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1 Introduction

Throughout this article, let H1 and H2 be two real Hilbert spaces. Let f :
H1 → R∪{+∞} and g : H2 → R∪{+∞}be two proper and lower semicontinuous
convex functions and A : H1 → H2 be a bounded linear operator. Now, we will
introduce one of the famous problems in many fields of pure and applied sciences,
that is the split feasibility problem (SFP) was first introduced by Censor and
Elfving [18] in 1994: Find a point

x ∈ C such that Ax ∈ Q, (1.1)

where A : H1 → H2 be a bounded linear operator. Split feasibility problem can be
applied to medical image reconstruction, especially intensity-modulated therapy
(see, [2]). In the past decade, many researchers have increasingly stuided the split
feasibility problem, see, for instance [3, 4, 5, 6, 7, 8, 9, 10], and the references
therein.
In this paper, we study more general problem which is the following: find a solution
z ∈ H1 such that

min
z∈H1

{f(x) + gλ(Ax)}, (1.2)

where gλ(y) := minu∈H2
{g(u)+ 1

2λ∥u− y∥2} is the Moreau-Yosida approximate of
the function f of parameter λ, also called proximal operator of f of order λ and
below denoted by proxλg(x). If f = δC [defined as δC(x) = 0 if x ∈ C and +∞
ortherwise] and g = δQ are indicator functions of nonempty, closed, and convex
sets C and Q of H1 and H2, respectively. Then problem (1.2) reduces to

min
x∈H1

{δC(x) + (δQ)λ(Ax)} ⇔ min
x∈H1

{ 1

2λ
∥(I − PQ)(Ax)∥2}

which is equivalent to SFP when C ∩A−1(Q).
In the case argmin f ∩A−1(argmin g) ̸= ∅, the split minimization problem ( SMP)
is to find a minimizer z of f such that Az minimizes g ; that is,

z ∈ argmin f such that Az ∈ argmin g, (1.3)

where argmin f := {x̄ ∈ H1 : f(x̄) ≤ f(x) for all x ∈ H1} and argmin g := {ȳ ∈
H2 : g(ȳ) ≤ g(y) for all y ∈ H2}. The solution set of the problem (1.3) is denote
by Γ.
Recall that the proximal operator proxλg : H → H is defined by

proxλg(x) := argmin
u∈H

{g(u) + 1

2λ
∥u− x∥2}. (1.4)

Moreover, the proximity operator of f is firmly nonexpansive, namely,

⟨proxλg(x)− proxλg(y), x− y⟩ ≥ ∥ proxλg(x)− proxλg(y)∥2. (1.5)
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for all x, y ∈ H, which is equivalent to

∥ proxλg(x)−proxλg(y)∥2 ≤ ∥x−y∥2−∥(I−proxλg)(x)−(I−proxλg)(y)∥2. (1.6)

for all x, y ∈ H. For general information on proximal operator, see the research
paper by Combettes and Pesquet [23].
In 2014, Moudafi and Thakur [24] introduced the split proximal algorithm for
estimating the stepsizes which do not need prior knowledge of the operator norms
for solving SMP (1.3) as follows.

xn+1 = proxλγnf (xn − γnA
∗(I − proxλg)Axn)∀n ≥ 1, (1.7)

where stepsize γn := ρn
h(xn) + l(xn)

θ2(xn)
with 0 < ρn < 4, h(x) := 1

2∥(I−proxλg)Ax∥2,

l(x) := 1
2∥(I − proxλγnf )x∥

2 and θ(x) :=
√

∥∇h(x)∥2 + ∥∇l(x)∥2. Thay also
proved the weak convergence theorem of the sequence generated by algorithm
(1.7) to a solution of SMP (1.3).

In 2014, Yao et al. [25] introduced the regularized algorithm for solving the
split proximal algorithm as follows:

xn+1 = proxλγnf (αnu+ (1− αn)xn − γnA
∗(I − proxλg)Axn),∀n ≥ 1, (1.8)

where stepsize γn := ρn
h(xn) + l(xn)

θ2(xn)
with 0 < ρn < 4. Then, they proved a

strong convergence theorem of the sequence {xn} under suitable conditions of
parameter αn and γn.

