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Abstract : Spectral gradient methods and projection technique have motivated
many numerical methods for solving monotone equations. In this work, we pro-
posed a hybrid spectral gradient algorithm for system of nonlinear monotone equa-
tions with convex constraints. The method is a combination of a convex combi-
nation of two different positive spectral parameters and the projection technique.
The global convergence of the method was established under the assumptions of
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monotonicity and Lipschitz continuity. Numerical results presented by means of
comparative experiments with a similar method shows the proposed method is
very efficient.

Keywords : spectral gradient method; nonlinear monotone equations; projection
method; global convergence
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1 Introduction

Consider the constrained monotone nonlinear equations of the form

F (x) = 0, x ∈ Ω, (1.1)

where F : Ω ⊂ Rn → Rn is continuous and monotone, that is ⟨F (x)−F (y), x−y⟩ ≥
0, ∀x, y ∈ Ω, Ω is a nonempty closed and convex set and Rn is the n−dimensional
Euclidean space. Provided these conditions hold, the solution set of problem (1.1)
is convex [21]. There are many practical applications of problem (1.1), for ex-
ample monotone equations are used as subproblems in the generalized proximal
algorithms with Bregman distance [9]. Some monotone variational inequality prob-
lems can be converted into system of nonlinear monotone equations by means of
fixed point map or normal map [31]. Recently, monotone equations were used in
signal and image recovery problems [26].

Different methods for solving unconstrained problem, where Ω = Rn have
been developed. Newton’s method, quasi-Newton methods, and Lagrangian global
method and their variants (see in [1, 4, 5, 10, 15, 25, 27, 33]) are particularly crucial
because of their local quadratic and superlinear convergence property. However,
they are typically unattractive for large-scale nonlinear systems of equations be-
cause they need to solve a linear system using the Jacobian matrix of F (x) or an
approximation of it in each iteration.
Methods for solving unconstrained minimization problems such as conjugate gra-
dient (CG) methods, spectral gradient methods and spectral CG methods are very
attractive due their low storage requirements. The main attractive feature of these
methods is that the search direction do not require the computation of the Jacobian
matrix and therefore a low computational effort per iteration is required. Thus,
motivated by the projection technique proposed by Solodov and Svaiter [23], some
researchers extended these methods to solve large-scale nonlinear equations and
also unconstrained nonlinear monotone equations (see, [7, 13, 14, 17, 18, 20, 22, 30],
for details).
In recent time, how to find the solution of the constrained monotone equations
(1.1) has received much attentions. For example, Wang et al. [24] proposed
method for solving nonlinear monotone equations with convex constraints. The
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proposed method is global convergent and numerically robust and effective. Moti-
vated by the projection technique [23], Yu et al. [28] extended the work of Zhang
and Zhou [30] to solve monotone nonlinear equations with convex constraints. A
relevant property of the method is that computation of the iteration sequence
does not require the solution of any subproblem. The global convergent of the
method was discussed under some mild assumptions. Another algorithm for solv-
ing convex constrained nonlinear monotone equations was proposed by Zheng [32].
The algorithm was a combination of proximal point and projection methodology
which was introduced based on Armijo-type line search procedure. In [18], Liu et
al. discussed two frameworks of some sufficient descent CG methods. Combined
with the hyperplane projection technique, they applied the methods to solve con-
vex constrained nonlinear monotone equations. Numerical results showed the two
methods are efficient. Again, based on the spectral gradient parameter and the
projection scheme, Yuan [29] extended the well-known CGD method to solve non-
linear monotone equations with convex constraints. Preliminary numerical results
showed the proposed method worked well. Very recently, Liu and Feng [16] pro-
posed a derivative free projection method to solve convex constrained monotone
nonlinear equations. The method was a modification of the DY CG method [6].
The modification improved the numerical performance of the DY method and the
global convergence was also established.

Inspired the by the contributions of Yu et al. [28] and Mohammad and
Abubakar [20] together with the projection technique [23], we present a hybrid
spectral gradient (HSG) method to solve system of monotone nonlinear equations
with convex constraints. To do so, we take a convex combination of the spec-
tral gradient parameter in [3] and the positive spectral coefficient [7] to define
the search direction of our algorithm. The direction satisfies the sufficient descent
condition and the global convergence theorem under suitable assumptions. We
present some preliminary numerical experiments to illustrate the efficiency of the
proposed method.
The remaining part of this paper is organized as follows. In section 2, we described
the proposed method and its algorithm. The global convergence is established in
section 3 and we report numerical experiments in section 4.

2 Motivation and proposed method

In this section, we first give some preliminaries . Throughout this paper, ∥ · ∥
denotes the 2−norm. Let Ω ⊂ Rn be a nonempty closed and convex set. The
projection operator is a map PΩ : Rn → Ω, which is defined as

PΩ(x) = argmin{∥x− y∥ : y ∈ Ω}, for any x ∈ Rn.

