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Abstract : In this paper, we establish some results on the existence and unique-
ness of coupled common fixed point theorems in partially ordered Ab-metric spaces.
Examples have been provided to justify the relevance of the results obtained
through the analysis of extant theorem. Further, we also find application to inte-
gral equations via fixed point theorems in Ab-metric spaces. Our results generalize
and extend the results of Deepak Singh et al.[6].
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1 Introduction

The study of fixed point theory is an offshoot of non-linear function analysis.
However its study began almost a century ago in the field of algebraic topology.
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Fixed point theorems find applications in proving the existence and uniqueness of
the solutions of certain differential and integral equations that arise in physical,
engineering and other optimization problems. In the study of fixed point theory,
some of the generalizations of metric space are 2-metric space, D-metric space,
D∗-metric space, G-metric space, S-metric space, Rectangular metric or metric-
like space, Partial metric space, Cone metric space. In 1989, I.A.Bakhtin [3]
introduced the concept of b-metric space. Consequent upon the introduction of b-
metric space, many generalizations of metric spaces came into existence. In 2015,
M.Abbas et al. [1] introduced the concept of n-tuple metric space and studied its
topological properties. M.Ughade et al. [17] introduced the notion of Ab-metric
spaces as a generalized form of n-tuple metric space. Subsequently N.Mlaiki et al.
[13] obtained unique coupled common fixed point theorems in partially ordered
Ab-metric spaces. The Coupled fixed point theorems in various metric spaces
developed by many mathematicians (see [[2], [10], [11], [12], [15], [16]] and others).
Our results extend some of these results for two self maps in Ab-metric space.

The aim of this paper is to extend the results of Deepak Singh et al. [6] for a
unique Coupled fixed point theorem and to generalize the notion of mixed weakly
monotone property.

In this paper, we use the notion of a mixed weakly monotone pair of maps to
state a coupled common fixed point theorem on partially ordered Ab-metric space.
We prove some unique coupled common fixed point theorems in partially ordered
Ab-metric space and also provide example to support our results.

First we recall some notions, lemmas and examples which will be useful to
prove our results.

2 Preliminaries

Definition 2.1. [1] Let X be a non empty set and n(≥ 2) be a positive integer.
A function A : Xn → [0,∞) is called an A-metric on X, if for any xi, a ∈ X.i =
1, 2, ....n, the following conditions hold.
(i) A(x1, x2, ....., xn−1, xn) ≥ 0,
(ii) A(x1, x2, ....., xn−1, xn) = 0 if and only if x1 = x2 = ..... = xn−1 = xn,

(iii) A(x1, x2, .....xn−1, xn) ≤ [A(x1, x1, ....., x1(n−1)
, a) +A(x2, x2, ....., x2(n−1)

, a)

+ ..............+A(xn−1, xn−1, ....., xn−1(n−1)
, a)

+A(xn, xn, ....., xn(n−1)
, a)]

The pair (X,A) is called an A-metric space.

Definition 2.2. [8] Let X be a non empty set. A b-metric on X is a function
d : X2 → [0,∞) such that the following conditions hold for all x, y, z ∈ X.
(i) d(x, y) = 0 ⇐⇒ x = y,
(ii) d(x, y) = d(y, x),
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(iii) there exists s ≥ 1, such that d(x, z) ≤ s[d(x, y) + d(y, z)].
The pair (X, d) is called a b-metric space.

Definition 2.3. [17] Let X be a non empty set and n ≥ 2. Suppose b ≥ 1 is a
real number. A function Ab : Xn → [0,∞) is called an Ab -metric on X, if for
any xi, a ∈ X, i = 1, 2......n, the following conditions hold.
(i) Ab(x1, x2, ....., xn−1, xn) ≥ 0,
(ii) Ab(x1, x2, ....., xn−1, xn) = 0 if and only if x1 = x2 = ..... = xn−1 = xn,

(iii) Ab(x1, x2, ....., xn−1, xn) ≤ b[Ab(x1, x1, ....., x1(n−1)
, a)

+Ab(x2, x2, ....., x2(n−1)
, a)

+ ..............+Ab(xn−1, xn−1, ....., xn−1(n−1)
, a)

+Ab(xn, xn, ....., xn(n−1)
, a)].

The pair (X,Ab) is called an Ab-metric space.

Note: In practice we write A for Ab when there is no confusion.

Example 2.4. [17] Let X = [1,∞) and n ≥ 2. Define Ab : X
n → [1,∞) by

Ab(x1, x2, ....., xn−1, xn) =
n∑

i=1

∑
i<j

|xi − xj |2, for all xi ∈ X, i = 1, 2............n.

Then (X,Ab) is an Ab-metric space with b=2.

Lemma 2.1. [17] Let (X,A) be Ab metric space, so that A : Xn → [0,∞) for
some n ≥ 2. Then A(x, x, .......x︸ ︷︷ ︸

(n−1)times

, y) ≤ bA(y, y, .......y︸ ︷︷ ︸
(n−1)times

, x), for all x,y ∈ X

Lemma 2.2. [17] Let (X,A) be Ab metric space, so that A : Xn → [0,∞) for
some n ≥ 2.
Then A(x, x, .......x︸ ︷︷ ︸

(n−1)times

, z) ≤ (n−1)bA(x, x, .......x︸ ︷︷ ︸
(n−1)times

, y)+b2A(y, y, .......y︸ ︷︷ ︸
(n−1)times

, z), for all x,y,z

∈ X.

Lemma 2.3. [17] Let (X,A) be Ab metric space. Then (X2, DA) is Ab-metric
space on X ×X with DA defined by
DA((x1, y1), (x2, y2), .......(xn, yn)) = A(x1, x2, ....xn)+A(y1, y2, ....yn), for all xi, yi ∈
X, i, j = 1, 2, ...n.

Note: We write D for DA, when there is no confusion.

Definition 2.5. Let (X,A) be Ab-metric space. A sequence {xk} in X is said to
converge to a point x ∈ X, if A(xk, xk, .....xk︸ ︷︷ ︸

(n−1)times

, x) → 0 as k → ∞. That is, to each

ε ≥ 0 there exist N ∈ N such that for all k ≥ N , we have A(xk, xk, .....xk︸ ︷︷ ︸
(n−1)times

, x) ≤ ε

and we write lim
k→∞

xk = x.
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Note: x is called the limit of the sequence {xk}

Lemma 2.4. [13] Let (X,A) be Ab-metric space. If the sequence {xk} in X con-
verges to a point x, then the limit x is unique.

