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1 Introduction

Let C' be a nonempty closed convex subset of a real Hilbert spaces H. A
mapping T : C' — C is called
(i) nonexpansive if
[Tz — Tyl < [l —yll,

(ii) firmly nonexpansive if
1Tz = Ty|* < (x -y, Tx - Ty),
(iii) quasi-nonexpansive if
[Tz — 2| < [lz — =],
(iv) nonspreading if
2Tz = Ty|* < | Tz —yl|* + [lo = Tyl

for all ,y € C and z € F(T') where F(T') denotes the set of fixed points of T (i.e.,
F(T)={xeC:Tz=ux}).

A mapping A : C — H is called a-inverse strongly monotone, see [[5] if there
exists a positive real number a such that

(x —y, Az — Ay) > a||Azx — Ay||*,Va,y € C.

Let G : C x C — R be a bifunction. The equilibrium problem for G is to
determine a point * € C' such that

G(z*,y) >0, Vy € C. (1.1)
The set of all solution of () is denoted by
EP(G)={z" € C: G(z*,y) > 0}. (1.2)

For solving the equilibrium problem for a bifunction F' : C' x C' — R, let us
assume that F satisfies the following conditions:

(A1) F(z,z) =0 for all z € C}

(A2) F is monotone, that is, F(z,y) + F(y,z) <0, Va,y € C;

(A3) for all z,y,z € C,

lim F(tz+ (1 —t)z,y) < F(z,y);
t—0t
(A4) for all x € Cy — F(x,y) is convex and lower semicontinuous.
Many problems in physics, optimization, and economics reduce to find a so-
lution of EP(G), see, for instance [P]-[d]. In 2007, Takahashi and Takahashi [{]
proved the following theorem:
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Theorem 1.1. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let G : C x C — R be a bifunction satisfying (A1) — (A4) and let S be
a nonezpansive mapping of C into H such that F(S) N EP(G) # 0. Let f be
a contraction of H into itself and let {x,} and {u,} be sequences generated by
r1 € H and

G(unay) =+ %<y — Up, Up — xn>a Vy € C>
Tnt1 = nf(xn) + (1 — an)Sup, Vn € N,

where {a,} C [0,1] and {r,} C (0,1) satisfying

(C1) oy, = 0 as n — o0,

(C2) 35 g om =00,

(C3) either Y~ o |ani1 — @] < 00 or limy, o0 O‘;Lzl =1,

liminf, oo > 0 and Y07 |rng1 — | < 00. Then {z,} and {u,} converge
strongly to z € F(S) N EP(G), where z = Pp(s)nepa)f(2).

Let B : C — H be a nonlinear mapping. The variational inequality problems
is to find a point u € C such that

(v—u,Bu) >0, for allv € C. (1.3)

The set of solutions of the variational inequality is denoted VI(C,B). Nu-
merous problems in physics, optimization, minimax problems are reduced to vari-
ational inequality problems, see, for instance [I'7]-[IF].

In 2009, Kumam [I7] introduced an iterative algorithm as follows:

Algorithm 1.2. Let C be a closed convex subset of a real Hilbert space H. Let F be
a bifunction satifying (A1) — (A4) and let A be a monotone k-Lipschitz continuous
mapping and let S be a nonerpansive maping. Suppose x1 = u € C and {z,},
{yn} and {u,} are guven by

F(tn, y) + 7=y = tn, tn — x) > 0,¥y € C,
Yn = PC(un - )\nAun)a (14)
Tp+1 = ApU + ﬂnzn + 7nSPC(xn - )‘nAyn)a

for all n € N.

He proved under some control conditions on {ay}, {Bn}, {7n} and {r,} that
the sequence {z,,} generated by (I4) convergence strongly to Pr(s)nvi(c,A)nEP(F)U-

The generalized equilibrium problem is to find z € C such that G(z,y) +
(Bz,y—2z) >0, VyeC.

The set of all solutions of generalized equilibrium problem is denoted by

EP(G,B)={z€C:G(z,y)+(Bz,y—z) >0, Yy € C}. (1.5)

In the case of B=0,EP(G,B) = EP(G).
Let CB(H) be a family of all nonempty closed bounded subsets of H and



Fixed point theory for nonlinear mappings 187

H(.,.) be the Hausdorff metric on CB(H) defined as
H(U,V) = max{sup d(u, V), sup d(U,v)},VU,V € CB(H),
uelU veV

where d(u, V) = inf ey d(u, v), d(U,v) = inf ey d(u,v) and d(u, v) = ||u — v||.