Recently, Shehu and Ogbuisi [12]introduced the following algorithm for solving
split proximal algorithms and fixed point problems for k-strictly pseudocontractive
mappings in Hilbert spaces:

un = (1− αn)xn,

yn = proxλγnf (un − γnA
∗(I − proxλg)Aun),

xn+1 = (1− βn)yn + βnTyn,∀n ∈ N,
(1.9)

where stepsize γn := ρn
h(xn) + l(xn)

θ2(xn)
with 0 < ρn < 4. They also showed that,

under certain assumptions imposed on the parameters, the sequence {xn} gener-
ated by (1.9) converges strongly to x∗ ∈ Fix(S) ∩ Γ.

Very recently, Abbas et al. [16] studied the following algorithm for finding
the minimum-norm solution of split proximal algorithm, that is,

xn+1 = proxλγnf ((1− αn)xn − γnA
∗(I − proxλg)Axn)∀n ≥ 1, (1.10)

where stepsize γn := ρn
h(xn) + l(xn)

θ2(xn)
with 0 < ρn < 4. Using the split proximal

algorithm 1.10, they also proved a strong convergence theorem of the sequences
generated by the proposed algorithms under some appropriate conditions.
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After we have studied research related to split proximal algorithm and fixed
point problem, we obtain the following question.
Question Is it possible to obtain a strong convergence theorem for finding the
minimum-norm solution of a proximal split minimization problem and the set
of common fixed points of a family of mappings in Hilbert spaces ? Such as a
countable family of quasi-nonexpansive mappings.

In this paper, we give the answer for the mentioned questions and introduce a
new iterative algorithm for finding the minimum-norm solution of a proximal split
minimization problem and fixed point problem of quasi-nonexpansive mappings in
Hilbert spaces. Under suitable conditions, it is proved that the sequence generated
by the proposed algorithm converges strongly to a common solution of the two
above described problems. The iterative algorithm are proposed in such a way
that the selection of the step-sizes does not need any prior information about the
operator norm.

2 Preliminaries

Throughout this article, let H be a real Hilbert space with inner product
⟨·, ·⟩ and norm ∥·∥. Let C be a nonempty closed convex subset ofH. Let T : C → C
be a nonlinear mapping. A point x ∈ C is called a fixed point of T if Tx = x.
The set of fixed points of T is the set Fix(T ) := {x ∈ C : Tx = x}. A point
z ∈ H is called a mimimum norm fixed point of T if and only if z ∈ Fix(T ) and
∥z∥ = min{∥x∥ : x ∈ Fix(T )}.

Definition 2.1. Let T : C → C be a nonlinear mapping, then

(i) T is said to be nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥ ,∀x, y ∈ C,

(ii) T is said to be quasi-nonexpansive if

∥Tx− p∥ ≤ ∥x− p∥ ,∀x ∈ C and ∀p ∈ Fix(T ),

Lemma 2.2. [28] Let C be a nonempty closed convex subset of a real Hilbert
space H.For every i = 1, 2, 3, .., N, let Ti : H1 → H1 be a finte fammily of quasi-
nonexpansive mapping such that

∩N
i=1 Fix(Ti) ̸= 0 and I − Ti are demiclosed

at zero. Put T =
∑N

i=1 aiTi, where 0 < ai ≤ 1, for every i = 1, 2, ..., N with
N∑
i=1

ai = 1. Then the following hold:

1. Fix(T ) =
∩N

i=1 Fix(Ti);

2. T is a quasi-nonexpansive mapping;
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3. T is demiclosed at zero.

Recall that the (nearest point) projection PC from H onto C assigns to each
x ∈ H the unique point PCx ∈ C satisfying the property

∥x− PCx∥ = min
y∈C

∥x− y∥.