Definition 2.6. Let (X,A) be Ab-metric space. A sequence {xk} in X is called a
Cauchy sequence, if A(xk, xk, .....xk︸ ︷︷ ︸

(n−1)times

, xm) → 0 as k,m → ∞.

That is, to each ε ≥ 0, there exists N ∈ N such that for all k,m ≥ N, we have
A(xk, xk, .....xk︸ ︷︷ ︸

(n−1)times

, xm) ≤ ε.

Lemma 2.5. [13] Every convergent sequence in a Ab-metric space is a Cauchy
sequence.

Definition 2.7. A Ab-metric space (X,A) is said to be complete, if every Cauchy
sequence in X is convergent.

Definition 2.8. [9] Let (X,≤) be a partially ordered set and f, g : X ×X → X
be mappings. We say that (f, g) has the mixed weakly monotone property on X, if
for any x, y ∈ X,
x ≤ f(x, y), y ≥ f(y, x)
=⇒ f(x, y) ≤ g((f(x, y), f(y, x)), f(y, x) ≥ g((f(y, x), f(x, y))
and x ≤ g(x, y), y ≥ g(y, x)
=⇒ g(x, y) ≤ f((g(x, y), g(y, x)), g(y, x) ≥ f((g(y, x), g(x, y))

Definition 2.9. Let X be a non-empty set and f, g : X × X → X be maps on
X ×X.
(i) A point (x, y) ∈ X ×X is called a coupled fixed pint of f , if x = f(x, y) and
y = f(y, x)
(ii) A point (x, y) ∈ X ×X is said to be a common coupled fixed pint of f and g,
if x = f(x, y) = g(x, y) and y = f(y, x) = g(y, x).

Note: (x, y) is said to be a Coupled coincidence point of f and g, if f(x, y) =
g(x, y) and f(y, x) = g(y, x).

We observe that a common coupled fixed pint of f and g is necessarily a
Coupled coincidence point of f and g.

3 Main Results

Now we prove our first main result.

Theorem 3.1. Let (X,≤, A) be a partially ordered, complete Ab-metric space and
let f, g : X ×X → X be the mappings such that
(i) the pair (f, g) has mixed weakly monotone property on X and there exists
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x0, y0 ∈ X such that x0 ≤ f(x0, y0), f(y0, x0) ≤ y0 or x0 ≤ g(x0, y0), g(y0, x0) ≤
y0,
(ii) there is an ai > 0, i = 1, .., 4. Such that
b2(a1 + a2) + a3(1 + b2) + b2a4((n− 1)b+ 1) < 1 and

A(f(x, y), f(x, y), ....f(x, y), g(u, v)) +A(f(y, x), f(y, x), ....f(y, x), g(v, u))

≤ a1

[
(1 +D((x, y), (x, y), ...(x, y), (f(x, y), f(y, x))))

(D((u, v), (u, v), ..., (u, v), (g(u, v), g(v, u))))

(1 +D((x, y), (x, y), ...(x, y), (u, v)))

]
+ a2[D((x, y), (x, y), ...(x, y), (u, v))]

+ a3[D((x, y), (x, y), ...(x, y), (f(x, y), f(y, x)))

+D((u, v), (u, v), ..., (u, v), (g(u, v), g(v, u)))]

+ a4[D((u, v), (u, v), ..., (u, v), (f(x, y), f(y, x)))

+D((x, y), (x, y), ...(x, y), (g(u, v), g(v, u)))]

(3.1)

for all x, y, u, v ∈ X with x ≤ u and y ≥ v,
(iii) if f or g is continuous.
Then f and g have a coupled common fixed point in X.

Proof. Let (x0, y0) be a given point in X ×X, satisfying (i).
Write x1 = f(x0, y0), y1 = f(y0, x0), x2 = g(x1, y1), y2 = g(y1, x1)
Define the sequences {xn} and {yn} inductively

x2n+1 = f(x2n, y2n), y2n+1 = f(y2n, x2n)

x2n+2 = g(x2n+1, y2n+1), y2n+2 = g(y2n+1, x2n+1)

for all n ∈ N
(3.2)

Since x0 ≤ f(x0, y0) and y0 ≥ f(y0, x0)
and since f has mixed weakly monotone property, we get
x1 = f(x0, y0) ≤ f(f(x0, y0), f(y0, x0)) = f(x1, y1) = x2 =⇒ x1 ≤ x2

and x2 = f(x1, y1) ≤ f(f(x1, y1), f(y1, x1)) = f(x2, y2) = x3 =⇒ x2 ≤ x3 also
y1 = f(y0, x0) ≥ f(f(y0, x0), f(x0, y0)) = f(y1, x1) = y2 =⇒ y1 ≥ y2
and y2 = f(y1, x1) ≥ f(f(y1, x1), f(x1, y1)) = f(y2, x2) = y3 =⇒ y2 ≥ y3
By induction,

x0 ≤ x1 ≤ x2 ≤ ...... ≤ xn ≤ xn+1 ≤ ........

y0 ≥ y1 ≥ y2...... ≥ yn ≥ yn+1 ≥ ..........

for all n ∈ N
(3.3)

Now we show that these sequences are Cauchy
DefineDn : X ×X → X by

Dn = D((xn, yn), (xn, yn), ......., (xn, yn), (xn+1, yn+1))

= A(xn, xn, ....xn, xn+1) +A(yn, yn, ....yn, yn+1)

for all xi, yi ∈ X, i, j = 1, 2, ...n.
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Now

D2n+1 = A(x2n+1, x2n+1, ....x2n+1, x2n+2) +A(y2n+1, y2n+1, ....y2n+1, y2n+2)

= A(f(x2n, y2n), f(x2n, y2n)...f(x2n, y2n), g(x2n+1, y2n+1))

+A(f(y2n, x2n), f(y2n, x2n)...f(y2n, x2n), g(y2n+1, x2n+1))

≤ a1

[
(1 +D((x2n, y2n), (x2n, y2n), ...(x2n, y2n), (f(x2n, y2n), f(y2n, x2n))))

(D((x2n+1, y2n+1), (x2n+1, y2n+1), ..., (x2n+1, y2n+1), (g(x2n+1, y2n+1), g(y2n+1, x2n+1))))

(1 +D((x2n, y2n), (x2n, y2n), ...(x2n, y2n), (x2n+1, y2n+1)))

