonempty convex subset of a real Banach space. Let
{Ti}Ni=1 be a finite family of mappings of C into itself, and let λ1, ..., λN be real
numbers such that 0 ≤ λi ≤ 1 for every i = 1, ..., N . Define a mapping K : C → C
as follows:

U1 = λ1T1 + (1− λ1)I

U2 = λ2T2U1 + (1− λ2)U1

U3 = λ3T3U2 + (1− λ3)U2

...

UN−1 = λN−1TN−1UN−2 + (1− λN−1)UN−2

K = UN = λNTNUN−1 + (1− λN )UN−1.

Such a mapping K is called the K-mapping generated by T1, T2, ..., TN and λ1, λ2, ..., λN .

Lemma 2.4. (See [16].)Let C be a nonempty closed convex subset of real Hilbert
space. Let {Ti}Ni=1 be a finite family of nonspreading mappings of C into itself

with
∩N

i=1 F (Ti) ̸= ∅ and let λ1, ..., λN be real numbers such that 0 < λi < 1 for
every i = 1, ..., N −1 and 0 < λN ≤ 1. Let K-mapping generated by T1, ..., TN and
λ1, ..., λN . Then F (K) =

∩N
i=1 F (Ti) and K is a quasi-nonexpansive mapping.

Lemma 2.5. (See [11].)Let H be a Hilbert space, C a closed convex subset of H,
and S : C → C a nonspreading mapping with F (S) ̸= ∅.Then S is demiclosed,
that is, xn ⇀ u and xn − Sxn → 0 imply u ∈ F (S).
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Let ω(xn) be the set of all weakly ω-limit of {xn}, i.e., ω(xn) = {c |xnk
⇀

c as k → ∞} where {xnk
} is a subsequence of {xn}.

Lemma 2.6. (See [12].) Let C be a closed convex subset of H. Let {xn} be a
sequence in H and u ∈ H. Let q = PCu, if {xn} is such that ω(xn) ⊂ C and
satisfies the condition

∥xn − u∥ ≤ ∥u− q∥,∀n ∈ N.

Then xn → q as n → ∞.

Definition 2.7. A multivalued mapping T : C → CB(H) is said to be H-Lipschitz
continuous if there exists a constant µ > 0 such that

H(T (u), T (v)) ≤ µ∥u− v∥,∀u, v ∈ C,

where H(., .) is the Hausdorff metric on CB(H).

Lemma 2.8. (Nadler’s theorem, See [13].) Let (X, ∥ ·∥) be a normed vector space
and H(., .) be the Hausdorff metric on CB(H). If U, V ∈ CB(X), then for any
given ε > 0 and u ∈ U , there exists v ∈ V such that

∥u− v∥ ≤ (1 + ε)H(U, V ).

Theorem 2.9. (See [8].) Let C be a nonempty, bounded, closed and convex subset
of a real Hilbert space H, and let φ : C → R be a lower semicontinuous and convex
functional. Let T : C → CB(H) be H-Lipschitz continuous with a constant µ, and
Φ : H×C×C → R be an equilibrium-like function satisfying (H1)-(H3). Let r > 0
be a constant. For each x ∈ C, take wx ∈ T (x) arbitrarity and define a mapping
Tr : C → C as follows:

Tr(x) = {u ∈ C : Φ(ωx, u, v) + φ(v)− φ(u) +
1

r
⟨u− x, v − u⟩ ≥ 0,∀v ∈ C}.

Then, the following hold:
(a) Tr is a single-valued;
(b) Tr is a firmly nonexpansive (that is, for any u, v ∈ C,

∥Tru− Trv∥2 ≤ ⟨Tru− Trv, u− v⟩) if

Φ(w1, Tr(x1), Tr(x2)) + Φ(w2, Tr(x2), Tr(x1)) ≤ 0,

for all (x1, x2) ∈ C × C and all wi ∈ T (xi), i = 1, 2;
(c) F (Tr) = (GEP )s(Φ, φ);
(d) (GEP )s(Φ, φ) is closed and convex.