Let ¢ : C' — H be a real-valued function, T': C — CB(H) be a multivalued
map and & : H x C x C' — R be an equilibrium-like function, that is, ®(w, u,v) +
O (w,v,u) =0 for all (w,u,v) € H x C x C which satisfies the following conditions
with respect to the multivalued T : C' — CB(H);

(H1) For each fixed v € C, (w,u) — ®(w,u,v) is an upper semicontinuous
function from H x C to R, that is, for (w,u) € H x C, wherever w,, — w and
Up —> U AS M — 00,

h—>Holo sup(Wp, tn,v) = ®(w, u,v),

(H2) For each fixed (w,v) € H x C x C, u — ®(w, u,v) is a concave function,

(H3) For each fixed (w,u) € H x C x C, v — ®(w,u,v) is a convex function.

In 2009, Ceng et al.[8] introduced the following generalized equilibrium prob-
lem (GEP) as follows:

Findu € C andw € T(u) such that

®(w, u,v) + ¢(v) — p(u) 2 0, ¥ € C. (1.6)

(GEP) {

The set of solutions of (GEP) is denoted by (GEP)(®, ), see, for instance
[@]. In the case of ¢ =0 and ®(w,u,v) = G(u,v), then (GEP)4(P, ) is denoted
by EP(G).

In 2012, Kangtunyakarn 4] introduced an iterative algorithm as follows:
Algorithm 1.3. Let T;, i = 1,2,..., N, be x;—pseudo-contraction mappings of
C into itself and k = max{k; : i = 1,2,..., N} and let S, be the S-mappings
generated by {T;}N ., and )\(1"), ...,)\5\7), where 045»") = (agn)’J,aén)’],aén) j) eI x
IxI,I=100,1, " +ay +ay? =1 and k < a < a7, 047 <b <1 for all
j=1,2..,N-1, k<N <1, k<ol <d<1, k<o) <e<1 for
all j = 1,2,..,N. Let z; € C = Cy and wi € T(z1),w} € D(z1), there exist
sequences {wi}, {w?} € H and {z,},{un},{vn} C C such that

wh € T(wn), llwh = wh ]| < (14 3 HT (@), T(eni1)),

w? € Day), |l = wiy || < (14 2)H(D(,), Dlwasn),

Oy (w, un,u) + o1(u) — o1 (uy) + i(un — Ty, — Up) > 0,Yu € C,ryy >0,
o (w2, vy, v) + P2 (V) — Pa(vy) + S%(vn — T, 0 —vp) > 0,Yv € C,s, >0,
2n = 0 Po(I — AA)uy, + (1 — 6,)Pc(I — nB)vp,

Yn = Anzn + (1 — apn)Snzn,

Cni1=1{2 € Oy |lyn — 2|| < [lzp — 2][},

x1,Vn > 1,

Tn+1 = PC,,,_H

(1.7)
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where D, T : C — CB(H) are H-Lipschitz continuous with constant py, po, re-
spectively, ®1, P2 : H x C' x C — R are equilibrium-like functions satisfying
(H1) — (H3), ¢1, 2 : C = R be a lower semicontinuous and convezx functional,
A:C — H is a-inverse strongly monotone mapping and B : C — H is B-inverse
strongly monotone mapping.

He proved under some control conditions on {d,}, {an}, {rn} and {s,} that
the sequence {x,} generated by (1) convergence strongly to Prxyi, where F =
Nisy F(T) N (GEP)(®1,01) N (GEP) (@2, 42) N F(G1) N F(Ga), G1, G2 : C x C
are defined by G1(z) = Po(x — Mx), Ga(x) = Po(x —nBz), Vo € C and Ppxy is
a solution of the following system of variational inequalities:

(Az*,x —2*) >0,
(Bx*,xz —x*) > 0.

By motived of Algorithm T2 and Algorithm I3, we define the following algo-
rithm as follows:

Algorithm 1.4. Let T;,i = 1,2,..., N, be nonspreading mappings of C into itself
and let K be the K—mappings generated by T1,T5,...,Tn and A1, A2, ..., \n. Let
x1 € C = Cy and wy € T(xq), there exist sequences {xn}, {un},{un} C C and
{wn.}} € H such that

wn € T(wn), llwn = wpiall < (14 ) HT (@), T(wni1)),

D (W, U, u) + @(u) — @(un) + %@” — T, U — Up) > 0,Yu € C,ry, >0,
F(Un, ) 4 (Azp, 0 — Up) + 2(0 — Up, Wy, — ) > 0,VU € C,

Yn = Qplpn + Ynln + N Kxy,

Cni1={2 € Cp t |lyn — 2|| < [l — 2]|},

Tny1 = Po, 71,0 > 1,

(1.8)
where T : C — CB(H) is H-Lipschitz continuous with constant p, respectively,
®: HxCxC — R is equilibrium-like function satisfying (H1)— (H3), ¢ : C - R
be a lower semicontinuous and convex function, F' : C x C — R is a bifunction
and A : C — H is an a-inverse strongly monotone mapping.