]
+ a2[D((x2n, y2n), (x2n, y2n), ...(x2n, y2n), (x2n+1, y2n+1))]

+ a3[D((x2n, y2n), (x2n, y2n), ...(x2n, y2n), (f(x2n, y2n), f(y2n, x2n)))

+ (D((x2n+1, y2n+1), (x2n+1, y2n+1), ..., (x2n+1, y2n+1), (g(x2n+1, y2n+1), g(y2n+1, x2n+1))))]

+ a4[(D((x2n+1, y2n+1), (x2n+1, y2n+1), ..., (x2n+1, y2n+1), (f(x2n, y2n), f(y2n, x2n))))

+ (D((x2n, y2n), (x2n, y2n), ..., (x2n, y2n), (g(x2n+1, y2n+1), g(y2n+1, x2n+1))))]

From 3.2

≤ a1

[
(1 +D((x2n, y2n), (x2n, y2n), ...(x2n, y2n), (x2n+1, y2n+1)))

(D((x2n+1, y2n+1), (x2n+1, y2n+1), ..., (x2n+1, y2n+1), (x2n+2, y2n+2)))

(1 +D((x2n, y2n), (x2n, y2n), ...(x2n, y2n), (x2n+1, y2n+1)))

]
+ a2[D((x2n, y2n), (x2n, y2n), ...(x2n, y2n), (x2n+1, y2n+1))]

+ a3[D((x2n, y2n), (x2n, y2n), ...(x2n, y2n), (x2n+1, y2n+1))

+ (D((x2n+1, y2n+1), (x2n+1, y2n+1), ..., (x2n+1, y2n+1), (x2n+2, y2n+2)))]

+ a4[D((x2n+1, y2n+1), (x2n+1, y2n+1), ..., (x2n+1, y2n+1), (x2n+1, y2n+1))

+ (D((x2n, y2n), (x2n, y2n), ..., (x2n, y2n), (x2n+2, y2n+2)))]

=a1 [D((x2n+1, y2n+1), (x2n+1, y2n+1), ..., (x2n+1, y2n+1), (x2n+2, y2n+2))]

+ a2 [D((x2n, y2n), (x2n, y2n), ...(x2n, y2n), (x2n+1, y2n+1))]

+ a3 [D((x2n, y2n), (x2n, y2n), ...(x2n, y2n), (x2n+1, y2n+1))

+ (D((x2n+1, y2n+1), (x2n+1, y2n+1), ..., (x2n+1, y2n+1), (x2n+2, y2n+2)))]

+ a4 [D((x2n, y2n), (x2n, y2n), ..., (x2n, y2n), (x2n+2, y2n+2))]

From lemma 2.2,

D2n+1 ≤ a1 [D((x2n+1, y2n+1), (x2n+1, y2n+1), ..., (x2n+1, y2n+1), (x2n+2, y2n+2))]

+ a2 [D((x2n, y2n), (x2n, y2n), ...(x2n, y2n), (x2n+1, y2n+1))]

+ a3 [D((x2n, y2n), (x2n, y2n), ...(x2n, y2n), (x2n+1, y2n+1))

+ (D((x2n+1, y2n+1), (x2n+1, y2n+1), ..., (x2n+1, y2n+1), (x2n+2, y2n+2)))]

+ a4 [(n− 1)b D((x2n, y2n), (x2n, y2n), ..., (x2n, y2n), (x2n+1, y2n+1))

+ b2 D((x2n+1, y2n+1), (x2n+1, y2n+1), ..., (x2n+1, y2n+1), (x2n+2, y2n+2))]
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= (a1 + a3 + a4b
2) [D((x2n+1, y2n+1), (x2n+1, y2n+1), ...,

(x2n+1, y2n+1), (x2n+2, y2n+2)]

+(a2 + a3 + a4(n− 1)b) [D((x2n, y2n), (x2n, y2n), ...,

(x2n, y2n), (x2n+1, y2n+1))]

= (a1 + a3 + a4b
2) [A(x2n+1, x2n+1, ....x2n+1, x2n+2)

+A(y2n+1, y2n+1, ....y2n+1, y2n+2)]

+ (a2 + a3 + a4(n− 1)b) [A(x2n, x2n, ....x2n, x2n+1)

+A(y2n, y2n, ....y2n, y2n+1)]

(3.4)

Similarly we get,

= (a1 + a3 + a4b
2) [A(y2n+1, y2n+1, ....y2n+1, y2n+2

+A(x2n+1, x2n+1, ....x2n+1, x2n+2)]

+ (a2 + a3 + a4(n− 1)b) [A(y2n, y2n, ....y2n, y2n+1)

+A(x2n, x2n, ....x2n, x2n+1)]

(3.5)

From 3.4 and 3.5 we have,

2D2n+1 = 2[A(x2n+1, x2n+1, ....x2n+1, x2n+2) +A(y2n+1, y2n+1, ....y2n+1, y2n+2)]

≤ 2{(a1 + a3 + a4b
2) [A(x2n+1, x2n+1, ....x2n+1, x2n+2)

+A(y2n+1, y2n+1, ....y2n+1, y2n+2)]

+ (a2 + a3 + a4(n− 1)b) [A(x2n, x2n, ....x2n, x2n+1)

+A(y2n, y2n, ....y2n, y2n+1)]}

Therefore

D2n+1 ≤ {(a1 + a3 + a4b
2) [A(x2n+1, x2n+1, ....x2n+1, x2n+2)

+A(y2n+1, y2n+1, ....y2n+1, y2n+2)]

+(a2 + a3 + a4(n− 1)b) [A(x2n, x2n, ....x2n, x2n+1)

+A(y2n, y2n, ....y2n, y2n+1)]}

(3.6)

=⇒ (1− (a1 + a3 + a4b
2)) D2n+1 ≤ (a2 + a3 + a4(n− 1)b) D2n

=⇒ D2n+1 ≤ a2 + a3 + a4(n− 1)b

1− (a1 + a3 + a4b2)
D2n (3.7)

Put γ = a2+a3+a4(n−1)b
1−(a1+a3+a4b2)

, then 0 ≤ γ < 1.