An interesting property is that this operator PΩ(·) is nonexpansive, that is,

∥PΩ(x)− PΩ(y)∥ ≤ ∥x− y∥, ∀x, y ∈ Rn.
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Consequently, we have

∥PΩ(x)− y∥ ≤ ∥x− y∥, ∀y ∈ Ω. (2.1)

Next, we recall the Barzilai and Borwein [3] spectral gradient method for uncon-
strained optimization problem minf(x), x ∈ Rn, where f : Rn → R is a smooth
nonlinear function. Starting from a given initial guess, the method generates se-
quence of iterates {xk} using the following iterative formula:

xk+1 = xk + αkdk, (2.2)

where αk > 0 is the step length obtained via some suitable line search and the
search direction dk is defined by

dk =

{
−gk, if k = 0,

−λkgk, if k > 0,
(2.3)

where

λk =
⟨sk−1, sk−1⟩
⟨yk−1, sk−1⟩

,

yk−1 = gk − gk−1, sk−1 = xk − xk−1 and gk is the gradient of f at xk.
The gradient g is a function from Rn to Rn which can be viewed as our function
F. However, one disadvantage of this method is that λk may be negative for non-
convex functions. Dai et al. [7] proposed a remedy by adopting a positive spectral

gradient parameter γk = ∥sk−1∥
∥yk−1∥ and used the approach to solve symmetric linear

system of equations.
On the other hand, Amini et al. [2] proposed a modified CG method to for
unconstrained optimization and the CG parameter was given by

βk =
⟨gk, yk−1⟩

⟨yk−1, dk−1⟩
θk − γ

(
∥yk−1∥θk

⟨yk−1, dk−1⟩

)2

⟨gk, dk−1⟩, (2.4)

where
θk = 1− ⟨gk, dk−1⟩2/∥gk∥2∥dk−1∥2,

γ > 1/4. We are interested in the parameter θk because by Cauchy-Schwatz in-
equality, we have |⟨gk, dk−1⟩| ≤ ∥gk∥∥dk−1∥. This means that θk is a sequence in
the interval [0, 1]. That is, 0 ≤ θk ≤ 1 ∀ k ≥ 0. Therefore we can use θk for our
convex combination.
For the purpose of this paper, we need the following assumptions

(Ai). The mapping F : Rn → Rn is Lipschitz continuous, that is, there exists a
positive constant L such that

∥F (x)− F (y)∥ ≤ L∥x− y∥, ∀x, y ∈ Rn. (2.5)

(Aii). The solution set of (1.1) is nonempty and is denoted by Λ.



A New Hybrid Spectral Gradient Projection Method for Monotone System 129

We now formally state the steps of our algorithm as follows:

Algorithm 1 (HSG)

Step 0. Given x0 ∈ Ω, ρ ∈ (0, 1), σ, κ > 0, r > 0 stopping tolerance ϵ ≥ 0. Set k = 0.
Step 1. Compute Fk. If ∥Fk∥ ≤ ϵ, stop.
Step 2. Compute dk = −τkF (xk), d0 = −F (x0), where

τk = (1− θk)λk + θkγk, θk = 1− ⟨F (xk), dk−1⟩2

∥F (xk)∥2∥dk−1∥2
,

λk =
⟨sk−1, sk−1⟩
⟨νk−1, sk−1⟩

, γk =
∥sk−1∥
∥νk−1∥

, νk−1 = yk−1+rsk−1, and yk−1 = F (xk)−F (xk−1).

Step 3. Determine αk = max{κρi : i = 0, 1, 2, · · · } such that

− ⟨F (xk + αkdk), dk⟩ ≥ σαk∥dk∥2. (2.6)

Step 4. If zk ∈ Ω and ∥F (zk)∥ ≤ ϵ, stop. Otherwise, compute the next iterate by

xk+1 = PΩ [xk − µkF (zk)] , where µk =
⟨F (zk), xk − zk⟩

∥F (zk)∥2
. (2.7)

Step 5. Set k := k + 1 and go to step 1.

Remark 2.1. By the definition of νk−1 and the monotonicity of F, we have

⟨νk−1, sk−1⟩ = ⟨Fk − Fk−1, sk−1⟩+ r⟨sk−1, sk−1⟩ ≥ r∥sk−1∥2 > 0. (2.8)

This implies λk is positive for all k. Moreover, by the assumption (Ai), we have

∥νk−1∥ = ∥Fk − Fk−1 + rsk−1∥ ≤ (L+ r)∥sk−1∥, (2.9)

which means γk = ∥sk−1∥
∥νk−1∥ ≥ 1

L+r > 0. Therefore, the spectral gradient τk in step 2

of Algorithm 1 is strictly positive for all k = 0, 1, 2, · · · .

Remark 2.2. Since τk > 0, ∀ k, it is not difficult to see that the search direc-
tion dk defined in step 2 of Algorithm 1 satisfies the sufficient descent property
⟨F (xk), dk⟩ ≤ −c∥F (xk)∥2, for all k and c > 0.

Remark 2.3. The search direction defined in step 2 of Algorithm 1 is different
from the one in [20]. The main difference was the choice of the parameter θk. More-
over, the algorithm in [20] was used to solve unconstrained monotone equations
while our algorithm was used for monotone equations with convex constraints.
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3 Convergence Analysis

In this section, we establish the global convergence of our method.

Lemma 3.1. Suppose the sequence {xk} and {zk} are generated by Algorithm
1. Let the assumptions (Ai)-(Aii) hold, then the sequences {xk}, and {zk} are
bounded. In addition, we have

lim
k→∞

∥xk − zk∥ = 0, (3.1)

and
lim
k→∞

∥xk+1 − xk∥ = 0. (3.2)

Proof. For any x ∈ Λ, using the monotonicity of F , we have

⟨F (zk), xk − x⟩ ≥ ⟨F (zk), xk − zk⟩. (3.3)

By the definition of zk and the line search (2.6) it follows that

⟨F (zk), xk − zk⟩ ≥ σα2
k∥dk∥2 ≥ 0. (3.4)

Now, from the nonexpansiveness of the projection operator PΩ(·), it holds

∥xk−1 − x∥2 = ∥PΩ[xk − µkF (zk)]− x∥2

≤ ∥xk − µkF (zk)− x∥2

= ∥xk − x∥2 − 2µk⟨F (zk), xk − x⟩+ µ2
k∥F (zk)∥2

≤ ∥xk − x∥2 − 2µk⟨F (zk), xk − zk⟩+ µ2
k∥F (zk)∥2

= ∥xk − x∥2 −
(
⟨F (zk), xk − zk⟩

∥F (zk)∥

)2

≤ ∥xk − x∥2.