In this article, we prove a sequence {z,} generated by (IC8) converges strongly
to an element of the set of solutions of equilibrium problems, generalized equi-
librium problems and fixed points problems by using the K-mapping generated
by a finite family of nonspreading mappings and a finite real number introduced
by Kangtunyakarn and Suantai [[0]. Furthermore, we apply our main result to
obtain a strong convergence theorem for finding a solutions of minimization prob-
lems, generalized equilibrium problems and fixed points problems of nonlinear
mappings.
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2 Preliminaries

In this section, we need the following lemmas and definitions to prove our
main result.
Let C be a nonempty closed convex subset of H. Then for any x € H, there
exists a unique nearest point in C, denoted by Pcx, such that

o — Poall <l — yll, vy € C.
The following lemma is a property of Pc.

Lemma 2.1. (See [9].)Given x € H and y € C, then Pocx =y if and only if the
following inequality holds

(t—2z,2z—y) >0, VzeC.

Lemma 2.2. (See fi].)Let H be a Hilbert space and C' a nonempty closed convex
subset of H. Let T be a nonspreading mapping of C into itself. Then F(T) is
closed and convex.

In 2009, Kangtunyakarn and Suantai [I0] introduced K-mapping generated by
T1,Ts,....,Tn and A1, Ao, ..., Ay as follows:

Definition 2.3. Let C' be a nonempty convex subset of a real Banach space. Let
{T:}Y, be a finite family of mappings of C into itself, and let A1, ..., \y be real
numbers such that 0 < X\; <1 for everyi=1,...,N. Define a mapping K : C — C
as follows:

U= Mo+ (1= AT
Uy = N T0U; + (1 — )\2)U1
Us = AsT3Us + (1 — A3)Us

Unv—1=Anv-1IN-1Un—2+ (1 = An_1)Un—2
K=Uny=AITNUn_1+ (1 — )\N)UNfL

Such a mapping K is called the K -mapping generated by Ty, To, ..., Tn and A1, A2, ..., AN .

Lemma 2.4. (See [I@].)Let C' be a nonempty closed convex subset of real Hilbert
space. Let {T;}Y.| be a finite family of nonspreading mappings of C into itself
with ﬂfv:l F(T;) # 0 and let A, ..., \n be real numbers such that 0 < X\; < 1 for
everyt=1,...,N—1and 0 < Ay < 1. Let K-mapping generated by T1,...,Tn and
A,y AN. Then F(K) = ﬂf\[:l F(T;) and K is a quasi-nonexpansive mapping.

Lemma 2.5. (See [T1].)Let H be a Hilbert space, C a closed convex subset of H,
and S : C — C a nonspreading mapping with F(S) # 0.Then S is demiclosed,
that is, xn, — u and z, — Sx, — 0 imply u € F(5).
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Let w(zy,) be the set of all weakly w-limit of {z,}, i.e., w(z,) = {c|zp, —
cask — oo} where {z,,} is a subsequence of {z,}.

Lemma 2.6. (See [13].) Let C be a closed convex subset of H. Let {x,} be a
sequence in H and w € H. Let ¢ = Pou, if {x,} is such that w(xz,) C C and
satisfies the condition

ln —ul < Jlu— gll,¥n € N.

Then z, — q as n — 0.

Definition 2.7. A multivalued mapping T : C — CB(H) is said to be H-Lipschitz
continuous if there exists a constant p > 0 such that

H(T(u), T(v)) < pllu—vl|,Vu,v € C,
where H(.,.) is the Hausdorff metric on CB(H).

Lemma 2.8. (Nadler’s theorem, See [I3].) Let (X, ||-||) be a normed vector space
and H(.,.) be the Hausdorff metric on CB(H). If U,V € CB(X), then for any
gwen € >0 and u € U, there exists v € V' such that

lu—v| <A +e)H(U,V).