Lemma 2.10. (See [6].) Let C be a nonempty closed convex subset of H, and let
F be a bifunction of C × C into R satisfying (A1)− (A4). Let r > 0 and x ∈ H.
Then, there exists z ∈ C such that

F (z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0 for all x ∈ C.
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Lemma 2.11. (See [5].) Assume that F : C × C → R satisfies (A1)− (A4). For
r > 0 and x ∈ H, define a mapping T r : H × C as follows:

T r(x) = {z ∈ C : F (z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0,∀y ∈ C},

for all z ∈ H. Then the following hold:
(a) T r is a single-valued;
(b) T r is a firmly nonexpansive, that is,

∥T ru− T rv∥2 ≤ ⟨T ru− T rv, u− v⟩,∀u, v ∈ H;

(c) F (T r) = EP (F );
(d) EP (F ) is closed and convex.

3 Main Results

Theorem 3.1. Let C be a nonempty bounded, closed, and convex subset of a real
Hilbert space H and let φ : C → R be lower semicontinuous and convex functions.
Let T : C → CB(H) be H-Lipschitz continuous with constant µ, respectively,
Φ : H × C × C → R be an equilibrium-like function satisfying (H1) − (H3). Let
A : C → H be an α-inverse strongly monotone mapping, let F : C×C → R satisfy
(A1)− (A4), let Ti be nonspreading mappings of C into itself for all i = 1, 2, ..., N

with F =
∩N

i=1 F (Ti) ∩ EP (F,A) ∩ (GEP )s(Φ, φ) ̸= ∅. Let λ1, ..., λN be real
numbers such that 0 < λi < 1 for every i = 1, ..., N − 1 and 0 < λN ≤ 1. Let
K be the K-mapping generated by T1, T2, ..., TN and λ1, λ2, ..., λN and let x1 ∈
C = C1 and w1 ∈ T (x1). Support that there exist sequences {xn}, {un}, {un} ⊆ C
and {wn} ∈ H be sequences generated by (1.8) where {αn}, {γn} and {ηn} are
sequences in [0, 1] for all n ∈ N, r, rn ⊂ (0, 2α) and suppose the following conditions
hold:

(i) αn + γn + ηn = 1,

(ii) 0 < b < αn, γn, ηn ≤ c, for some b, c ∈ R,

(iii) there is λ > 0 such that

Φ(w1, Tr1(x1), Tr2(x2))+Φ(w2, Tr2(x2), Tr1(x1)) ≤ −λ∥Tr1(x1)−Tr2(x2)∥2, (3.1)

for all (r1, r2) ∈ Θ × Θ, wi ∈ T (xi), for i = 1, 2 where Θ = {rn : n ≥ 1}. Then
{xn} converges strongly to PFx1.

Proof. From (3.1) for every r ∈ Θ, we have

Φ(w1, Tr(x1), Tr(x2))+Φ(w2, Tr(x2), Tr(x1)) ≤ −λ1∥Tr(x1)−Tr(x2)∥2 ≤ 0, (3.2)
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for all (x1, x2) ∈ C × C and wi ∈ T (xi), i = 1, 2.
It is easy to see that I − rA is a nonexpansive mapping. Indeed, since A is an

α-inverse strongly monotone mapping with r ∈ (0, 2α), we have

∥(I − rA)x− (I − rA)y∥2 = ∥x− y − r(Ax−Ay)∥2

= ∥x− y∥2 − 2r⟨x− y,Ax−Ay⟩+ r2∥Ax−Ay∥2

≤ ∥x− y∥2 − 2αr∥Ax−Ay∥2 + r2∥Ax−Ay∥2

= ∥x− y∥2 + r(r − 2α)∥Ax−Ay∥2

≤ ∥x− y∥2. (3.3)

Thus I − rA is a nonexpansive mapping.
From (1.8) and Theorem 2.9, we have un = Trnxn.
From (1.8) and Lemma 2.11, we have ūn = T r(I − rA)xn.

Let z ∈ F =
∩N

i=1 F (Ti) ∩ EP (F,A) ∩ (GEP )s(Φ, φ).
From Theorem 2.9 and Lemma 2.11, we have z = Trnz = T r(I − rA)z.
From nonexpansiveness of {Trn} , we have

∥un − z∥ ≤ ∥xn − z∥,

From nonexpansiveness of {T r}, {I − rA}, we have

∥ūn − z∥ = ∥T r(I − rA)xn − z∥
≤ ∥xn − z∥,

From the definition of yn, we have

∥yn − z∥2 = ∥αnun + γnun + ηnKxn − z∥2

≤ αn∥un − z∥2 + γn∥un − z∥2 + ηn∥Kxn − z∥2 (3.4)

≤ ∥xn − z∥2.