(3.5)

We can easily see that the sequence {∥xk−x∥} is decreasing and convergent which
implies that the sequence {xk} is bounded. From (3.5), it holds that

∥xk − x∥ ≤ ∥x0 − x∥, ∀ k ≥ 0. (3.6)

Therefore, by assumption (Ai), we have

∥F (xk)∥ = ∥F (xk)− F (x)∥ ≤ L∥xk − x∥ ≤ L∥x0 − x∥ = ω. (3.7)

Using the definition of zk and the monotonicity of F together with equation (3.4),
we have

σ∥xk − zk∥ =
σ∥αkdk∥2

∥xk − zk∥
≤ ⟨F (zk), xk − zk⟩

∥xk − zk∥
≤ ⟨F (xk), xk − zk⟩

∥xk − zk∥
≤ ∥F (xk)∥,

(3.8)
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where the last inequality follows from the Cauchy-Schwarz inequality. Hence, from
the boundedness of {xk} and equations (3.7)-(3.8), the sequence {zk} is bounded.
Since the sequence {zk} is bounded, it follows that for any x ∈ Ω, the sequence
{∥zk − x∥} is also bounded, that is, there exists ϑ > 0 such that ∥zk − x∥ ≤ ϑ.
Combining it together with (2.5), we have

∥F (zk)∥ = ∥F (zk)− F (x)∥ ≤ L∥zk − x∥ ≤ Lϑ.

Then it follows from (3.5) that

σ2

(Lϑ)2

∞∑
k=0

∥xk−zk∥4 ≤
∞∑
k=0

(
⟨F (zk), xk − zk⟩

∥F (zk)∥

)2

≤
∞∑
k=0

(∥xk−x∥2−∥xk+1−x∥2) < +∞.

By the property of convergence series, it implies limk→∞ ∥xk − zk∥ = 0.
Then using (2.1), the definition of µk and Cauchy-Schwarz inequality, we have

∥xk+1 − xk∥ = ∥PΩ[xk − µkF (zk)]− xk∥
≤ ∥xk − µkF (zk)− xk∥
= ∥µkF (zk)∥
≤ ∥xk − zk∥,

(3.9)

which implies
lim
k→∞

∥xk+1 − xk∥ = 0.

The following lemma is proved in a similar way as in [20].

Lemma 3.2. Suppose assumption (Ai) holds. Let {dk} be the sequence of direc-
tions generated by Algorithm 1, then there exists a positive constant M such that
∥dk∥ ≤ M for all k = 0, 1, 2, · · · .

Proof. Since zk = xk + αkdk, it follows from lemma (3.1) that

lim
k→∞

αk∥dk∥ = lim
k→∞

∥xk − zk∥ = 0. (3.10)

From equation (3.7) and step 2 of Algorithm 1, we have

∥d0∥ = ∥F (x0)∥ ≤ ω,

and

∥dk∥ = |τk|∥F (xk)∥
≤ |τk|ω.

Equation (3.10) implies, there exists a positive integer k0 such that αk−1∥dk−1∥ ≤
ϵ0, ∀ k > k0, for an arbitrary constant ϵ0. TakingM := max{∥d0∥, ∥d1∥, · · · , ∥dk0

∥, |τk|ω},
we have

∥dk∥ ≤ M, ∀ k = 0, 1, 2, · · · . (3.11)
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The following theorem establish the global convergence of Algorithm 1.

Theorem 3.3. Let {xk} and {zk} be sequences generated by Algorithm 1. Then

lim
k→∞

inf ∥F (xk)∥ = 0. (3.12)

Proof. Suppose lim infk→∞ ∥dk∥ = 0, then by the sufficient descent property, we
have lim infk→∞ ∥F (xk)∥ = 0. Since F is continuous and the sequence {xk} is
bounded, then there exists some accumulation point x̃ such that F (x̃) = 0. Since
{∥xk − x̃∥} converges and x̃ is an accumulation point of the sequence {xk}, it
follows that {xk} converges to x̃.
If lim infk→∞ ∥dk∥ > 0, we have lim infk→∞ ∥F (xk)∥ > 0. From (3.10), we have
limk→∞ αk = 0. From the line search defined by equation (2.6), for the step-size
ρ−1αk, we have

− ⟨F (xk + ρ−1αkdk), dk⟩ < σρ−1αk∥dk∥2. (3.13)

By the boundedness of {xk}, there exists an accumulation point x̃ and an infinite
index set K such that limk→∞ xk = x̃, for k ∈ K.
Again, because of the boundedness of {dk}, there also exists an infinite set K1 ⊂ K
and an accumulation point d̃ such that limk→∞ dk = d̃, for k ∈ K1.
Therefore, by taking limit as k → ∞ on both sides of (3.13) for k ∈ K1 results to

⟨F (x̃), d̃⟩ > 0. (3.14)

On the other hand, allowing k → ∞ on both sides of (2.6) for k ∈ K1, we have

⟨F (x̃), d̃⟩ ≤ 0. (3.15)

It is clear that inequalities (3.14) and (3.15) cannot hold concurrently. Therefore,
it is impossible to have limk→∞ inf ∥F (xk)∥ > 0 and this completes the proof.