Lemma 2.3 ([21]). Given x ∈ H1 and y ∈ C. Then, PCx = y if and only if there
holds the inequality

⟨x− y, y − z⟩ ≥ 0,∀z ∈ C.

Lemma 2.4 ([19]). Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 = (1− αn)sn + δn,∀n ≥ 0,

where {αn} is a sequence in (0, 1) and {δn} is a sequence such that

(1)

∞∑
n=1

αn = ∞;

(2) lim sup
n→∞

δn
αn

≤ 0 or

∞∑
n=1

|δn| < ∞.

Then, lim
n→∞

sn = 0.

Lemma 2.5. ([22]) Let {Γn} be a sequence of real numbers that does not decrease
at infinity in the sense that there exists a subsequence {Γni} of {Γn} which satisfies
Γni

< Γni+1 for all i ∈ N. Define the sequence {τ(n)}n≥n0
of integers as follows:

τ(n) = max{k ≤ n : Γk < Γk+1},

where n0 ∈ N such that {k ≤ n0 : Γk < Γk+1} ̸= ∅. Then, the following hold:

(i) τ(n0) ≤ τ(n0 + 1) ≤ ... and τ(n) → ∞;

(ii) Γτn ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1, ∀n ≥ n0.

3 Main Theorem

In this section, we prove a strong convergence theorem for for finding the
minimum-norm solution of a proximal split minimization problem and fixed point
problem of quasi-nonexpansive mappings in Hilbert spaces. Let H1 and H2 be
two real Hilbert spaces. Let f : H1 → R ∪ {+∞} and g : H2 → R ∪ {+∞}be
two proper and lower semicontinuous convex functions. Let A : H1 → H2 be a
bounded linear operator. For every i = 1, 2, 3, .., N, let Ti : H1 → H1 be a finite
family of quasi-nonexpansive mapping such that

∩N
i=1 Fix(Ti) ̸= ∅ and I − Ti are

demiclosed at zero.
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Now, we introduce the following algorithm for finding the solution set of Γ ∩∩N
i=1 Fix(Ti).

Algorithm 3.1

Step 1: Choose an initial point x1 ∈ H1.

Step 2: Assume that xn has been constructed.
Set θ(xn) :=

√
∥∇h(xn)∥2 + ∥∇l(xn)∥2 where h(xn) :=

1
2∥(I−proxλg)Axn∥2

and l(xn) :=
1
2∥(I − proxλf )xn∥2 with θ(xn) ̸= 0.

We compute xn+1 in the following iterative scheme:{
yn = proxλγnf ((1− αn)xn − γnA

∗(I − proxλg)Axn)

xn+1 = βnyn + (1− βn)
∑N

i=1 aiTiyn,∀n ∈ N,
(3.1)

where stepsize γn := ρn
h(xn) + l(xn)

θ2(xn)
with 0 < ρn < 4, {αn}, {βn} ⊂

[0, 1], and 0 ≤ ai ≤ 1, for every i = 1, 2, ..., N with

N∑
i=1

ai = 1.

Using algorithm (3.1), we prove a strong convergence theorem for approxima-
tion of solutions of problem (1.3) and the set of fixed points of quasi-nonexpansive
mappings as follows:

Theorem 3.1. Suppose that Ω := Γ ∩
∩N

i=1 Fix(Ti) ̸= ∅. Let {αn} and {βn} be
sequences in (0, 1). If the parameters satisfy the following conditions:

(C1) lim
n→∞

αn = 0 and

∞∑
n=1

αn = ∞;

(C2) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;

(C3) ε ≤ ρn ≤ 4(1− αn)h(xn)

h(xn) + l(xn)
− ε for some ε > 0 and for any n ∈ N.

Then the sequence {xn} converges strongly to a solution z which is also a minimum
norm solution of Ω. In other words, z = PΩ(0).