Theorem 2.9. (See [8].) Let C be a nonempty, bounded, closed and convex subset
of a real Hilbert space H, and let ¢ : C'— R be a lower semicontinuous and conver
functional. Let T : C — CB(H) be H-Lipschitz continuous with a constant u, and
®: HxCxC — R be an equilibrium-like function satisfying (H1)-(H3). Letr > 0
be a constant. For each x € C, take w, € T(x) arbitrarity and define a mapping
T.:C — C as follows:

T (x) ={u € C: O(wy,u,v) + p(v) — p(u) + %(u —z,v—u) > 0,Yv e C}.
Then, the following hold:

(a) T, is a single-valued;

(b) T is a firmly nonexpansive (that is, for any u,v € C,
| Tou — Tov||? < (Tru — Trv,u —v)) if

(I)(wlvTT(xl)7TT(m2)) + ‘I)(w27TT($2)1TT"(m1)) < 05
for all (z1,7z2) € C x C and all w; € T(x;), 1 =1,2;
(c) F(T;) = (GEP)s(®,¢);
(d) (GEP)s(®, ) is closed and conve.

Lemma 2.10. (See [G].) Let C be a nonempty closed convex subset of H, and let
F be a bifunction of C x C into R satisfying (A1) — (44). Letr >0 and x € H.
Then, there exists z € C' such that

1
F(z,y)+={y—2z,2z—x) >0 forallz € C.
T
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Lemma 2.11. (See [i].) Assume that F : C' x C' — R satisfies (A1) — (A4). For
r >0 and x € H, define a mapping T : H x C as follows:

_ 1
Tr(a:):{ZEC:F(z,y)—F;(y—z,z—x) >0,Vy € C},

for all z € H. Then the following hold:
(a) T, is a single-valued;
(b) T, is a firmly nonexpansive, that is,

T ru — TM)H2 <A(T,u—T,v,u—v),Yu,v € H;

(c) F(T,) = EP(F);
(d) EP(F) is closed and convex.

3 Main Results

Theorem 3.1. Let C be a nonempty bounded, closed, and convex subset of a real
Hilbert space H and let ¢ : C'— R be lower semicontinuous and convex functions.
Let T : C — CB(H) be H-Lipschitz continuous with constant p, respectively,
®: HxCxC — R be an equilibrium-like function satisfying (H1) — (H3). Let
A: C — H be an a-inverse strongly monotone mapping, let F': C'x C — R satisfy
(A1) — (A4), let T; be nonspreading mappings of C into itself for alli =1,2,...,.N
with B = N, F(T;) N EP(F,A) N (GEP)4(®,0) # 0. Let A\y,..., Ay be real
numbers such that 0 < A\; < 1 for everyi =1,...,. N —1 and 0 < Ay < 1. Let
K be the K-mapping generated by T1,Ts,...., Tn and A, Aa, ..., An and let x1 €
C =Cy and wy € T(x1). Support that there exist sequences {xy}, {un}, {un} C C
and {w,} € H be sequences generated by (C8) where {an}, {vn} and {n,} are
sequences in [0, 1] for alln € N, r,r,, C (0,2a) and suppose the following conditions

hold:

(i) an + Y + 10 =1,

(i1) 0 < b < QpyYny M < ¢, for some b,c € R,
(#i3) there is A > 0 such that

O(wy, Ty, (1), Try (42)) + P (w2, Ty (€2), Tr, (21)) < =AM Ty, (21) =Ty (22)]1%, (3.1)

for all (r1,7m2) € © x ©, w; € T(x;), fori = 1,2 where © = {r, : n > 1}. Then
{z,} converges strongly to Ppx.

Proof. From (B1) for every r € ©, we have

(w1, Tr(z1), Ty (22)) + @ (wa, T (2), Tr (1)) < —Mi[| T (1) =T (22)[|* <0, (3.2)
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for all (x1,22) € C x C and w; € T(x;),i=1,2.
It is easy to see that I —rA is a nonexpansive mapping. Indeed, since A is an
a-inverse strongly monotone mapping with r € (0, 2a), we have
(I = rA)z — (I —rA)y|* = [lz — y — r(Azx — Ay)|*
= ||z —ylI* = 2r(z — y, Az — Ay) +r*| Az — Ay]|?
< llz = yl* - 2ar| Az — Ay|* + r*|| Az — Ay]?
= llz = ylI* +r(r — 20)|| Az — Ay|®
<l =yl (3-3)
Thus I — rA is a nonexpansive mapping.
From (I=¥) and Theorem 29, we have u,, = T, p.
From (I8) and Lemma 271, we have @, = T'.(I — rA)z,.
Let z € F =\, F(T;) N EP(F, A) N (GEP),(®,9).
From Theorem P9 and Lemma P, we have z =T, z =T, (I —rA)z.
From nonexpansiveness of {7} } , we have

lun = 2l < flzn = 2],
From nonexpansiveness of {T,.}, {I — rA}, we have
i = 2l = (T~ rA)zn — 2|
< [lzn — 211,
From the definition of y,,, we have
”yn - ZH2 = Hanun + Ynln + N KTy — 2”2
< apllug = 2| + @0 = 2 + na || Kzn — 2|2 (3.4)

< lwn — 2)1*.