4 Numerical Experiments

This section gives a performance comparison between our proposed algorithm
HSG and the method proposed by Yu et al. [28] (for simplicity, we denote the
method by (SGP)) for solving convex constrained nonlinear monotone equations
(1.1). We set the following parameters for the implementation of HSG algorithm
r = σ = 0.001, κ = 1 and ρ = 0.9 except for problem 8 where we choose ρ = 0.7.
The parameters in SGP algorithm are chosen as in [28]. All codes were written in
MATLAB R2017a and run on a PC with intel Core(TM) i5-8250u processor with
4GB of RAM and CPU 1.60GHZ. We solved 8 constrained test problems with 8
different initial starting points (ISP) (See table 1). We used 4 different dimensions
(DIM) which are 5,000, 10,000, 50,000 and 100,000. The iteration is terminated
whenever the inequality ∥F (xk)∥ ≤ 10−6 or ∥F (zk)∥ ≤ 10−6 is satisfied.
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Table 1: The initial points used for the test problems

Initial Starting Point (ISP) Values

x1 (1, 1, 1, · · · , 1)T
x2 (0.1, 0.1, 0.1, · · · , 0.1)T
x3 (12 ,

1
22
, 1
23
, · · · , 1

2n )
T

x4 (1− 1
n , 2−

2
n , 2−

3
n , · · · , n− 1)T

x5 (0, 1
n ,

2
n , · · · ,

n−1
n )T

x6 (1, 12 ,
1
3 , · · · ,

1
n)

T

x7 (n−1
n , n−2

n , n−3
n , · · · , 0)T

x8 ( 1n ,
2
n ,

3
n , · · · , 1)

T

In Tables 2-9, we present the results of the following information: the number
of iterations (ITER) needed to converge to an approximate solution, the CPU time
in seconds (TIME), the number of functions evaluation (FEVAL) and the norm
of the objective function F at the approximate solution x∗ (NORM). The symbol
′−′ indicates the failure of a method when the number of iterations exceeds 1,000
and no solution is reached.

We use the following test problems where F (x) = (f1(x), f2(x), · · · , fn(x))T , and x =
(x1, x2, · · · , xn)

T :
Problem 1[12]

f1(x) = ex1 − 1

fi(x) = exi + xi−1 − 1,

where Ω = Rn
+.

Problem 2[12]

fi(xi) = log(|xi|+ 1)− xi

n
,

where Ω = Rn
+.

Problem 3 [11]
fi(x) = 2xi − sin |xi|,

where Ω = Rn
+.

Problem 4 [11]
fi(x) = min[min(|xi|, x2

i ),max(|xi|, x3
i )]

where Ω = Rn
+.

Problem 5 [34]
fi(x) = exi − 1.

where Ω = Rn
+.

Problem 6 [19]
f1(x) = hx1 + x2 − 1

fi(x) = xi−1 + hxi + xi+1 − 1

fn(x) = xn−1 + hxn − 1,
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where h = 2.5 and Ω = Rn
+.

Problem 7 [11]

f1(x) = x1 − ecos(h(x1+x2))

fi(x) = xi − ecos(h(xi−1+xi+xi+1)) for i = 2, 3, ..., n− 1

fn(x) = xn − ecos(h(xn−1+xn)),

where h = 1
n+1 and Ω = Rn

+.
Problem 8

f1(x) = 2x1 + x2 + ex1 − 1

fi(x) = −xi−1 + 2xi − xi+1 + exi − 1

fn(x) = −xn−1 + 2xn + exn − 1.

where Ω = Rn
+.

The Dolan and Moré [8] performance profiles was adopted to compare the per-
formance of the proposed HSG method and SGP method (See figures 1-3). The
comparison was based on the followings: the number of iterations; number of
functions evaluation; and CPU time. From the graphs in figures 1-3, it can be
observed that all the curves with respect to our proposed method stays longer on
the vertical axis. This means that the percentage won by our algorithm in the
numerical experiment is greater than that of SGP algorithm. To be specific, the
graphs showed our method won about 75%, 59% and 56% of the experiments in
terms of number of iterations, number of function evaluations and CPU time(s)
respectively. Moreover, from tables 2-9, it can be seen that in most of the experi-
ments, our method HSG recorded less number of iterations, the number of function
evaluation and CPU time(s) to reach a solution compared to SGP method. It is
worth noting that, our method HSG converges to exact solutions of problems 2
and 5 with some of the initial starting point (ISP), this can be seen from table 3
and 6.
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Table 2: Numerical Comparison of HSG and SGP methods for problem 1
HSG SGP

DIM ISP ITER FEVAL TIME NORM ITER FEVAL TIME NORM

1000

x1 9 36 0.80881 3.53E-07 470 1410 0.112033 9.84E-07
x2 8 32 0.027333 2.07E-07 453 1360 0.139607 9.83E-07
x3 8 31 0.028298 2.62E-07 443 1330 0.14377 9.98E-07
x4 9 35 0.015175 1.25E-07 523 1568 0.111548 9.92E-07
x5 114 1017 0.1063 9.34E-07 465 1395 0.154678 9.85E-07
x6 86 746 0.090239 8.62E-07 521 1562 0.144145 9.99E-07
x7 86 744 0.091275 8.63E-07 466 1399 0.133845 9.98E-07
x8 87 745 0.067804 8.7E-07 529 1586 0.157304 9.48E-07