Proof. Let z = PΩ(0). Then z = proxλγnf z and Az = proxλg z. Note that
∇h(xn) = A∗(I − proxλg)Axn, ∇l(xn) = (I − proxλγnf )xn

Since proxλg is firmly nonexpansive, we have that I − proxλg is also firmly
nonexpansive. Hence

⟨A∗(I − proxλg)Axn, xn − z⟩ = ⟨(I − proxλg)Axn, Axn −Az⟩
= ⟨(I − proxλg)Axn, Axn −Az⟩
= ⟨(I − proxλg)Axn − (I − proxλg)Az,Axn −Az⟩
≥ ∥(I − proxλg)Axn∥2 = 2h(xn). (3.2)
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From the deffinition of yn and the nonexpansivity of proxλγnf , we have

∥yn − z∥ = ∥ proxλγnf ((1− αn)xn − γnA
∗(I − proxλg)Axn)− z∥

≤ ∥(1− αn)xn − γnA
∗(I − proxλg)Axn − z∥

= ∥αn(z) + (1− αn)

(
xn − γn

(1− αn)
A∗(I − proxλg)Axn − z

)
∥

≤ αn∥z∥+ (1− αn)

∥∥∥∥xn − γn
(1− αn)

A∗(I − proxλg)Axn − z

∥∥∥∥ . (3.3)

Since ∇h(xn) = A∗(I − proxλg)Axn, ∇l(xn) = (I − proxλγnf )xn and (3.2), we
have ∥∥∥∥xn − γn

(1− αn)
A∗(I − proxλg)Axn − z

∥∥∥∥2
= ∥xn − z∥2 + γ2

n

(1− αn)2
∥A∗(I − proxλg)Axn − z∥2

− 2
γn

(1− αn)
⟨A∗(I − proxλg)Axn, xn − z⟩

= ∥xn − z∥2 + γ2
n

(1− αn)2
∥∇h(xn)∥2 − 2

γn
(1− αn)

⟨∇h(xn), xn − z⟩

≤ ∥xn − z∥2 + γ2
n

(1− αn)2
∥∇h(xn)∥2 − 4

γn
(1− αn)

h(xn)

= ∥xn − z∥2 + ρ2n
(h(xn) + l(xn))

2

(1− αn)2θ4(xn)
∥∇h(xn)∥2 − 4ρn

(h(xn) + l(xn))

(1− αn)θ2(xn)
h(xn)

≤ ∥xn − z∥2 + ρ2n
(h(xn) + l(xn))

2

(1− αn)2θ4(xn)
− 4ρn

(h(xn) + l(xn))
2

(1− αn)θ2(xn)

h(xn)

(h(xn) + l(xn))

= ∥xn − z∥2 − ρn

(
4h(xn)

(h(xn) + l(xn))
− ρn

1− αn

)(
(h(xn) + l(xn))

2

(1− αn)θ2(xn)

)
. (3.4)

Without loss of generality, by condition (C3), we can assume that
4h(xn)

(h(xn) + l(xn))
−

ρn
1− αn

≥ 0 for all n ≥ 1. From (3.3), (3.4), we have

∥yn − z∥ ≤ αn∥z∥+ (1− αn)

∥∥∥∥xn − γn
(1− αn)

A∗(I − proxλg)Axn − z

∥∥∥∥
≤ αn∥z∥+ (1− αn) ∥xn − z∥ . (3.5)

Put T =
∑N

i=1 aiTi, where 0 ≤ ai ≤ 1, for every i = 1, 2, ..., N with

N∑
i=1

ai = 1.
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From Lemma 2.2, we have T is a quasi-nonexpansive mapping. It follows that

∥xn+1 − z∥ = ∥βnyn + (1− βn)Tyn − z∥
≤ βn∥yn − z∥+ (1− βn)∥Tyn − z∥
≤ βn∥yn − z∥+ (1− βn)∥yn − z∥
= ∥yn − z∥
≤ (1− αn) ∥xn − z∥+ αn∥z∥
≤ max {∥xn − z∥, ∥z∥} .

By mathematical induction, we have

∥xn − z∥ ≤ max {∥x1 − z∥, ∥z∥} ,∀n ∈ N.