Next, we show that C), is closed and convex for every n € N. It is obvious
that C, is closed. In fact, we know that, for z € C,,

lyn — 2| < ||lzn — 2| is equivalent to ||y, — z,||* + 2(yn — T, Tn — 2) < 0. (3.5)
Let 21,20 € Cp, and t € (0, 1), it follows that

lyn — 1'n||2 +2(Yn — Ty Tn — (tz1 + (1 — t)22))
= t(2<yn — Tn,y, Tn — zl> + Hyn - :En||2)
+ (L= t)(2(yn — T, Tn — 22) + llyn — znll?)
<0.

From (B3H), we have tz; + (1 — t)z3 € C,. Then, we have C,, is convex. By
Theorem 29, Lemma 22 and 2211, we conclude that [ is closed and convex. Then
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Pr is well defined.
Next, we show that F C C,, for every n € N.

Putting ¢ € F, by (B3), it is easy to see that ¢ € C,,, then we have F C C,, for
all n € N. Since z,, = P¢,x1, for every w € C,,, we have

lzn — z1]] < ||lw — 21]|,¥n € N.
Since Frz1 € F C C, and z,, = Pe, 1, we have
|z — 21| < ([ Przy — 2] (3.6)

We will show that lim, o0 ||2n — Zpt1]| =0
Since C' is bounded, we have {x,} is bounded, so are {u,}, {@,}, {yn}. Since
Tny1 = Po, 71 € Cpg1 C Oy, and z,, = Pg, 1, we have

0 < (1 — T, Tn — Tpy1)
= (21 — &, Ty — T1 + L1 — Tpy1)

= —(Tp — 21, Tp — T1) + (T1 — Tp, T1 — Tpt1)

IN

—[lzn — 21| + [|2n — 21]l[|#1 — Tpga |-

It implies that
[#n — 21| < 21 — Znga |-

It follows that lim,, o ||z, — 21]| exists.
Since
20 = Zpsa | = 20 — 21 + 21 = Tnga |

= [|lzn — $1||2 +2(xy — 21,21 — Tpg1) + |1 — wn+1||2

= ”zn - 371”2 + 2<xn —T1,T1 — Tp + Tp — xn+1> + Hxl - $n+1||2

= ||$n - $1||2 - 2||$n - $1||2 + 2<xn — L1, Tn — $n+1> + H331 - xn+1||2

< e = zpa||® = |z — a1,
and lim,, o ||z, — 1] exists, we have

nh_{r;O lzr, — zpsa] = 0. (3.7)

Since z,4+1 = Pont+121 € Ch41, we have

[yn = ntall < [[2n = 2nia

From (B=1), we have
nlggo yn — Tpyal = 0. (3.8)

Since
1y = Tall < |Yn — Togill + [Tns1 — 2all,
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by (B24) and (B8R), we have

Jim |y, — @] = 0. (3.9)
Next, we show that
lim ||Kxz, — 2| = 0.
n—oo

By definition y,,, we have
Yn — Tn = an(un - l'n) + ’Yn(ﬂn - xn) + nn(K:Cn - xn)
It implies that

M(K2n — 2n) = (Yn — Tn) + @ (T — Un) + Yo (Tr — Up)
+0n(zn — ). (3.10)
Since T is a firmly nonexpansive mapping and T, x, = u,, we have

| 2

l[wn — Z||2 =T, zn — Tr, 2
S <Trnxn - T’r‘nzvxn - Z>

1
5 lun =27 + fln = 21° = llun — zall?), (3.11)
it implies that
lun = 2lI* < llzn = 2I|* = [lun — zal*. (3.12)
From (B3) and (B12), we have
lyn — 2”2 = [[antn + Ynln + N Ky — Z||2
< aplun — Z||2 + Ynl[@n — Z||2 + | Ky — Z||2
< ap(|n — Z||2 — [Jun — anQ) + Y l[n — Z||2 + || K2y — Z||2
<wn = 2% = anllun — 2| (3.13)
it implies that
g — xn”Q < lzn — zHQ —lyn — Z||2
< (lzn = 2l + llyn = 2IDll2n — ynll- (3.14)
By (BM) and condition (i7), we have

nh_}rgo lun, — z,| = 0. (3.15)