10000

x1 9 36 0.055203 3.79E-07 479 1436 0.61838 9.99E-07
x2 8 32 0.017467 3.3E-07 471 1413 0.558702 9.86E-07
x3 8 31 0.051548 2.42E-07 467 1401 0.570495 9.94E-07
x4 9 35 0.091194 1.85E-07 509 1526 0.591647 9.91E-07
x5 114 1017 0.355824 9.88E-07 534 1601 0.621983 9.81E-07
x6 86 746 0.285963 8.62E-07 529 1586 0.619876 9.92E-07
x7 86 744 0.268787 8.63E-07 520 1559 0.604896 9.83E-07
x8 87 745 0.287959 8.7E-07 511 1532 0.578868 9.81E-07

50000

x1 9 36 0.132714 7.59E-07 526 1577 2.388438 9.99E-07
x2 8 32 0.112479 6.92E-07 474 1422 2.171568 9.93E-07
x3 8 31 0.101503 4.74E-07 514 1542 2.407779 9.96E-07
x4 9 35 0.103286 3.85E-07 504 1511 2.312448 9.83E-07
x5 114 1017 1.542272 9.89E-07 555 1663 2.576463 9.82E-07
x6 86 746 1.072495 8.62E-07 554 1660 2.52902 9.96E-07
x7 86 744 1.09343 8.63E-07 530 1589 2.404612 9.97E-07
x8 87 745 1.06465 8.7E-07 535 1604 2.471612 9.88E-07

100000

x1 10 39 0.269472 1.06E-07 543 1627 5.943249 9.88E-07
x2 8 32 0.179234 9.7E-07 472 1416 5.245323 9.99E-07
x3 8 31 0.176154 6.59E-07 529 1587 5.663519 9.97E-07
x4 9 35 0.20924 5.39E-07 511 1532 5.636506 9.83E-07
x5 114 1017 3.773009 9.89E-07 557 1669 6.012137 9.89E-07
x6 86 746 2.666463 8.62E-07 558 1672 6.222271 9.91E-07
x7 86 744 2.640047 8.63E-07 530 1589 5.87635 9.89E-07
x8 87 745 2.672406 8.7E-07 552 1654 6.170925 9.94E-07
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Table 3: Numerical Comparison of HSG and SGP methods for problem 2
HSG SGP

DIM ISP ITER FEVAL TIME NORM ITER FEVAL TIME NORM

1000

x1 2 5 0.066364 0 2 5 0.002165 0
x2 7 23 0.01322 6.62E-07 2 5 0.003532 0
x3 8 27 0.013886 2.32E-07 2 5 0.003295 0
x4 2 5 0.003453 0 2 5 0.001926 0
x5 2 5 0.001373 0 2 5 0.004897 0
x6 2 5 0.004464 0 2 5 0.003875 0
x7 2 5 0.00149 0 2 5 0.003558 0
x8 2 5 0.003822 0 2 5 0.003515 0

10000

x1 2 5 0.015688 0 2 5 0.008306 0
x2 8 26 0.051861 2.1E-07 2 5 0.014822 0
x3 8 27 0.04483 7.32E-07 2 5 0.012704 0
x4 2 5 0.011583 0 2 5 0.0125 0
x5 2 5 0.005028 0 2 5 0.012828 0
x6 2 5 0.010684 0 2 5 0.013202 0
x7 2 5 0.020179 0 2 5 0.012223 0
x8 2 5 0.014288 0 2 5 0.012893 0

50000

x1 2 5 0.039591 0 2 5 0.036832 0
x2 8 26 0.10289 4.7E-07 2 5 0.027083 0
x3 9 30 0.099963 1.65E-07 2 5 0.043481 0
x4 2 5 0.040087 0 2 5 0.036792 0
x5 2 5 0.041857 0 2 5 0.036762 0
x6 2 5 0.044677 0 2 5 0.036646 0
x7 2 5 0.042205 0 2 5 0.038985 0
x8 2 5 0.043862 0 2 5 0.04021 0

100000

x1 2 5 0.058072 0 2 5 0.06599 0
x2 8 26 0.135272 6.65E-07 2 5 0.06366 0
x3 9 30 0.277955 2.34E-07 2 5 0.067043 0
x4 2 5 0.037094 0 2 5 0.059717 0
x5 2 5 0.04062 0 2 5 0.070502 0
x6 2 5 0.041596 0 2 5 0.067963 0
x7 2 5 0.054348 0 2 5 0.065861 0
x8 2 5 0.062998 0 2 5 0.047998 0
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Table 4: Numerical Comparison of HSG and SGP methods for problem 3
HSG SGP

DIM ISP ITER FEVAL TIME NORM ITER FEVAL TIME NORM

1000

x1 8 26 0.044326 8.37E-07 6 14 0.003597 1.12E-07
x2 7 22 0.004395 3.34E-07 5 12 0.00493 1.97E-08
x3 7 22 0.004274 6.68E-07 5 12 0.00525 6.94E-08
x4 8 26 0.00947 3.74E-07 5 12 0.00878 9.66E-07
x5 9 32 0.012987 5.99E-07 6 14 0.007826 4.62E-07
x6 9 33 0.004161 8.52E-07 6 14 0.007127 1.7E-07
x7 10 37 0.014264 1.35E-07 6 14 0.008164 1.22E-08
x8 9 34 0.015282 8.04E-07 8 19 0.012343 2.82E-08