From 3.7,

D2n+1 ≤ γ D2n

Similarly we can show that

D2n+2 ≤ γ D2n+1 for n = 0, 1, 2, ...
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Hence
Dn+1 ≤ γ Dn

Therefore
Dn+1 ≤ γn+1D0 (3.8)

Define

Dn,m = D((xn, yn), (xn, yn), ......., (xn, yn)︸ ︷︷ ︸
(n−1)−times

, (xm, ym))

= A(xn, xn, ....xn︸ ︷︷ ︸
(n−1)−times

, xm) +A(yn, yn, ....yn︸ ︷︷ ︸
(n−1)−times

, ym)

Now we have to show that Dn,m is a Cauchy sequence
By lemma 2.2, for all k,m ∈ N, k ≤ m
we have

Dn+1,m+1 = A(xn+1, xn+1, ....xn+1, xm+1) +A(yn+1, yn+1, ....yn+1, ym+1)

≤ b(n− 1)[A(xn+1, xn+1, ....xn+1, xn+2) +A(yn+1, yn+1, ....yn+1, yn+2)]

+ b2[A(xn+2, xn+2, ....xn+2, xm+1) +A(yn+2, yn+2, ....yn+2, ym+1)]

=b(n− 1)Dn+1 + b2b(n− 1)[A(xn+2, xn+2, ....xn+2, xn+3)

+A(yn+2, yn+2, ....yn+2, yn+3)]

+ b2b2[A(xn+3, xn+3, ....xn+3, xm+1) +A(yn+3, yn+3, ....yn+3, ym+1)]

≤ b(n− 1)Dn+1 + b3(n− 1)Dn+2 + b5(n− 1)Dn+3

...

+b2(m−n)−3(n− 1)[A(xm−1, xm−1, ....xm−1, xm)

+A(ym−1, ym−1, ....ym−1, ym)]

+b2(m−n)−1(n− 1)[A(xm, xm, ....xm, xm+1)

+A(ym, ym, ....ym, ym+1)]

From 3.8

Dn+1,m+1 ≤ b(n− 1)[γn+1 + b2γn+2 + b4γn+3...+ b2(m−n)−2γm]D0

=⇒ Dn+1,m+1 ≤ b(n− 1)γn+1[1 + b2γ + (b2γ)2 + ...+ (b2γ)(m−n−1)]D0

= b(n− 1)γn+1[1 + δ + δ2 + ....+ δ(m−n−1)]D0

= b(n− 1)γn+1

(
1

1− δ

)
D0

Where δ = b2γ
Hence for all n,m ∈ N, with n ≤ m, we have

Dn,m = A(xn, xn, ...xn, xm) +A(yn, yn, ....yn, ym) ≤ b(n− 1)γn

(
1

1− δ

)
D0
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Since 0 ≤ δ = b2(a1 + a2) + a3(1 + b2) + b2a4((n− 1)b+ 1) < 1, we have

lim
n,m→∞

A(xn, xn, ...xn, xm) +A(yn, yn, ....yn, ym) = 0

That is, lim
n,m→∞

A(xn, xn, ...xn, xm) = lim
n,m→∞

A(yn, yn, ....yn, ym) = 0

Therefore {xn} and {yn} are both Cauchy sequences in X.
By the completeness of X, there exists x, y ∈ X such that xn → x and yn → y as
n → ∞.
Therefore Dn,m is a Cauchy sequence.
Now we show that (x, y) is a coupled fixed point of f and g.
Without loss of generality, we may suppose that f is continuous, we have

x = lim
n→∞

x2n+1 = lim
n→∞

f(x2n, y2n) = f
(
lim

n→∞
x2n, lim

n→∞
y2n

)
= f(x, y)

and

y = lim
n→∞

y2n+1 = lim
n→∞

f(y2n, x2n) = f
(
lim
n→∞

y2n, lim
n→∞

x2n

)
= f(y, x)

Thus (x, y) is a coupled fixed point of f .
From 3.1, taking u = x and v = y, we have,

A(x, x, ....x, g(x, y)) +A(y, y, ....y, g(y, x))

= A(f(x, y), f(x, y), ....f(x, y), g(x, y)) +A(f(y, x), f(y, x), ....f(y, x), g(y, x))

≤ a1

[
(1 +D((x, y), (x, y), ...(x, y), (f(x, y), f(y, x))))

(D((x, y), (x, y), ..., (x, y), (g(x, y), g(y, x))))

(1 +D((x, y), (x, y), ...(x, y), (x, y)))

]
+ a2 [D((x, y), (x, y), ...(x, y), (x, y))]

+ a3 [D((x, y), (x, y), ...(x, y), (f(x, y), f(y, x))

+D((x, y), (x, y), ..., (x, y), (g(x, y), g(y, x))))]

+ a4 [D((x, y), (x, y), ..., (x, y), (f(x, y), f(y, x)))

+D((x, y), (x, y), ...(x, y), (g(x, y), g(y, x)))]

≤ a1

[
(1 +D((x, y), (x, y), ...(x, y), (x, y)))

(D((x, y), (x, y), ..., (x, y), (g(x, y), g(y, x))))

(1 +D((x, y), (x, y), ...(x, y), (x, y)))

]
+ a2 [D((x, y), (x, y), ...(x, y), (x, y))]

+ a3 [D((x, y), (x, y), ...(x, y), (x, y))

+D((x, y), (x, y), ..., (x, y), (g(x, y), g(y, x)))]

+ a4 [D((x, y), (x, y), ..., (x, y), (x, y))

+D((x, y), (x, y), ...(x, y), (g(x, y), g(y, x)))]
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=(a1 + a3 + a4) D((x, y), (x, y), ..., (x, y), (g(x, y), g(y, x)))

≤ b(a1 + a3 + a4) ((g(x, y), g(y, x)), (g(x, y), g(y, x)), .......(g(x, y), g(y, x)), (x, y))

Since b(a1 + a3 + a4) < 1, we have (g(x, y), g(y, x)) = (x, y)
=⇒ g(x, y) = x and g(y, x) = y
Therefore (x, y) is a coupled fixed point of g.
Thus (x, y) is a coupled common fixed point of f and g.

Note: (i) It may be observed that putting g = f in Theorem 3.1 is an extension
of (Theorem 37 of W.sintunawarat et al.[16])
(ii) It may be observed that putting g = f in Theorem 3.1, we extend (Corollary
3.6 of M.Abbas et al.[2]) in Ab metric space.
(iii) In Theorem 3.1, putting g = f , a1 = 0, a2 = 0, a3 = 0, a4 = k and n = 2,
we obtain ( Theorem 3.2 of E.Carpinar et al.[10]).
(iv) Our Theorem 3.1 is generalization of (Corollary 3.2 of W.sintunawarat et
al.[16] ). Under the assumption x = u, y = v for n = 3.
(v) In Theorem 3.1, putting g = f , a1 = 0, a2 = 0, a3 = 0, a4 = k and n = 3, we
obtain ( Corollary 24 of E.Carpinar et al.[11]).