Since T, is a nonexpansive mapping, T,.(I —rA)z,, = i, and A is an a—inverse
strongly monotone mapping with r € (0, 2«), we have

It — 2| = |Tr(I — rA)a, — To(I —rA)z|?
< lwn = 2) = r(Azy — A2)|
< Nan — 2|2 = 2r(z, — 2, Az, — A2) + r?|| Az, — Az|]?
< Nan — 2|12 = r(2a — 7)|| Az, — Az|)?. (3.16)
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By (B13) and (B1H), we have

llyn — Z||2 = [lanun + Ynln + MnKzn — Z||2
< an”“n - z||2 +'Vn||ﬂn - z||2 + nnHKxn - Z||2
< anllun = 2l* +m(llzn — 2)|* = (20 — )| Azn — Az|?) + 0o || K2n — 2|
< [lam — 21 = 3ur(2a — 1)l Az, — A2

It implies that
Yot (200 = 1) || Azy — A2|? < 2 — 2[* = [lyn — 2|
< (lon = 2l + llyn = 2Dll2n = yall- (3.17)
By condition (i), r € (0,2«) and (89), we have
nl;ngo Az, — Az|| = 0. (3.18)

By T, is a firmly nonexpansive mapping and T,.(I — rA)z,, = i,, we have

i = 22 = WTo (1 = rA)z, = To(I - rA)2|?

<Atp — 2z, —rA)x, — (I —rA)z)
1
P
— (T = Az = (I = rA)2) = (@ - 2)|1?)

(Nan = 212 + (T = rA)wn — (I = rA)z|?

< 3 (1 — 20+ 1 — 21 = 1(rn — ) — (A — A2)])
= & (10— 2P + a2l = 1z — P
+ 2r(xy — T, Az, — A2) — r?|| Az, — Az||2), (3.19)
it implies that
lan — 2] < ||lzn — z||2 — |lzn — 11n||2 + 21 (2, — Up, Az, — AZ). (3.20)

From (BT3) and (B=20) , we have
lyn — Z||2 = |lanun + VnTn + nuKxy — Z”2
< aplun — ZH2 + Yol Un — Z||2 + Ml K2n — Z||2
< Hxn - 2”2 - ’)’onn - ﬁn”z + 2T7n<mn — Un, A‘rn - AZ>
It implies that
YullTn — f‘n||2 <llzn — Z||2 — [|yn — zHQ + 2ry(Tn — Un, Azy, — A2)

< (lzn = 2l + lyn — zIDllzn — yull
+ 2rypl|@n — ||| Az, — Az (3.21)
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From (8), (B18), condition (i7), r € (0,2«), we have
nh_}rgo lzn, — @yl = 0. (3.22)
Since
Ml Kzn — 2pll < [lyn — 2nll + anllzn — unll + ynllzn — Uall,

from (BTM), (813) and (B222) and condition (i7), we have

lim ||Kxz, —z,| =0.
n— oo

Next, we will show that {x,}, {w,} are Cauchy sequences.
Let a € (0,1), by (B20), there exists Ny € N such that

|Zn+1 — zn|l < a™,¥Vn > Np. (3.23)

Thus, for any number n, p € N, we have

n+p—1 n+p—1 a”
[ty —aall € 3 ok —aill < 3 < (320
k=n k=n

Since a € (0,1), we have lim,,_,o ™ = 0. By (B2), we have {z,,} is a Cauchy
sequence in Hilbert space. Then, there exists x* € C such that lim,, , z, = =*.

Since T' : C — CB(H) is H-Lipschitz continuous with constant p and (IR),
we have

1 1
= wnsall < (14 ) H(T (), T(ansn) < (14 2 )ullznss =l (3:25)

By (823), (828) and for any number n, p € N, p > 0, we have

-1
0ty = wall < Zp22 s — g
- 1
<z (14 2 )ullonss — ol
< 2P opak

n

<2u

— (3.26)

Since a € (0,1), we have lim,,_, @ = 0. By (B28), we have {w,,} is a Cauchy
sequence in Hilbert space. Then, there exists w* € C such that lim,_, ., w, = w*.
Next, we show that w* € T'(z*).