10000

x1 9 29 0.028185 2.67E-07 6 14 0.030145 3.55E-07
x2 8 25 0.031928 1.07E-07 5 12 0.022725 6.23E-08
x3 8 25 0.049419 2.13E-07 5 12 0.024885 2.2E-07
x4 9 29 0.017637 1.19E-07 6 14 0.027459 3.02E-08
x5 10 35 0.051295 1.91E-07 7 16 0.031669 1.45E-08
x6 10 36 0.026258 2.72E-07 6 14 0.028225 5.36E-07
x7 10 37 0.043225 4.27E-07 6 14 0.031406 3.85E-08
x8 10 37 0.057086 2.57E-07 8 19 0.035062 8.91E-08

50000

x1 9 29 0.107741 5.97E-07 6 14 0.065336 7.95E-07
x2 8 25 0.07691 2.38E-07 5 12 0.043543 1.39E-07
x3 8 25 0.098828 4.77E-07 5 12 0.06823 4.91E-07
x4 9 29 0.087619 2.67E-07 6 14 0.075736 6.76E-08
x5 10 35 0.104122 4.27E-07 7 16 0.08076 3.24E-08
x6 10 36 0.110021 6.08E-07 7 16 0.079123 1.19E-08
x7 10 37 0.094977 9.56E-07 6 14 0.051578 8.61E-08
x8 10 37 0.148641 5.74E-07 8 19 0.084988 1.99E-07

100000

x1 9 29 0.18666 8.44E-07 7 16 0.127112 1.11E-08
x2 8 25 0.151972 3.37E-07 5 12 0.10093 1.97E-07
x3 8 25 0.139031 6.74E-07 5 12 0.087968 6.94E-07
x4 9 29 0.165162 3.78E-07 6 14 0.113096 9.56E-08
x5 10 35 0.202669 6.04E-07 7 16 0.105682 4.58E-08
x6 10 36 0.206742 8.6E-07 7 16 0.071571 1.68E-08
x7 11 40 0.205453 1.36E-07 6 14 0.113583 1.22E-07
x8 10 37 0.209855 8.11E-07 8 19 0.120498 2.82E-07
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Table 5: Numerical Comparison of HSG and SGP methods for problem 4
HSG SGP

DIM ISP ITER FEVAL TIME NORM ITER FEVAL TIME NORM

1000

x1 56 663 0.258644 9.92E-07 71 144 0.049273 9.77E-07
x2 54 665 0.124756 9.4E-07 67 135 0.046013 9.78E-07
x3 55 665 0.195229 9.35E-07 68 137 0.094601 9.88E-07
x4 56 664 0.18581 9.49E-07 69 139 0.104496 9.95E-07
x5 57 666 0.186467 9.73E-07 72 147 0.086641 9.77E-07
x6 57 667 0.223628 9.59E-07 72 147 0.092224 9.82E-07
x7 57 666 0.225285 9.73E-07 72 147 0.097597 9.78E-07
x8 57 667 0.199422 9.7E-07 71 145 0.078072 9.86E-07

10000

x1 74 897 0.765182 9.52E-07 115 232 0.32434 9.94E-07
x2 71 886 0.799422 9.7E-07 111 223 0.315119 9.94E-07
x3 72 886 0.758446 9.67E-07 113 227 0.316302 9.81E-07
x4 73 885 0.753975 9.76E-07 114 229 0.322942 9.85E-07
x5 74 887 0.773131 9.91E-07 116 235 0.356975 9.94E-07
x6 74 888 0.75477 9.82E-07 116 235 0.311852 9.97E-07
x7 74 887 0.792405 9.91E-07 116 235 0.349416 9.94E-07
x8 74 888 0.82702 9.89E-07 115 233 0.305334 9.99E-07

50000

x1 92 1131 4.187495 9.66E-07 165 332 1.81074 9.95E-07
x2 89 1120 4.173089 9.79E-07 161 323 1.743016 9.95E-07
x3 90 1120 4.165075 9.76E-07 162 325 1.742095 9.99E-07
x4 91 1119 4.19101 9.83E-07 164 329 1.756766 9.89E-07
x5 92 1121 4.215128 9.94E-07 166 335 1.804617 9.95E-07
x6 92 1122 4.212077 9.87E-07 166 335 1.791506 9.97E-07
x7 92 1121 4.251761 9.94E-07 166 335 1.823336 9.95E-07
x8 92 1122 4.170212 9.93E-07 165 333 1.80167 9.99E-07

100000

x1 102 1261 10.21122 9.69E-07 194 390 4.263049 9.9E-07
x2 99 1250 10.5986 9.8E-07 190 381 4.195978 9.9E-07
x3 100 1250 10.28765 9.79E-07 191 383 4.229144 9.94E-07
x4 101 1249 10.87119 9.84E-07 192 385 4.175026 9.96E-07
x5 102 1251 10.25577 9.94E-07 195 393 4.244361 9.9E-07
x6 102 1252 10.65662 9.88E-07 195 393 4.259356 9.92E-07
x7 102 1251 10.12021 9.94E-07 195 393 4.282953 9.9E-07
x8 102 1252 10.0277 9.93E-07 194 391 4.220459 9.93E-07
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Table 6: Numerical Comparison of HSG and SGP methods for problem 5
HSG SGP