Theorem 3.2. Let (X,≤, A) be a partially ordered, complete Ab-metric space and
f, g : X ×X → X be the mappings such that
(i) the pair (f, g) has mixed weakly monotone property on X and there exists
x0, y0 ∈ X such that x0 ≤ f(x0, y0), f(y0, x0) ≤ y0 or
x0 ≤ g(x0, y0), g(y0, x0) ≤ y0,
(ii) there is an ai > 0, i = 1, .., 4. Such that
b2(a1 + a2) + a3(1 + b2) + b2a4((n− 1)b+ 1) < 1 and

A(f(x, y), f(x, y), ....f(x, y), g(u, v)) +A(f(y, x), f(y, x), ....f(y, x), g(v, u))

≤ a1

[
(1 +D((x, y), (x, y), ...(x, y), (f(x, y), f(y, x))))

(D((u, v), (u, v), ..., (u, v), (g(u, v), g(v, u))))

(1 +D((x, y), (x, y), ...(x, y), (u, v)))

]
+ a2 [D((x, y), (x, y), ...(x, y), (u, v))]

+ a3 [D((x, y), (x, y), ...(x, y), (f(x, y), f(y, x)))

+D((u, v), (u, v), ..., (u, v), (g(u, v), g(v, u)))]

+ a4 [D((u, v), (u, v), ..., (u, v), (f(x, y), f(y, x)))

+D((x, y), (x, y), ...(x, y), (g(u, v), g(v, u)))]

(3.9)

for all x, y, u, v ∈ X with x ≤ u and y ≥ v,
(iii) X has the following properties
(a). if {xn} is an increasing sequence with xn → x, then xn ≤ x for all n ∈ N,
(b). if {yn} is a decreasing sequence with yk → y, then y ≤ yn for all n ∈ N.
Then f and g have coupled common fixed points in X.

Proof. Suppose X satisfies (a) and (b), by 3.3 we get xn ≤ x and yn ≥ y for all
n ∈ N
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Applying lemmas 2.1 and 2.2, we have

D((x, y), (x, y), ...(x, y), (f(x, y), f(y, x)))

≤ b(n− 1)D((x, y), (x, y), ...(x, y), (x2n+2, y2n+2)

+ b2D((x2n+2, y2n+2), (x2n+2, y2n+2), ...(x2n+2, y2n+2), (f(x, y), f(y, x)))

= b(n− 1)D((x, y), (x, y), ...(x, y), (x2n+2, y2n+2))

+ b2D((g(x2n+1, y2n+1), g(y2n+1, x2n+1)), (g(x2n+1, y2n+1), g(y2n+1, x2n+1)),

....(g(x2n+1, y2n+1), g(y2n+1, x2n+1)), (f(x, y), f(y, x)))

=⇒ D((x, y), (x, y), ...(x, y), (f(x, y), f(y, x)))

≤ b(n− 1)[A(x, x, ...x, x2n+2) +A(y, y, ...y, y2n+2)]

+ b2A[g(x2n+1, y2n+1), g(x2n+1, y2n+1), ...g(x2n+1, y2n+1), f(x, y)]

+ b2A[g(y2n+1, x2n+1), g(y2n+1, x2n+1), ...g(y2n+1, x2n+1), f(y, x)]

(3.10)

By 3.1, we get

A((g(x2n+1, y2n+1)), (g(x2n+1, y2n+1)), ...(g(x2n+1, y2n+1), (f(x, y))

+A((g(y2n+1, x2n+1)), (g(y2n+1, x2n+1)), ...(g(y2n+1, x2n+1), (f(y, x))

≤ a1

[
(1 +D((x2n+1, y2n+1), (x2n+1, y2n+1), ...,

(x2n+1, y2n+1), (g(x2n+1, y2n+1), g(y2n+1, x2n+1))))

(D((x, y), (x, y), ...(x, y), (f(x, y), f(y, x))))

(1 +D((x2n+1, y2n+1), (x2n+1, y2n+1), ..., (x2n+1, y2n+1), (x, y)))

]
+ a2 [D((x2n+1, y2n+1), (x2n+1, y2n+1), ..., (x2n+1, y2n+1), (x, y))]

+ a3 [D((x2n+1, y2n+1), (x2n+1, y2n+1),

..., (x2n+1, y2n+1), (g(x2n+1, y2n+1), g(y2n+1, x2n+1)))

+D((x, y), (x, y), ...(x, y), (f(x, y), f(y, x)))]

+ a4 [D((x, y), (x, y), ...(x, y), (g(x2n+1, y2n+1), g(y2n+1, x2n+1)))

+D((x2n+1, y2n+1), (x2n+1, y2n+1), ..., (x2n+1, y2n+1), (f(x, y), f(y, x)))]

= a1

[
(1 +D((x2n+1, y2n+1), (x2n+1, y2n+1), ..., (x2n+1, y2n+1), (x2n+2, y2n+2)))

(D((x, y), (x, y), ...(x, y), (f(x, y), f(y, x))))

(1 +D((x2n+1, y2n+1), (x2n+1, y2n+1), ..., (x2n+1, y2n+1), (x, y)))

]
+ a2 [D((x2n+1, y2n+1), (x2n+1, y2n+1), ..., (x2n+1, y2n+1), (x, y))]

+ a3 [D((x2n+1, y2n+1), (x2n+1, y2n+1), ..., (x2n+1, y2n+1), (x2n+2, y2n+2))

+D((x, y), (x, y), ...(x, y), (f(x, y), f(y, x)))]

+ a4[D((x, y), (x, y), ...(x, y), (x2n+2, y2n+2))

+D((x2n+1, y2n+1), (x2n+1, y2n+1), ..., (x2n+1, y2n+1), (f(x, y), f(y, x)))]
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From 3.7 and 3.8

D((x, y), (x, y), ...(x, y), (f(x, y), f(y, x)))

≤ b(n− 1)[(A(x, x, ...x, x2n+2) +A(y, y, ...y, y2n+2))]

+ b2
{
a1

[
(1 +D((x2n+1, y2n+1), (x2n+1, y2n+1), ..., (x2n+1, y2n+1), (x2n+2, y2n+2)))