It implies that {xn} is bounded and so are , {T (yn)}.

From the definition of yn, we have

∥yn − z∥2 = ∥ proxλγnf ((1− αn)xn − γnA
∗(I − proxλg)Axn)− z∥2

≤ ∥(1− αn)xn − γnA
∗(I − proxλg)Axn − z∥2,

= ∥αn(z) + (1− αn)

(
xn − γn

(1− αn)
A∗(I − proxλg)Axn − z

)
∥2

≤ αn∥z∥2 + (1− αn)

∥∥∥∥xn − γn
(1− αn)

A∗(I − proxλg)Axn − z

∥∥∥∥2
≤ αn∥z∥2 + (1− αn)

(
∥xn − z∥2 − ρn

(
4h(xn)

(h(xn) + l(xn))
− ρn

1− αn

)(
(h(xn) + l(xn))

2

(1− αn)θ2(xn)

))
= αn∥z∥2 + (1− αn)∥xn − z∥2 − ρn

(
4h(xn)

(h(xn) + l(xn))
− ρn

1− αn

)(
(h(xn) + l(xn))

2

θ2(xn)

)
.

(3.6)

It follows from (3.6), we have

∥xn+1 − z∥2 = ∥βnyn + (1− βn)Tyn − z∥2

≤ βn∥yn − z∥2 + (1− βn)∥Tyn − z∥2 − βn(1− βn)∥yn − Tyn∥2

≤ ∥yn − z∥2 − βn(1− βn)∥yn − Tyn∥2

≤ αn∥z∥2 + (1− αn)∥xn − z∥2 − βn(1− βn)∥yn − Tyn∥2

≤ αn∥z∥2 + ∥xn − z∥2 − βn(1− βn)∥yn − Tyn∥2.

It implies that

βn(1− βn)∥yn − Tyn∥2 ≤ αn∥z∥2 + ∥xn − z∥2 − ∥xn+1 − z∥2. (3.7)
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From the definition of xn and (3.6), we have

∥xn+1 − z∥2 = ∥βnyn + (1− βn)Tyn − z∥2

≤ βn∥yn − z∥2 + (1− βn)∥Tyn − z∥2

≤ ∥yn − z∥2

≤ αn∥z∥2 + (1− αn)∥xn − z∥2 − ρn

(
4h(xn)

(h(xn) + l(xn))
− ρn

1− αn

)(
(h(xn) + l(xn))

2

θ2(xn)

)
≤ αn∥z∥2 + ∥xn − z∥2 − ρn

(
4h(xn)

(h(xn) + l(xn))
− ρn

1− αn

)(
(h(xn) + l(xn))

2

θ2(xn)

)
.

It implies that

ρn

(
4h(xn)

(h(xn) + l(xn))
− ρn

1− αn

)(
(h(xn) + l(xn))

2

θ2(xn)

)
≤ αn∥z∥2 + ∥xn − z∥2 − ∥xn+1 − z∥2.

(3.8)

Now we divide the rest of the proof into two cases.
CASE 1. Suppose that there exists n0 ∈ N such that {∥xn − z∥}∞n=1 is non-
increasing. Then {∥xn − z∥}∞n=1 coverges and ∥xn − z∥2 − ∥xn+1 − z∥2 → 0 as
n → ∞. From (3.8), the condition (C1) and (C3), we obtain

ρn

(
4h(xn)

(h(xn) + l(xn))
− ρn

1− αn

)(
(h(xn) + l(xn))

2

θ2(xn)

)
→ 0 as n → ∞.

Then, we have

(h(xn) + l(xn))
2

θ2(xn)
→ 0 as n → ∞. (3.9)

Observe that θ2(xn) = ∥∇h(xn)∥2 + ∥∇l(xn)∥2 is bounded (see [16]). It follows
that

lim
n→∞

((h(xn) + l(xn))
2) = 0.

It implies that
lim
n→∞

h(xn) = lim
n→∞

l(xn) = 0.