Since wy, € T'(zy), we have

d(wy,, T(z*)) < max {d(wn,T(m*)), sup d(T(xn),w)}

weT (z*)

< max sup d(z,T(z")), sup d(T(zn),w)
z€T (xn) weT (xz*)

— H(T(2,), T(z*)). (3.27)
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It implies that

d(w", T(z7)) < [|w” = wa | + d(wn, T(2"))
< lw™ = wnll + H(T(2n), T(x7))

< lw™ = wnl| + pllan — 2.

By limy, 00 z, = ™ and lim, . w, = w*, we have d(w*,T'(z*)) = 0. Since
T(z*) is a closed set, we have w* € T'(z*).

Next, we show that w(z,) C F.

Since {z,} is bounded, then w(z,) # 0. Let ¢ € w(xy,), there exists a subse-
quence {x,,} of {x,} converges weakly to ¢. Since {z,} is a Cauchy sequence in
Hilbert space, we have x,, — ¢ as n — o0o. Since lim,, o z, = £*, we have x* = ¢,
it follows that w* € T'(q).

From (BT3) and z,, — ¢ as n — 0o, we have u, — ¢ as n — oo.
By u, =Ty, we have

1
D (W, U, u) + p(u) — @(un) + — Uy — Tyt — uy) > 0,Vu € Cyrpy > 0.
T/’l

By (B13), (H1) and lower semicontinuity of ¢, we have
(w", q,u) +¢(u) = p(q) 2 0,Vu € C.

Then, we have
q € (GEP)s(P1, 1) (3.28)

From (B22) and z,, — ¢ as n — oo, we have 4, — q as n — 0.
By @, =T,(I — rA)x,, we have

1
F(t,,u) + (Az,, 0@ — Tp) + — (T — Up, Ty, — xy) > 0,Vu € C.
T

From (A2), we have

1
F(u,u,) < F(t,,u) + F@,u,) + (Az,, @ — Tp) + — (W — Up, Up, — Tn)
T
1
S <Axnaﬂ* ﬂn> + ;<ﬂ 7ﬂn7ﬂn - xn>
= (An, T — Tp) + (T — Ty, 221, (3.29)

Put z; =ty + (1 —t)q for all ¢ € (0,1] and y € C. Then we have z; € C.
So, from (829), we have

Fz,n) — (21 — Gy Axn) — {20 — Ty 22—y < 0. (3.30)
T



198 C. Bunyawee and A. Kangtunyakarn

By (B330), we have

(2 — T, Azt) > (20 — T, Azg) = (21 — T, Awn) — (21 — i, a”r;%
+ F(zt,Un)
= (2t — Up, Azy — Ally) + (2t — Up, Alyp) — (2t — Uy, Axy)
~ (5= T, ) 4 P, )
= (zp — Up, Azt — Alip) + (2¢ — Up, Ally, — Azy)
(2=, I L Pz, a). (3.31)
Since limy,—, o0 ||@n — || = 0, we have lim,,_, o ||At, — Az, || = 0.

From monotone of A, we have (z; — @,, Az; — Au,) > 0. From @, — ¢ as
n — oo and (A44), we have

(2t — q, Azt) > F(zt,q). (3.32)
From (A1), (A4) and (B332), we have

0= F(zt,2t) = F(zt,ty — (1 = t)q)
S tF(ze,y) + (L= 1) F(2,9)
SEF(zy) + (L= 1)(2 — g, Az)
= tF(z,y) + (1 =)ty — ¢, Az).
It implies that
Flze,y) + (1 —t){y —q, Azt) 2 0 (3.33)

Letting ¢ — 07 and (8333), we have 0 < F(q,y) + (y — ¢, Aq), for all y € C.
Then

g€ EP(F,A). (3.34)
By Lemma P4, we have K is a quasi-noneapansive mapping and F(K) =
ML, F(T).
Since z,, — ¢ as i — oo and lim,_,o [|[K2zy, — 2| = 0 and Lemma 23, we
have

g€ F(K)=()F(T) (3.35)

From (B2R), (8234) and (B=33), we have g € F.
Hence w(z,) C F. By Lemma P8 and (B@), it implies that {x,} converges
strongly to Ppzi. This completes the proof. O