(D((x, y), (x, y), ...(x, y), (f(x, y), f(y, x))))

(1 +D((x2n+1, y2n+1), (x2n+1, y2n+1), ..., (x2n+1, y2n+1), (x, y)))

]
+ a2 [D((x2n+1, y2n+1), (x2n+1, y2n+1), ..., (x2n+1, y2n+1), (x, y))]

+ a3 [D((x2n+1, y2n+1), (x2n+1, y2n+1), ..., (x2n+1, y2n+1), (x2n+2, y2n+2))

+D((x, y), (x, y), ...(x, y), (f(x, y), f(y, x)))]

+ a4[D((x, y), (x, y), ...(x, y), (x2n+2, y2n+2))

+D((x2n+1, y2n+1), (x2n+1, y2n+1), ..., (x2n+1, y2n+1), (f(x, y), f(y, x)))]

}
(3.11)

Taking the limit as n → ∞ in 3.11, we obtain

D((x, y), (x, y), ...(x, y), (f(x, y), f(y, x)))

≤ b(n− 1)[A(x, x, ...x, x) +A(y, y, ...y, y)]

+ b2
{
a1

[
(1 +D((x, y), (x, y), ..., (x, y), (x, y)))

(D((x, y), (x, y), ...(x, y), (f(x, y), f(y, x))))

(1 +D((x, y), (x, y), ..., (x, y), (x, y)))

]
+ a2 [D((x, y), (x, y), ..., (x, y), (x, y))]

+ a3 [D((x, y), (x, y), ..., (x, y), (x, y))

+D((x, y), (x, y), ...(x, y), (f(x, y), f(y, x)))]

+ a4[D((x, y), (x, y), ..., (x, y), (x, y))

+D((x, y), (x, y), ...(x, y), (f(x, y), f(y, x)))]

}
Therefore D((x, y), (x, y), ...(x, y), (f(x, y), f(y, x)))

≤ b2(a1 + a3 + a4) D((x, y), (x, y), ...(x, y), (f(x, y), f(y, x)))

Since b2(a1 + a3 + a4) < 1, we have
D((x, y), (x, y), ...(x, y), (f(x, y), f(y, x))) = 0
=⇒ (f(x, y), f(y, x)) = (x, y)
That is, f(x, y) = x and f(y, x) = y
Therefore (x, y) is a coupled fixed point of f .
Similarly we can show that g(x, y) = x and g(y, x) = y
Hence f(x, y) = x = g(x, y) and f(y, x) = y = g(y, x)
Thus (x, y) is a coupled common fixed point of f and g.
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Theorem 3.3. Suppose Theorem 3.1 or Theorem 3.2 satisfied, if further {xn} is
an increasing sequence with xn → x and xn ≤ u for each n, then x ≤ u. Then f
and g have a unique coupled common fixed points. Further more, any fixed point
of f is a fixed point of g, and conversely.

Proof. Suppose the given condition holds,
Let (x, y) and (u, v) ∈ X ×X, there exist (x∗, y∗) ∈ X ×X , that is, comparable
to (x, y) and (u, v).

D((x, y), (x, y), ...(x, y), (u, v)) = A(x, x, ...x, u) +A(y, y, ...y, u)

= A(f(x, y), f(x, y), ...f(x, y), g(u, v))

+A(f(y, x), f(y, x), ...f(y, x), g(v, u))

≤ a1

[
(1 +D((x, y), (x, y), ...(x, y), (f(x, y), f(y, x))))

(D((u, v), (u, v), ..., (u, v), (g(u, v), g(v, u))))

(1 +D((x, y), (x, y), ...(x, y), (u, v)))

]
+ a2 [D((x, y), (x, y), ...(x, y), (u, v))]

+ a3 [D((x, y), (x, y), ...(x, y), (f(x, y), f(y, x)))

+D((u, v), (u, v), ..., (u, v), (g(u, v), g(v, u)))]

+ a4 [D((u, v), (u, v), ..., (u, v), (f(x, y), f(y, x)))

+D((x, y), (x, y), ...(x, y), (g(u, v), g(v, u)))]

≤ a1

[
(1 +D((x, y), (x, y), ...(x, y), (x, y)))

(D((u, v), (u, v), ..., (u, v), (u, v)))

(1 +D((x, y), (x, y), ...(x, y), (u, v)))

]
+ a2 [D((x, y), (x, y), ...(x, y), (u, v))]

+ a3 [D((x, y), (x, y), ...(x, y), (x, y))

+D((u, v), (u, v), ..., (u, v), (u, v))]

+ a4 [D((u, v), (u, v), ..., (u, v), (x, y)) +D((x, y), (x, y), ...(x, y), (u, v))]

≤ a2 D((x, y), (x, y), ...(x, y), (u, v))

+ a4 (D((u, v), (u, v), ...(u, v), (x, y))

+D((x, y), (x, y), ...(x, y), (u, v)))

≤ a2 D((x, y), (x, y), ...(x, y), (u, v))

+ a4 (b D((x, y), (x, y), ...(x, y), (u, v)) +D((x, y), (x, y), ...(x, y), (u, v)))

= (a2 + a4(b+ 1)) D((x, y), (x, y), ...(x, y), (u, v))

Since (a2 + a4(b+ 1)) < 1, so that
D((x, y), (x, y), ...(x, y), (u, v)) = 0
=⇒ (x, y) = (u, v) =⇒ x = u and y = v
Suppose (x, y) and (x∗, y∗) are Coupled common fixed points such that x ≤ x∗
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and y ≥ y∗, then x = x∗ and y = y∗.
Now

D((x, y), (x, y), ...(x, y), (x∗, y∗)) = A(x, x, ...x, x∗) +A(y, y, ...y, y∗)

= A(f(x, y), f(x, y), ...f(x, y), g(x∗, y∗))

+A(f(y, x), f(y, x), ...f(y, x), g(y∗, x∗))

≤ a1

[
(1 +D((x, y), (x, y), ...(x, y), (f(x, y), f(y, x))))

(D((x∗, y∗), (x∗, y∗), ..., (x∗, y∗), (g(x∗, y∗), g(y∗, x∗))))

(1 +D((x, y), (x, y), ...(x, y), (x∗, y∗)))

]
+ a2 [D((x, y), (x, y), ...(x, y), (x∗, y∗))]

+ a3 [D((x, y), (x, y), ...(x, y), (f(x, y), f(y, x)))