Next, we show that Cn is closed and convex for every n ∈ N. It is obvious
that Cn is closed. In fact, we know that, for z ∈ Cn,

∥yn − z∥ ≤ ∥xn − z∥ is equivalent to ∥yn − xn∥2 + 2⟨yn − xn, xn − z⟩ ≤ 0. (3.5)

Let z1, z2 ∈ Cn and t ∈ (0, 1), it follows that

∥yn − xn∥2 + 2⟨yn − xn, xn − (tz1 + (1− t)z2)⟩
= t(2⟨yn − xn, xn − z1⟩+ ∥yn − xn∥2)
+ (1− t)(2⟨yn − xn, xn − z2⟩+ ∥yn − xn∥2)

≤ 0.

From (3.5), we have tz1 + (1 − t)z2 ∈ Cn. Then, we have Cn is convex. By
Theorem 2.9, Lemma 2.2 and 2.11, we conclude that F is closed and convex. Then
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PF is well defined.
Next, we show that F ⊂ Cn for every n ∈ N.

Putting q ∈ F, by (3.4), it is easy to see that q ∈ Cn, then we have F ⊂ Cn for
all n ∈ N. Since xn = PCn

x1, for every w ∈ Cn, we have

∥xn − x1∥ ≤ ∥w − x1∥,∀n ∈ N.

Since PFx1 ∈ F ⊂ Cn and xn = PCn
x1, we have

∥xn − x1∥ ≤ ∥PFx1 − x1∥. (3.6)

We will show that limn→∞ ∥xn − xn+1∥ = 0
Since C is bounded, we have {xn} is bounded, so are {un}, {ūn}, {yn}. Since

xn+1 = PCn+1x1 ∈ Cn+1 ⊂ Cn and xn = PCnx1, we have

0 ≤ ⟨x1 − xn, xn − xn+1⟩
= ⟨x1 − xn, xn − x1 + x1 − xn+1⟩
= −⟨xn − x1, xn − x1⟩+ ⟨x1 − xn, x1 − xn+1⟩
≤ −∥xn − x1∥2 + ∥xn − x1∥∥x1 − xn+1∥.

It implies that
∥xn − x1∥ ≤ ∥x1 − xn+1∥.

It follows that limn→∞ ∥xn − x1∥ exists.
Since

∥xn − xn+1∥2 = ∥xn − x1 + x1 − xn+1∥2

= ∥xn − x1∥2 + 2⟨xn − x1, x1 − xn+1⟩+ ∥x1 − xn+1∥2

= ∥xn − x1∥2 + 2⟨xn − x1, x1 − xn + xn − xn+1⟩+ ∥x1 − xn+1∥2

= ∥xn − x1∥2 − 2∥xn − x1∥2 + 2⟨xn − x1, xn − xn+1⟩+ ∥x1 − xn+1∥2

≤ ∥x1 − xn+1∥2 − ∥xn − x1∥2,

and limn→∞ ∥xn − x1∥ exists, we have

lim
n→∞

∥xn − xn+1∥ = 0. (3.7)

Since xn+1 = PCn+1x1 ∈ Cn+1, we have

∥yn − xn+1∥ ≤ ∥xn − xn+1∥.

From (3.7), we have
lim
n→∞

∥yn − xn+1∥ = 0. (3.8)

Since
∥yn − xn∥ ≤ ∥yn − xn+1∥+ ∥xn+1 − xn∥,
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by (3.7) and (3.8), we have

lim
n→∞

∥yn − xn∥ = 0. (3.9)

Next, we show that
lim

n→∞
∥Kxn − xn∥ = 0.