Next, we will show that lim sup
n→∞

⟨−z, xn − z⟩ ≤ 0, where z = Pω(0). To show

this,since {xn} is bounded, there exits a subsequence
{
xnj

}
of {xn} satisfying

xnj
⇀ q and

lim sup
n→∞

⟨−z, xn − z⟩ = lim
j→∞

⟨
−z, xnj

− z
⟩
.

By the lower semicontinuity of h, we have

0 ≤ h(q) ≤ lim inf
j→∞

h(xnj ) = lim
n→∞

h(xn) = 0.
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So, h(q) = 1
2∥(I−proxλg)Aq∥2 = 0. Therefore, Aq is a fixed point of the proximal

mapping of g or equivalently 0 ∈ ∂f(Aq). In other words, Aq is a minimizer of g
. Similarly, from the lower semicontinuity of l, we obtain

0 ≤ l(q) ≤ lim inf
j→∞

l(xnj ) = lim
n→∞

l(xn) = 0.

So, l(q) = 1
2∥(I − proxλγnf )q∥

2 = 0. Therefore, q is a fixed point of the proximal
mapping of f or equivalently 0 ∈ ∂g(q). In other words, q is a minimizer of f .
Hence q ∈ Γ.
From the definition of γn, we have

0 < γn < 4
h(xn) + l(xn)

θ2(xn)
→ 0 as n → ∞

implies that γn → 0 as n → ∞.
Next, we will show that q ∈ Fix(T ) =

∩N
i=1 Fix(Ti). From (3.7) and the condition

(C1) (C2), we have

∥yn − Tyn∥ → 0 as n → ∞. (3.10)

For each n ≥ 1, let un := (1− αn)xn. Then,

∥un − xn∥ = ∥(1− αn)xn − xn∥
= αn∥xn∥.

From the condition (C1), we have

lim
n→∞

∥un − xn∥ = 0. (3.11)

Observe that

∥un − proxλγnf xn∥ ≤ ∥un − xn∥+ ∥(I − proxλγnf )xn∥.

From limn→∞ l(xn) = limn→∞
1
2∥(I − proxλγnf )xn∥2 = 0 and (3.11), we have

lim
n→∞

∥un − proxλγnf xn∥ = 0. (3.12)

By the nonexpansiveness of proxλγnf , we have

∥yn − proxλγnf xn∥ = ∥proxλγnf (un − γnA
∗(I − proxλg)Axn)− proxλγnf xn∥

≤ ∥un − γnA
∗(I − proxλg)Axn − xn∥

≤ ∥un − xn∥+ γn∥A∗(I − proxλg)Axn∥.

From (3.12) and γn → 0 as n → ∞, we have

lim
n→∞

∥yn − proxλγnf xn∥ = 0. (3.13)
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We observe that

∥yn − un∥ ≤ ∥yn − proxλγnf xn∥+ ∥un − proxλγnf xn∥.

From (3.12) and (3.13), we have

lim
n→∞

∥yn − un∥ = 0. (3.14)

Also, observe that ∥yn−xn∥ ≤ ∥yn−un∥+ ∥un−xn∥ and from (3.12) and (3.13),
we obtain

lim
n→∞

∥yn − xn∥ = 0. (3.15)

Using xnj ⇀ q ∈ H1 and (3.15), we obtain ynj ⇀ q ∈ H1. Since ynj ⇀ q ∈ H1,

∥yn − Tyn∥ → 0 as n → ∞ and Lemma 2.2, we have q ∈ Fix(T ) =
∩N

i=1 Fix(Ti).