+D((x∗, y∗), (x∗, y∗), ..., (x∗, y∗), (g(x∗, y∗), g(y∗, x∗)))]

+ a4 [D((x∗, y∗), (x∗, y∗), ..., (x∗, y∗), (f(x, y), f(y, x)))

+D((x, y), (x, y), ...(x, y), (g(x∗, y∗), g(y∗, x∗)))]

≤ a1

[
(1 +D((x, y), (x, y), ...(x, y), (x, y)))

(D((x∗, y∗), (x∗, y∗), ..., (x∗, y∗), (x∗, y∗)))

(1 +D((x, y), (x, y), ...(x, y), (x∗, y∗)))

]
+ a2 [D((x, y), (x, y), ...(x, y), (x∗, y∗))]

+ a3 [D((x, y), (x, y), ...(x, y), (x, y))

+D((x∗, y∗), (x∗, y∗), ..., (x∗, y∗), (x∗, y∗))]

+ a4 [D((x∗, y∗), (x∗, y∗), ..., (x∗, y∗), (x, y))

+D((x, y), (x, y), ...(x, y), (x∗, y∗))]

= a2 [D((x, y), (x, y), ...(x, y), (x∗, y∗))]

+ a4 [D((x∗, y∗), (x∗, y∗), ..., (x∗, y∗), (x, y))

+D((x, y), (x, y), ...(x, y), (x∗, y∗))]

≤ a2 [D((x, y), (x, y), ...(x, y), (x∗, y∗))]

+ a4 [b D((x, y), (x, y), ..., (x, y), (x∗, y∗))

+D((x, y), (x, y), ...(x, y), (x∗, y∗))]

= (a2 + a4(b+ 1))D((x, y), (x, y), ..., (x, y), (x∗, y∗))

Since (a2 + a4(b+ 1)) < 1, so that
D((x, y), (x, y), ..., (x, y), (x∗, y∗)) = 0
=⇒ (x, y) = (x∗, y∗)
=⇒ x = x∗ and y = y∗

we show that any fixed point of f is a fixed point of g, and conversely.
That is, to show that (x, y) is a fixed point of f ⇐⇒ (x, y) is a fixed point of g.
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Suppose that (x, y) is a coupled fixed point of f .

D((x, y), (x, y), ...(x, y), (g(x, y), g(y, x)))

= A(f(x, y), f(x, y), ...f(x, y), g(x, y)) +A(f(y, x), f(y, x), ...f(y, x), g(y, x))

≤ a1

[
(1 +D((x, y), (x, y), ...(x, y), (f(x, y), f(y, x))))

(D((x, y), (x, y), ..., (x, y), (g(x, y), g(y, x))))

(1 +D((x, y), (x, y), ...(x, y), (x, y)))

]
+ a2 [D((x, y), (x, y), ...(x, y), (x, y))]

+ a3 [D((x, y), (x, y), ...(x, y), (f(x, y), f(y, x)))

+D((x, y), (x, y), ..., (x, y), (g(x, y), g(y, x)))]

+ a4 [D((x, y), (x, y), ..., (x, y), (f(x, y), f(y, x)))

+D((x, y), (x, y), ...(x, y), (g(x, y), g(y, x)))]

= a1

[
(1 +D((x, y), (x, y), ...(x, y), (x, y)))

(D((x, y), (x, y), ..., (x, y), (g(x, y), g(y, x))))

(1 +D((x, y), (x, y), ...(x, y), (x, y)))

]
+ a3 [D((x, y), (x, y), ...(x, y), (x, y))

+D((x, y), (x, y), ..., (x, y), (g(x, y), g(y, x)))]

+ a4 [D((x, y), (x, y), ..., (x, y), (x, y))

+D((x, y), (x, y), ...(x, y), (g(x, y), g(y, x)))]

= a1 [D((x, y), (x, y), ..., (x, y), (g(x, y), g(y, x)))]

+ a3 [D((x, y), (x, y), ..., (x, y), (g(x, y), g(y, x)))]

+ a4 [D((x, y), (x, y), ...(x, y), (g(x, y), g(y, x)))]

= (a1 + a3 + a4) D((x, y), (x, y), ...(x, y), (g(x, y), g(y, x)))

≤ b(a1 + a3 + a4) D((g(x, y), g(y, x)), (g(x, y), g(y, x)),

.....(g(x, y), g(y, x)), (x, y))

Since b(a1 + a3 + a4) < 1, we have
D((g(x, y), g(y, x)), (g(x, y), g(y, x)), ...(g(x, y), g(y, x)), (x, y)) = 0
=⇒ (g(x, y), g(y, x)) = (x, y)
=⇒ x = g(x, y) and y = g(y, x)
Therefore (x, y) is a coupled fixed point of g, and conversely.

Taking g = f and a1 = a3 = a4 = 0 in Theorem 3.1, we get the following

Corollary 3.4. Let (X,≤, A) be a partially ordered, complete Ab-metric space and
let f : X ×X → X be the mapping such that
(i) f has mixed weakly monotone property on X and there exists x0, y0 ∈ X such
that x0 ≤ f(x0, y0), f(y0, x0) ≤ y0,
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(ii) there is an a2 such that a2 < 1 and

A(f(x, y), f(x, y), ....f(x, y), f(u, v)) +A(f(y, x), f(y, x), ....f(y, x), f(v, u))

≤ a2 D((x, y), (x, y), ...(x, y), (u, v))

(3.12)

for all x, y, u, v ∈ X with x ≤ u and y ≥ v,
(iii) if f is continuous.
Then f has a coupled fixed point in X.

we give an example to illustrate the Theorem 3.1 as follows.