By definition yn, we have

yn − xn = αn(un − xn) + γn(un − xn) + ηn(Kxn − xn)

It implies that

ηn(Kxn − xn) = (yn − xn) + αn(xn − un) + γn(xn − un)

+ δn(xn − vn). (3.10)

Since Trn is a firmly nonexpansive mapping and Trnxn = un, we have

∥un − z∥2 = ∥Trnxn − Trnz∥2

≤ ⟨Trnxn − Trnz, xn − z⟩

=
1

2
(∥un − z∥2 + ∥xn − z∥2 − ∥un − xn∥2), (3.11)

it implies that
∥un − z∥2 ≤ ∥xn − z∥2 − ∥un − xn∥2. (3.12)

From (3.4) and (3.12), we have

∥yn − z∥2 = ∥αnun + γnun + ηnKxn − z∥2

≤ αn∥un − z∥2 + γn∥un − z∥2 + ηn∥Kxn − z∥2

≤ αn(∥xn − z∥2 − ∥un − xn∥2) + γn∥un − z∥2 + ηn∥Kxn − z∥2

≤ ∥xn − z∥2 − αn∥un − xn∥2. (3.13)

it implies that

αn∥un − xn∥2 ≤ ∥xn − z∥2 − ∥yn − z∥2

≤ (∥xn − z∥+ ∥yn − z∥)∥xn − yn∥. (3.14)

By (3.9) and condition (ii), we have

lim
n→∞

∥un − xn∥ = 0. (3.15)

Since T r is a nonexpansive mapping, T r(I−rA)xn = ūn and A is an α−inverse
strongly monotone mapping with r ∈ (0, 2α), we have

∥ūn − z∥2 = ∥T r(I − rA)xn − T r(I − rA)z∥2

≤ ∥(xn − z)− r(Axn −Az)∥2

≤ ∥xn − z∥2 − 2r⟨xn − z,Axn −Az⟩+ r2∥Axn −Az∥2

≤ ∥xn − z∥2 − r(2α− r)∥Axn −Az∥2. (3.16)
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By (3.13) and (3.16), we have

∥yn − z∥2 = ∥αnun + γnun + ηnKxn − z∥2

≤ αn∥un − z∥2 + γn∥un − z∥2 + ηn∥Kxn − z∥2

≤ αn∥un − z∥2 + γn(∥xn − z∥2 − r(2α− r)∥Axn −Az∥2) + ηn∥Kxn − z∥2

≤ ∥xn − z∥2 − γnr(2α− r)∥Axn −Az∥2.

It implies that

γnr(2α− r)∥Axn −Az∥2 ≤ ∥xn − z∥2 − ∥yn − z∥2

≤ (∥xn − z∥+ ∥yn − z∥)∥xn − yn∥. (3.17)

By condition (ii), r ∈ (0, 2α) and (3.9), we have

lim
n→∞

∥Axn −Az∥ = 0. (3.18)

By T r is a firmly nonexpansive mapping and T r(I − rA)xn = ūn, we have

∥ūn − z∥2 = ∥T r(I − rA)xn − T r(I − rA)z∥2

≤ ⟨ūn − z, (I − rA)xn − (I − rA)z⟩

=
1

2

(
∥ūn − z∥2 + ∥(I − rA)xn − (I − rA)z∥2

− ∥((I − rA)xn − (I − rA)z)− (ūn − z)∥2
)

≤ 1

2

(
∥ūn − z∥2 + ∥xn − z∥2 − ∥((xn − ūn)− r(Axn −Az)∥2

)
=

1

2

(
∥ūn − z∥2 + ∥xn − z∥2 − ∥xn − ūn∥2

+ 2r⟨xn − ūn, Axn −Az⟩ − r2∥Axn −Az∥2
)
, (3.19)

it implies that

∥ūn − z∥ ≤ ∥xn − z∥2 − ∥xn − ūn∥2 + 2r⟨xn − ūn, Axn −Az⟩. (3.20)

From (3.13) and (3.20) , we have

∥yn − z∥2 = ∥αnun + γnun + ηnKxn − z∥2

≤ αn∥un − z∥2 + γn∥un − z∥2 + ηn∥Kxn − z∥2

≤ ∥xn − z∥2 − γn∥xn − ūn∥2 + 2rγn⟨xn − ūn, Axn −Az⟩.

It implies that

γn∥xn − ūn∥2 ≤ ∥xn − z∥2 − ∥yn − z∥2 + 2rγn⟨xn − ūn, Axn −Az⟩
≤ (∥xn − z∥+ ∥yn − z∥)∥xn − yn∥
+ 2rγn∥xn − ūn∥∥Axn −Az∥. (3.21)
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From (3.9), (3.18), condition (ii), r ∈ (0, 2α), we have

lim
n→∞

∥xn − ūn∥ = 0. (3.22)

Since

ηn∥Kxn − xn∥ ≤ ∥yn − xn∥+ αn∥xn − un∥+ γn∥xn − un∥,

from (3.10), (3.15) and (3.22) and condition (ii), we have

lim
n→∞

∥Kxn − xn∥ = 0.