The following corollary is a consequence which is applied by Theorem (B).
Therefore, we omit the proof. In the case of F = 0, then EP(F, A) is reduced to
VI(C,A). So, we prove the next result as follows:
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Corollary 3.2. Let C' be a nonempty bounded, closed and convez subset of a real
Hilbert space H and let ¢ : C' — R be lower semicontinuous and convex function.
Let T : C — CB(H) be H-Lipschitz continuous with constant p, respectively,
®: HxCxC — R be an equilibrium-like function satisfying (H1) — (H3). Let
A C — H be an a—inverse strongly monotone mapping, let T;;i = 1,2,.., N,
be nonspreading mappings of C into itself with F = ﬂivzl F(T;) nVI(C,A) N
(GEP)4(®,¢) # 0. Let Ai,...,An be real numbers such that 0 < A\; < 1 for
everyi = 1,..N —1 and 0 < Ay < 1 .Let K be the K-mapping generated by
T, Ts, ... Tn and A\, Ao, ..., Ay and let x1 € C = Cy and wy € T(x1) , there exist
sequences {xn},{un}t, {tn} C C and {w,} € H generated by

wn € Tlwp), Jwn = wni1 || < (14 L) HT (@), T(@ns)),

D (wy,, up, u) + e(u) — p(u,) + %(un — T, U — Up) > 0,Yu € C,ry, >0,
Yn = oty + YPo(I —rA)z, + Kz,

Cri1 ={2 € Cn: |lyn — 2|| < |lzn — 2|},

mn—&-l:PC xlavnzlv

n+1

where {a,}, {n} and {n,} are sequences in [0,1], r,r, C (0,2a), for every 51363?\)1
and suppose the following conditions hold:

(i) an + v+ =1,

(i) 0 < b < apy Vn, i < ¢, for some b,c € R,

(#i3) there exists A > 0 such that

O(wi, Try (21), Try (€2)) + Bwa, T, (22), Ty (1)) < =A|T5, (1) = Ty (22)]]7,
(3.37)
for all (ri,r2) € © X ©, w; € T(x;) , fori=1,2 where © = {r, : n > 1}. Then
{z,} converges strongly to Prx;.

4 Application

In this section, by using our main result, we obtain Theorem E-1. Before we prove
strong convergence theorem in this section, we consider the following standard
constrained convex optimization problem as follows:

find z* € C, such that f(z*) = Hliél f(z), (4.1)
kS

where f : C — R is a convex, Fréchet differentiable function, C' is a closed convex
subset of H.

It is known that the optimization problem (E1) is equivalent to the following
variational inequality problem

find x* € C, such that (v — z*, V f(z*)) > 0,Vv € C, (4.2)
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where Vf : C'— C' is the gradient of f.
It is also known that the optimality condition (E22) is equivalent to the follow-
ing fixed point equation

a" = Po(z" — pV f(z7)), (4.3)

where Pg is the metric projection onto C' and p > 0 is a positive constant. The
set of all solutions of (E) is denoted by €.
Next, we prove a result involving optimization problem as follows:

Theorem 4.1. Let C' be a nonempty bounded,closed and convex subset of a real
Hilbert space H and let ¢ : C'— R be a lower semicontinuous and convex function.
Let T : C — CB(H) be H-Lipschitz continuous with constant u, respectively,
®: HxCxC — R be equilibrium-like function satisfying (H1) — (H3). Let
f:C — R be a convex function with Vf be an Lif—inverse strongly monotone
mapping, where Ly >0, let T;,4 = 1,2,.., N, be nonspreading mappings of C into
itself with F = ﬂf\il F(T)NQN(GEP)s(®,¢) # 0. Let Ay, ..., An be real numbers
such that 0 < \; < 1 for every it =1,.... N —1 and 0 < Ay < 1. Let K be the
K -mappings generated by T1,Ts, ..., Ty and A1, Aa, ..., Ay and let x1 € C = Cy and
wy € T(x1), there exist sequences {x,}, {un},{u,} C C and {w,} € H generated
by

wn € T(@n), wn = ws| < (14 2)HT @), T(@nsn)),

D (W, Un, u) + p(u) — @(upn) + %(un — T, U —Up) > 0,YueC,r, >0,

Yn = Qply + Y Po(I —rV )z, + MKy,

Cni1={2€Cn: lyn — 2l < llzn — 2|1},

Tny1 = Po, 21,0 > 1,

(4.4)

where {ou }, {} and {n,} are sequences in [0,1], r,r, C (0, L%), for everyn € N
and suppose the following conditions hold:
(i) an +vn + 00 =1,
(i) 0 < b < ap,Vn, n < ¢, for some b,c € R,

(#3) there exists A > 0 such that
(w1, Ty, (1), Try (22)) + (w2, Try (22), T, (1)) < =T, (1) =T,y (2) %, (4.5)

for all (r1,7m2) € © X ©, w; € T(x;), for i = 1,2 where © = {r, : n > 1}. Then
{zn} converges strongly to Prx.

Proof. Putting A = V f and Corollary B2, we can conclude the desired conclusion.
O
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