DIM ISP ITER FEVAL TIME NORM ITER FEVAL TIME NORM

1000

x1 9 33 0.02175 6.09E-07 6 14 0.003196 6.51E-07
x2 7 23 0.00694 7.65E-07 5 12 0.004627 3.18E-07
x3 7 22 0.008987 7.32E-07 6 14 0.00575 2.23E-08
x4 8 27 0.003655 8.14E-07 6 14 0.007134 4.06E-07
x5 1 14 0.007605 0 7 17 0.008116 9.64E-07
x6 1 14 0.005733 0 9 22 0.011394 6.68E-08
x7 1 14 0.003686 0 8 20 0.011024 1.89E-07
x8 1 14 0.004478 0 10 25 0.013326 2.7E-08

10000

x1 10 36 0.042983 1.94E-07 7 16 0.026687 2.04E-08
x2 8 26 0.038262 2.44E-07 6 14 0.022402 9.95E-09
x3 8 25 0.03576 2.34E-07 6 14 0.025002 7.05E-08
x4 9 30 0.049849 2.6E-07 7 16 0.028925 1.27E-08
x5 1 14 0.018574 0 8 19 0.030818 3.02E-08
x6 1 14 0.019756 0 9 22 0.037613 2.11E-07
x7 1 14 0.019674 0 8 20 0.03446 5.98E-07
x8 1 14 0.012966 0 10 25 0.03914 8.53E-08

50000

x1 10 36 0.096474 4.35E-07 7 16 0.029361 4.56E-08
x2 8 26 0.05228 5.46E-07 6 14 0.060396 2.22E-08
x3 8 25 0.077648 5.22E-07 6 14 0.065584 1.58E-07
x4 9 30 0.064128 5.81E-07 7 16 0.047721 2.85E-08
x5 1 14 0.058528 0 8 19 0.055061 6.75E-08
x6 1 14 0.05805 0 9 22 0.093499 4.72E-07
x7 1 14 0.059652 0 9 22 0.084222 1.32E-08
x8 1 14 0.03414 0 10 25 0.087145 1.91E-07

100000

x1 10 36 0.15789 6.15E-07 7 16 0.106841 6.45E-08
x2 8 26 0.121342 7.72E-07 6 14 0.091209 3.14E-08
x3 8 25 0.127373 7.39E-07 6 14 0.10202 2.23E-07
x4 9 30 0.119771 8.21E-07 7 16 0.081254 4.02E-08
x5 1 14 0.062876 0 8 19 0.12956 9.55E-08
x6 1 14 0.10068 0 9 22 0.138084 6.68E-07
x7 1 14 0.087004 0 9 22 0.111249 1.87E-08
x8 1 14 0.076061 0 10 25 0.135734 2.7E-07
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Table 7: Numerical Comparison of HSG and SGP methods for problem 6
HSG SGP

DIM ISP ITER FEVAL TIME NORM ITER FEVAL TIME NORM

1000

x1 27 130 0.110869 8.46E-07 87 355 0.038727 8.5E-07
x2 27 152 0.03359 3.84E-07 98 417 0.063436 4.97E-07
x3 26 189 0.013507 5.26E-07 94 412 0.065027 9.02E-07
x4 22 114 0.030913 9.57E-07 85 357 0.068865 8.28E-07
x5 23 135 0.031662 9.8E-07 71 275 0.071683 9.62E-07
x6 32 200 0.054317 9.7E-07 83 329 0.067108 9.39E-07
x7 32 194 0.043469 5.64E-07 101 413 0.067194 4.45E-07
x8 28 167 0.022114 9.77E-07 89 357 0.061408 8.87E-07

10000

x1 30 180 0.122853 4.46E-07 80 336 0.17351 9.97E-07
x2 30 188 0.128457 2.27E-07 90 375 0.211582 9.84E-07
x3 31 208 0.124282 5.45E-07 85 366 0.231805 9.91E-07
x4 26 138 0.109561 9.79E-07 91 376 0.21884 8.3E-07
x5 32 193 0.131256 3.07E-07 71 273 0.147586 9.87E-07
x6 28 164 0.10831 8E-07 79 317 0.189958 9.58E-07
x7 28 167 0.081835 7.96E-07 87 352 0.200406 8.28E-07
x8 33 192 0.109065 8.95E-07 86 348 0.207741 9.64E-07

50000

x1 29 166 0.292088 2.59E-07 78 318 0.545327 9.77E-07
x2 29 175 0.277888 4E-07 97 397 0.647195 9.88E-07
x3 30 204 0.340097 2.58E-07 92 385 0.709076 9.97E-07
x4 33 174 0.34449 6.66E-07 92 387 0.628403 9.51E-07
x5 30 159 0.30115 2.61E-07 71 272 0.455039 9.96E-07
x6 37 229 0.367311 2.09E-07 79 313 0.577814 9.52E-07
x7 30 175 0.274331 5.1E-07 86 340 0.569439 9.85E-07
x8 32 168 0.277867 5.23E-07 100 417 0.677655 6.21E-07

100000

x1 31 190 0.815499 1.51E-07 87 352 1.50231 8.48E-07
x2 33 204 0.948442 3.26E-07 93 391 1.661453 7.38E-07
x3 26 174 0.700978 7.82E-07 82 348 1.464409 9.86E-07
x4 25 118 0.647404 9.76E-07 86 362 1.528764 5.54E-07
x5 27 141 0.610669 7.7E-07 71 272 1.189805 9.3E-07
x6 32 182 0.871517 3.68E-07 86 337 1.496047 8.65E-07
x7 28 149 0.66063 7.67E-07 85 336 1.443586 8.61E-07
x8 25 133 0.59816 3.78E-07 92 368 1.564383 9.44E-07
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Table 8: Numerical Comparison of HSG and SGP methods for problem 7
HSG SGP