Next, we will show that {xn}, {wn} are Cauchy sequences.
Let a ∈ (0, 1), by (3.7), there exists N0 ∈ N such that

∥xn+1 − xn∥ < an,∀n ≥ N0. (3.23)

Thus, for any number n, p ∈ N, we have

∥xn+p − xn∥ ≤
n+p−1∑
k=n

∥xk+1 − xk∥ ≤
n+p−1∑
k=n

ak ≤ an

1− a
. (3.24)

Since a ∈ (0, 1), we have limn→∞ an = 0. By (3.24), we have {xn} is a Cauchy
sequence in Hilbert space. Then, there exists x∗ ∈ C such that limn→∞ xn = x∗.

Since T : C → CB(H) is H-Lipschitz continuous with constant µ and (1.8),
we have

∥wn − wn+1∥ ≤
(
1 +

1

n

)
H(T (xn), T (xn+1)) ≤

(
1 +

1

n

)
µ∥xn+1 − xn∥. (3.25)

By (3.23), (3.25) and for any number n, p ∈ N, p > 0, we have

∥wn+p − wn∥ ≤ Σn+p−1
k=n ∥wk+1 − wk∥

≤ Σn+p−1
k=n

(
1 +

1

k

)
µ∥xk+1 − xk∥

≤ Σn+p−1
k=n 2µak

≤ 2µ
an

1− a
. (3.26)

Since a ∈ (0, 1), we have limn→∞ an = 0. By (3.26), we have {wn} is a Cauchy
sequence in Hilbert space. Then, there exists w∗ ∈ C such that limn→∞ wn = w∗.
Next, we show that w∗ ∈ T (x∗).
Since wn ∈ T (xn), we have

d(wn, T (x
∗)) ≤ max

{
d(wn, T (x

∗)), sup
w∈T (x∗)

d(T (xn), w)

}

≤ max

{
sup

z∈T (xn)

d(z, T (x∗)), sup
w∈T (x∗)

d(T (xn), w)

}
= H(T (xn), T (x

∗)). (3.27)



Fixed point theory for nonlinear mappings 197

It implies that

d(w∗, T (x∗)) ≤ ∥w∗ − wn∥+ d(wn, T (x
∗))

≤ ∥w∗ − wn∥+H(T (xn), T (x
∗))

≤ ∥w∗ − wn∥+ µ∥xn − x∗∥.

By limn→∞ xn = x∗ and limn→∞ wn = w∗, we have d(w∗, T (x∗)) = 0. Since
T (x∗) is a closed set, we have w∗ ∈ T (x∗).

Next, we show that ω(xn) ⊂ F.
Since {xn} is bounded, then ω(xn) ̸= ∅. Let q ∈ ω(xn), there exists a subse-

quence {xni
} of {xn} converges weakly to q. Since {xn} is a Cauchy sequence in

Hilbert space, we have xn → q as n → ∞. Since limn→∞ xn = x∗, we have x∗ = q,
it follows that w∗ ∈ T (q).
From (3.15) and xn → q as n → ∞, we have un → q as n → ∞.
By un = Trnxn, we have

Φ(wn, un, u) + φ(u)− φ(un) +
1

rn
⟨un − xn, u− un⟩ ≥ 0,∀u ∈ C, rn > 0.

By (3.15), (H1) and lower semicontinuity of φ, we have

Φ(w∗, q, u) + φ(u)− φ(q) ≥ 0,∀u ∈ C.

Then, we have

q ∈ (GEP )s(Φ1, φ1). (3.28)

From (3.22) and xn → q as n → ∞, we have ūn → q as n → ∞.
By ūn = T r(I − rA)xn, we have

F (un, u) + ⟨Axn, u− un⟩+
1

r
⟨u− un, un − xn⟩ ≥ 0,∀u ∈ C.