Hence q ∈ Ω =
∩N

i=1 Fix(Ti) ∩ Γ. Since xnj
⇀ q as j → ∞ and q ∈ Ω. Lemma

2.3, we have

lim sup
n→∞

⟨−z, xn − z⟩ = lim
j→∞

⟨
−z, xnj − z

⟩
= ⟨−z, q − z⟩
≤ 0. (3.16)

Now, from (3.1)and (3.4) , we have

∥xn+1 − z∥2 ≤ βn∥yn − z∥2 + (1− βn)∥Tyn − z∥2

≤ βn∥yn − z∥2 + (1− βn)∥yn − z∥2

≤ ∥yn − z∥2

≤ ∥(1− αn)xn − γnA
∗(I − proxλg)Axn − z∥2

= ∥(1− αn)

(
xn − γn

(1− αn)
A∗(I − proxλg)Axn − z

)
+ αnz∥2

= (1− αn)
2∥xn − γn

(1− αn)
A∗(I − proxλg)Axn − z∥2 + α2

n∥z∥2

+ 2αn(1− αn)⟨xn − γn
(1− αn)

A∗(I − proxλg)Axn − z,−z⟩

≤ (1− αn)
2∥xn − z∥2 + α2

n∥z∥2 + 2αn(1− αn)⟨xn − z,−z⟩
− 2αnγn⟨A∗(I − proxλg)Ax,−z⟩

= (1− αn)
2∥xn − z∥2 + α2

n∥z∥2 + 2αn(1− αn)⟨xn − z,−z⟩
+ 2αnγn⟨∇h(xn), z⟩

≤ (1− αn)∥xn − z∥2 + αn

(
αn∥z∥2 + 2(1− αn)⟨xn − z,−z⟩

+ 2γn∥∇h(xn)∥∥z∥
)
. (3.17)

Since ∇h(xn) is Lipschitz continuous with Lipschitzian constant ∥A∥2and ∇l(xn)
is nonexpansive, ∇h(xn), ∇l(xn), and θ2(xn) are bounded. From the condition
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(C1), (3.16), (3.17) and Lemma 2.4, we can conclude that the sequence {xn} con-
verges strongly to z.

CASE 2. Assume that {∥xn − z∥} is not monotonically decreasing sequence.
Then there exists a subsequence nk of n such that ∥xnk

− x̄∥ < ∥xnk+1 − x̄∥ for
all k ∈ N. Now we define a positive interger sequence τ(n) by

τ(n) := max{k ∈ N : k ≤ n, ∥xnk
− x̄∥ < ∥xnk+1 − x̄∥}.

for all n ≥ n0 (for some n0 large enough). By lemma 2.5, we have τ is a non-
decreasing sequence such that τ(n) → ∞ as n → ∞ and

∥xτ(n) − x̄∥2 − ∥xτ(n)+1 − x̄∥2 ≤ 0,∀n ≥ n0.

By continuing in the same direction as in CASE 1, we can show that

ρτ(n)

(
4h(xτ(n))

(h(xτ(n)) + l(xτ(n)))
−

ρτ(n)

1− ατ(n)

)(
(h(xτ(n)) + l(xτ(n)))

2

θ2(xτ(n))

)
→ 0 as n → ∞.

Hence, we have

(h(xτ(n)) + l(xτ(n)))
2

θ2(xτ(n))
→ 0 as n → ∞. (3.18)

Consequently, we have

lim
n→∞

((h(xτ(n)) + l(xτ(n)))
2) = 0.

It implies that
lim
n→∞

h(xτ(n)) = lim
n→∞

l(xτ(n)) = 0.

Moreover, By continuing in the same direction as in Case 1, we can prove that

lim sup
n→∞

⟨
−z, xτ(n) − z

⟩
≤ 0.

From (3.17), we have

0 ≤ ∥xτ(n)+1 − z∥2 − ∥xτ(n) − z∥2

≤ (1− ατ(n))∥xτ(n) − z∥2 + ατ(n)ρτ(n) − ∥xτ(n) − z∥2

= ατ(n)(ρτ(n) − ∥xτ(n) − z∥2).