Example 3.1. Let (R,≤, A) be a partially ordered complete Ab-metric space with
Ab-metric, with index n, defined on X = [−∞,+∞] as Ab : X

n → [−∞,+∞] by

Ab(x1, x2, .....xn−1, xn) =
n∑

i=1

∑
i<j

|xi − xj |2, for all xi ∈ X, i = 1, 2............n. Then

(X,Ab) is an Ab-metric space with b=2.
Let f, g : R → R be two maps defined by f(x, y) = 4x−2y+32n−2

32n and g(x, y) =
6x−3y+48n−3

48n . Then the pair (f, g) has mixed weakly monotone property on R

A(f(x, y), f(x, y), ...f(x, y), g(u, v)) +A(f(y, x), f(y, x), ...f(y, x), g(v, u))

= (n− 1)(|f(x, y)− g(u, v)|) + (n− 1)(|f(y, x)− g(v, u)|)

= (n− 1)

(∣∣∣∣4x− 2y + 32n− 2

32n
− 6u− 3v + 48n− 3

48n

∣∣∣∣)
+ (n− 1)

(∣∣∣∣4y − 2x+ 32n− 2

32n
− 6v − 3u+ 48n− 3

48n

∣∣∣∣)
=

(n− 1)

16n
(|2(x− u)− (y − v)|+ |2(y − v)− (x− u)|)

≤ (n− 1)

16n
(3 |x− u|+ 3 |y − v|)

≤ 3(n− 1)

16n
(|x− u|+ |y − v|)

=
3(n− 1)

16n
D((x, y), (x, y), ....., (x, y), (u, v))

For n = 2 and b=2, since b2a2 < 1 =⇒ a2 < 1
4 .

Then the contractive condition 3.1 is satisfied with a1 = a3 = a4 = 0 and a2 <
3
32 < 1

4 and also (1, 1) is the unique coupled common fixed point of f and g.
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4 Application

The following system of Volterra type integral equations:

u(t) = q(t) +

∫ T

0

λ(t, s)(f1(s, u(s)) + f2(s, v(s)))ds

v(t) = q(t) +

∫ T

0

λ(t, s)(f1(s, v(s)) + f2(s, u(s)))ds.

(4.1)

where the space X = C([0, T ],R) of continuous functions defined in [0, T ]. Obvi-
ously, the space with the metric is given by

A(u, v) = max
t∈[0,T ]

|u(t)− v(t)| , u, v ∈ C([0, T ],R)

is a complete metric space.
Let X = C([0, T ],R) the natural partial order relation,
that is, u, v ∈ C([0, T ],R), u ≤ v ⇐⇒ u(t) ≤ v(t), t ∈ [0, T ].

Theorem 4.1. Consider the corollary 3.4 and assume that the following condi-
tions are hold:
(i) f1, f2 : [0, T ]× R → R are continuous;
(ii) q : [0, T ] → R is continuous;
(iii) λ : [0, T ]× R → [0,∞) is continuous;
(iv) there exist c > 0 and a2 < 1, such that for all u, v ∈ R, v ≥ u,
0 ≤ f1(s, v)− f1(s, u) ≤ ca2 (v − u)
0 ≤ f2(s, v)− f2(s, u) ≤ ca2 (v − u);

(v) assume that c max
t∈[0,T ]

∫ T

0
λ(t, s)ds ≤ 1;

(vi) there exist x0, y0 ∈ X such that

x0(t) ≥ q(t) +

∫ T

0

λ(t, s)(f1(s, x0(s)) + f2(s, y0(s)))ds

y0(t) ≤ q(t) +

∫ T

0

λ(t, s)(f1(s, y0(s)) + f2(s, x0(s)))ds.

Then the system of Volterra type integral equation 4.1 has a unique solution in
X ×X with X = C([0, T ],R).

Proof. Define the mapping F : X ×X → X by

F (u, v)(t) = q(t) +

∫ T

0

λ(t, s)(f1(s, u(s)) + f2(s, v(s)))ds (4.2)

for all u, v ∈ X and t ∈ [0, T ].
Now we have to show that all the conditions of Corollary 3.4 are satisfied.
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From (iv) of the Theorem 3.1, clearly F has mixed monotone property.
For x, y, u, v ∈ X with x ≥ u and y ≤ v, we have

A(F (x, y), F (x, y), ....., F (x, y), F (u, v)) +A(F (y, x), F (y, x), ....., F (y, x), F (v, u))

= (n− 1) max
t∈[0,T ]

(|F (x, y)(t)− F (u, v)(t)|+ |F (y, x)(t)− F (v, u)(t)|)

= (n− 1) max
t∈[0,T ]

∣∣∣∣∣
∫ T

0

λ(t, s)(f1(s, x(s)) + f2(s, y(s)))ds−
∫ T

0

λ(t, s)(f1(s, u(s)) + f2(s, v(s)))ds

∣∣∣∣∣
+ (n− 1) max

t∈[0,T ]

∣∣∣∣∣
∫ T

0

λ(t, s)(f1(s, y(s)) + f2(s, x(s)))ds−
∫ T

0

λ(t, s)(f1(s, v(s)) + f2(s, u(s)))ds

∣∣∣∣∣
≤ (n− 1) max

t∈[0,T ]

(∫ T

0

|f1(s, x(s))− f1(s, u(s))| |λ(t, s)| ds

+

∫ T

0

|f2(s, y(s))− f2(s, v(s))| |λ(t, s)| ds

+

∫ T

0

|f1(s, y(s))− f1(s, v(s))| |λ(t, s)| ds+
∫ T

0

|f2(s, x(s))− f2(s, u(s))| |λ(t, s)| ds
)

≤ (n− 1) max
t∈[0,T ]

ca2

(∫ T

0

|x(s)− u(s)| |λ(t, s)| ds+
∫ T

0

|y(s)− v(s)| |λ(t, s)| ds

+

∫ T

0

|y(s)− v(s)| |λ(t, s)| ds+
∫ T

0

|x(s)− u(s)| |λ(t, s)| ds
)

≤ (n− 1)

(
max
t∈[0,T ]

|x(t)− u(t)|+ max
t∈[0,T ]

|y(t)− v(t)|

+ max
t∈[0,T ]

|y(t)− v(t)|+ max
t∈[0,T ]

|x(t)− u(t)|
)

ca2

∫ T

0

|λ(t, s)| ds

≤ 2(n− 1)

(
max
t∈[0,T ]

|x(t)− u(t)|+ max
t∈[0,T ]

|y(t)− v(t)|
)

ca2

∫ T

0

|λ(t, s)| ds

≤ 2(n− 1) a2 (A(x, x, ..., x, u) +A(y, y, ..., y, v))

= 2(n− 1) a2 D((x, y), (x, y), ......(x, y), (u, v))

Therefore

A(F (x, y), F (x, y), ....., F (x, y), F (u, v)) +A(F (y, x), F (y, x), ....., F (y, x), F (v, u))

≤ 2(n− 1) a2 D((x, y), (x, y), ......(x, y), (u, v))

For n=2, a2 < 1
2 < 1. Which is the contractive condition in Corollary 3.4.

Thus, F has a coupled fixed point in X.
That is, the system of Volterra type integral equations has a solution.
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