From (A2), we have

F (u, un) ≤ F (un, u) + F (u, un) + ⟨Axn, u− un⟩+
1

r
⟨u− un, un − xn⟩

≤ ⟨Axn, u− un⟩+
1

r
⟨u− un, un − xn⟩

= ⟨Axn, u− un⟩+ ⟨u− un,
un − xn

r
⟩, (3.29)

Put zt = ty + (1− t)q for all t ∈ (0, 1] and y ∈ C. Then we have zt ∈ C.
So, from (3.29), we have

F (zt, ūn)− ⟨zt − ūn, Axn⟩ − ⟨zt − ūn,
ūn − xn

r
⟩ ≤ 0. (3.30)
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By (3.30), we have

⟨zt − ūn, Azt⟩ ≥ ⟨zt − ūn, Azt⟩ − ⟨zt − ūn, Axn⟩ − ⟨zt − ūn,
ūn − xn

r
⟩

+ F (zt, ūn)

= ⟨zt − ūn, Azt −Aūn⟩+ ⟨zt − ūn, Aūn⟩ − ⟨zt − ūn, Axn⟩

− ⟨zt − ūn,
ūn − xn

r
⟩+ F (zt, ūn)

= ⟨zt − ūn, Azt −Aūn⟩+ ⟨zt − ūn, Aūn −Axn⟩

− ⟨zt − ūn,
ūn − xn

r
⟩+ F (zt, ūn). (3.31)

Since limn→∞ ∥ūn − xn∥ = 0, we have limn→∞ ∥Aūn −Axn∥ = 0.
From monotone of A, we have ⟨zt − ūn, Azt − Aūn⟩ ≥ 0. From ūn → q as

n → ∞ and (A4), we have

⟨zt − q, Azt⟩ ≥ F (zt, q). (3.32)

From (A1), (A4) and (3.32), we have

0 = F (zt, zt) = F (zt, ty − (1− t)q)

≤ tF (zt, y) + (1− t)F (zt, q)

≤ tF (zt, y) + (1− t)⟨zt − q, Azt⟩
= tF (zt, y) + (1− t)t⟨y − q, Azt⟩.

It implies that
F (zt, y) + (1− t)⟨y − q, Azt⟩ ≥ 0. (3.33)

Letting t → 0+ and (3.33), we have 0 ≤ F (q, y) + ⟨y − q, Aq⟩, for all y ∈ C.
Then

q ∈ EP (F,A). (3.34)

By Lemma 2.4, we have K is a quasi-noneapansive mapping and F (K) =∩N
i=1 F (Ti).
Since xni

⇀ q as i → ∞ and limn→∞ ∥Kxn − xn∥ = 0 and Lemma 2.5, we
have

q ∈ F (K) =

N∩
i=1

F (Ti) (3.35)

From (3.28), (3.34) and (3.35), we have q ∈ F.
Hence ω(xn) ⊂ F. By Lemma 2.6 and (3.6), it implies that {xn} converges

strongly to PFx1. This completes the proof.

The following corollary is a consequence which is applied by Theorem (3.1).
Therefore, we omit the proof. In the case of F ≡ 0, then EP (F,A) is reduced to
V I(C,A). So, we prove the next result as follows:
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Corollary 3.2. Let C be a nonempty bounded, closed and convex subset of a real
Hilbert space H and let φ : C → R be lower semicontinuous and convex function.
Let T : C → CB(H) be H-Lipschitz continuous with constant µ, respectively,
Φ : H × C × C → R be an equilibrium-like function satisfying (H1) − (H3). Let
A : C → H be an α−inverse strongly monotone mapping, let Ti, i = 1, 2, .., N,
be nonspreading mappings of C into itself with F =

∩N
i=1 F (Ti) ∩ V I(C,A) ∩

(GEP )s(Φ, φ) ̸= ∅. Let λ1, ..., λN be real numbers such that 0 < λi < 1 for
every i = 1, ..., N − 1 and 0 < λN ≤ 1 .Let K be the K-mapping generated by
T1, T2, ..., TN and λ1, λ2, ..., λN and let x1 ∈ C = C1 and w1 ∈ T (x1) , there exist
sequences {xn}, {un}, {un} ⊆ C and {wn} ∈ H generated by

wn ∈ T (xn), ∥wn − wn+1∥ ≤
(
1 + 1

n

)
H(T (xn), T (xn+1)),

Φ(wn, un, u) + φ(u)− φ(un) +
1
rn
⟨un − xn, u− un⟩ ≥ 0,∀u ∈ C, rn > 0,

yn = αnun + γnPC(I − rA)xn + ηnKxn,

Cn+1 = {z ∈ Cn : ∥yn − z∥ ≤ ∥xn − z∥},
xn+1 = PCn+1x1,∀n ≥ 1,

(3.36)
where {αn}, {γn} and {ηn} are sequences in [0, 1], r, rn ⊂ (0, 2α), for every n ∈ N
and suppose the following conditions hold:

(i) αn + γn + ηn = 1,

(ii) 0 < b < αn, γn, ηn ≤ c, for some b, c ∈ R,

(iii) there exists λ > 0 such that

Φ(w1, Tr1(x1), Tr2(x2)) + Φ(w2, Tr2(x2), Tr1(x1)) ≤ −λ∥Tr1(x1)− Tr2(x2)∥2,
(3.37)

for all (r1, r2) ∈ Θ × Θ, wi ∈ T (xi) , for i = 1, 2 where Θ = {rn : n ≥ 1}. Then
{xn} converges strongly to PFx1.

4 Application

In this section, by using our main result, we obtain Theorem 4.1. Before we prove
strong convergence theorem in this section, we consider the following standard
constrained convex optimization problem as follows:

find x∗ ∈ C, such that f(x∗) = min
x∈C

f(x), (4.1)

where f : C → R is a convex, Fréchet differentiable function, C is a closed convex
subset of H.

It is known that the optimization problem (4.1) is equivalent to the following
variational inequality problem

find x∗ ∈ C, such that ⟨v − x∗,∇f(x∗)⟩ ≥ 0,∀v ∈ C, (4.2)
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where ∇f : C → C is the gradient of f .
It is also known that the optimality condition (4.2) is equivalent to the follow-

ing fixed point equation

x∗ = PC(x
∗ − µ∇f(x∗)), (4.3)

where PC is the metric projection onto C and µ > 0 is a positive constant. The
set of all solutions of (4.1) is denoted by Ωf .

Next, we prove a result involving optimization problem as follows:

Theorem 4.1. Let C be a nonempty bounded,closed and convex subset of a real
Hilbert space H and let φ : C → R be a lower semicontinuous and convex function.
Let T : C → CB(H) be H-Lipschitz continuous with constant µ, respectively,
Φ : H × C × C → R be equilibrium-like function satisfying (H1) − (H3). Let
f : C → R be a convex function with ∇f be an 1

Lf
-inverse strongly monotone

mapping, where Lf > 0, let Ti, i = 1, 2, .., N, be nonspreading mappings of C into

itself with F =
∩N

i=1 F (Ti)∩Ωf ∩(GEP )s(Φ, φ) ̸= ∅. Let λ1, ..., λN be real numbers
such that 0 < λi < 1 for every i = 1, ..., N − 1 and 0 < λN ≤ 1. Let K be the
K-mappings generated by T1, T2, ..., TN and λ1, λ2, ..., λN and let x1 ∈ C = C1 and
w1 ∈ T (x1), there exist sequences {xn}, {un}, {un} ⊆ C and {wn} ∈ H generated
by

wn ∈ T (xn), ∥wn − wn+1∥ ≤
(
1 + 1

n

)
H(T (xn), T (xn+1)),

Φ(wn, un, u) + φ(u)− φ(un) +
1
rn
⟨un − xn, u− un⟩ ≥ 0,∀u ∈ C, rn > 0,

yn = αnun + γnPC(I − r∇f)xn + ηnKxn,

Cn+1 = {z ∈ Cn : ∥yn − z∥ ≤ ∥xn − z∥},
xn+1 = PCn+1

x1,∀n ≥ 1,

(4.4)
where {αn}, {γn} and {ηn} are sequences in [0, 1], r, rn ⊂ (0, 2

Lf
), for every n ∈ N

and suppose the following conditions hold:

(i) αn + γn + ηn = 1,

(ii) 0 < b < αn, γn, ηn ≤ c, for some b, c ∈ R,
(iii) there exists λ > 0 such that

Φ(w1, Tr1(x1), Tr2(x2))+Φ(w2, Tr2(x2), Tr1(x1)) ≤ −λ∥Tr1(x1)−Tr2(x2)∥2, (4.5)

for all (r1, r2) ∈ Θ × Θ, wi ∈ T (xi), for i = 1, 2 where Θ = {rn : n ≥ 1}. Then
{xn} converges strongly to PFx1.

Proof. Putting A ≡ ∇f and Corollary 3.2, we can conclude the desired conclusion.
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