It follows that

∥xτ(n) − z∥2 ≤ ρτ(n),

where ρτ(n) = ατ(n)∥z∥2 + 2(1− ατ(n))⟨xτ(n) − z,−z⟩+ 2γτ(n)∥∇h(xτ(n))∥∥z∥.
By using Lemma 2.4, we have

lim
n→∞

∥xτ(n) − z∥ = 0.
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It follows from Lemma 2.5 that

0 ≤ ∥xτ(n) − x̄∥ ≤ ∥xτ(n)+1 − x̄∥ → 0

as n → ∞. Hence {xn} converges strongly to z. This completes the proof.

As a direct proof of Theorem 3.1, we obtain the following results.

When f = δC and g = δQ are indicator functions of nonempty, closed, and
convex sets C and Q of H1 and H2, respectively, then SMP (1.3) reduces to the
split feasibility problem (1.1). In this case, we obtain the following results.

Algorithm 3.2

Step 1: Choose an initial point x1 ∈ H1.

Step 2: Assume that xn has been constructed.
Set h(xn) :=

1
2∥(I − PQ)Axn∥2 with ∥∇h(xn∥ ̸= 0. We compute xn+1 in

the following iterative scheme:
yn = PC((1− αn)xn − γnA

∗(I − PQ)Axn)

xn+1 = βnyn + (1− βn)

N∑
i=1

aiTiyn,∀n ∈ N,
(3.19)

where stepsize γn := ρn
h(xn)

∥∇h(xn∥2
with 0 < ρn < 4, {αn}, {βn} ⊂ [0, 1],

and 0 ≤ ai ≤ 1, for every i = 1, 2, ..., N with

N∑
i=1

ai = 1.

Using algorithm 3.2, we prove a strong convergence theorem for approximation
of solutions of problem (1.1) and the set of fixed points of quasi-nonexpansive
mappings as follows:

Corollary 3.1. Suppose that Ω := Ψ ∩
∩N

i=1 Fix(Ti) ̸= ∅. Let {αn} and {βn} be
sequences in (0, 1). If the parameters satisfy the following conditions:

(C1) lim
n→∞

αn = 0 and

∞∑
n=1

αn = ∞;

(C2) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;

(C3) ε ≤ ρn ≤ 4(1− αn)− ε for some ε > 0.

Then the sequence {xn} converges strongly to a solution z which is also a minimum
norm solution of Ω. In other words, z = PΩ(0).
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Corollary 3.2. Let H1 and H2 be two real Hilbert spaces. Let f : H1 → R∪{+∞}
and g : H2 → R∪{+∞}be two proper and lower semicontinuous convex functions.
Let A : H1 → H2 be a bounded linear operator. Let T : H1 → H1 be a quasi-
nonexpansive mapping such that Fix(T ) ̸= ∅ and I − T are demiclosed at zero.
Suppose that Ω := Γ ∩ Fix(T ) ̸= ∅. Set θ(x) :=

√
∥∇h(x)∥2 + ∥∇l(x)∥2 where

h(x) := 1
2∥(I−proxλg)Ax∥2 and l(x) := 1

2∥(I−proxλf )x∥2 with θ(x) ̸= 0 for each
n ≥ 1. For given x1 ∈ H1 and let {xn}, and {yn} be sequences generated by{

yn = proxλγnf ((1− αn)xn − γnA
∗(I − proxλg)Axn)

xn+1 = βnyn + (1− βn)Tyn,∀n ∈ N,
(3.20)

where stepsize γn := ρn
h(xn) + l(xn)

θ2(xn)
with 0 < ρn < 4, and {αn}, {βn} ⊂ [0, 1].

If the parameters satisfy the following conditions:

(C1) lim
n→∞

αn = 0 and

∞∑
n=1

αn = ∞;

(C2) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;

(C3) ε ≤ ρn ≤ 4(1− αn)h(xn)

h(xn) + l(xn)
− ε for some ε > 0.

Then the sequence {xn} converges strongly to a solution z which is also a minimum
norm solution of Ω. In other words, z = PΩ(0).

Proof. Take T = Ti for all i = 1, 2, 3, ..., N in Theorem 3.1. So, from Theorem 3.1,
we obtain the desired result.
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