DIM ISP ITER FEVAL TIME NORM ITER FEVAL TIME NORM

1000

x1 8 25 0.120801 5.78E-07 21 63 0.009614 6.19E-07
x2 8 25 0.015304 8.81E-07 22 66 0.02953 4.76E-07
x3 8 25 0.016758 8.47E-07 21 63 0.032447 9.07E-07
x4 8 25 0.004738 7.46E-07 21 63 0.031462 7.99E-07
x5 8 25 0.014963 2.42E-07 20 60 0.033661 5.12E-07
x6 7 22 0.013375 7.28E-07 18 54 0.022337 6.1E-07
x7 7 22 0.00937 9.4E-07 7 19 0.012794 5.57E-07
x8 8 25 0.015453 2.63E-07 7 18 0.012037 3.03E-08

10000

x1 9 28 0.05657 1.85E-07 20 59 0.10127 7.6E-08
x2 9 28 0.031323 2.81E-07 21 62 0.098426 5.85E-08
x3 9 28 0.045735 2.71E-07 19 56 0.082544 2.21E-07
x4 9 28 0.069502 2.38E-07 23 68 0.058387 1.26E-08
x5 8 25 0.036801 7.65E-07 18 53 0.04099 1.25E-07
x6 8 25 0.056165 2.32E-07 18 53 0.084984 3.79E-08
x7 8 25 0.053186 3E-07 5 12 0.039959 1.35E-07
x8 8 25 0.033629 8.32E-07 6 15 0.044568 1.9E-07

50000

x1 9 28 0.124372 4.13E-07 19 56 0.204414 3.36E-07
x2 9 28 0.131859 6.29E-07 18 52 0.188405 1.99E-08
x3 9 28 0.177138 6.05E-07 20 59 0.194514 2.49E-07
x4 9 28 0.140612 5.33E-07 18 53 0.195097 8.6E-07
x5 9 28 0.096043 1.73E-07 17 50 0.216363 5.52E-07
x6 8 25 0.14649 5.2E-07 15 43 0.181963 1.29E-08
x7 8 25 0.139724 6.71E-07 6 15 0.110283 1.53E-07
x8 9 28 0.132728 1.88E-07 7 18 0.104996 2.14E-07

100000

x1 9 28 0.271453 5.84E-07 19 56 0.562865 4.76E-07
x2 9 28 0.260537 8.89E-07 17 49 0.358332 5.58E-08
x3 9 28 0.267964 8.55E-07 17 49 0.346541 5.36E-08
x4 9 28 0.237759 7.54E-07 19 55 0.408642 1.2E-08
x5 9 28 0.268326 2.44E-07 17 50 0.463142 7.8E-07
x6 8 25 0.223161 7.35E-07 14 40 0.307303 3.61E-08
x7 8 25 0.307605 9.48E-07 5 12 0.19482 4.28E-07
x8 9 28 0.265437 2.66E-07 7 18 0.166348 3.03E-07
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Table 9: Numerical Comparison of HSG and SGP methods for problem 8
HSG SGP

DIM ISP ITER FEVAL TIME NORM ITER FEVAL TIME NORM

1000

x1 59 291 0.022342 7.09E-07 74 270 0.03314 8.83E-07
x2 45 220 0.04485 8.58E-07 71 266 0.064066 8.78E-07
x3 45 214 0.032972 8.44E-07 81 304 0.088796 8.04E-07
x4 50 236 0.018667 5.23E-07 80 299 0.078271 9.14E-07
x5 45 212 0.039955 7.55E-07 88 336 0.034955 6.87E-07
x6 57 279 0.025319 5.92E-07 85 320 0.066573 9.12E-07
x7 60 293 0.038769 4.87E-07 79 300 0.073987 8.34E-07
x8 58 296 0.024319 6.51E-07 89 334 0.052072 9.12E-07

10000

x1 61 292 0.142279 6.51E-07 86 319 0.212828 6.12E-07
x2 54 275 0.161509 8.9E-07 76 285 0.233712 6.58E-07
x3 44 200 0.100478 9.68E-07 88 332 0.221482 8.97E-07
x4 55 252 0.131647 6.99E-07 83 311 0.230731 8.36E-07
x5 75 485 0.233953 7.7E-07 104 410 0.269581 8.76E-07
x6 86 563 0.265828 7.37E-07 96 368 0.289794 7.38E-07
x7 70 330 0.174515 7.02E-07 107 431 0.266218 9.88E-07
x8 73 422 0.238606 5.83E-07 89 334 0.276688 7.57E-07

50000

x1 65 387 0.718651 7.64E-07 105 400 0.917389 7.37E-07
x2 53 253 0.588221 7.68E-07 82 311 0.681641 9.23E-07
x3 59 295 0.592014 8.74E-07 83 311 0.726733 8.04E-07
x4 56 256 0.513466 6.96E-07 104 384 0.933497 9.88E-07
x5 212 1964 3.418223 6.73E-07 151 743 1.530829 9.95E-07
x6 127 871 1.587047 5.58E-07 130 526 1.126783 8.4E-07
x7 85 469 0.898776 5.56E-07 133 541 1.140028 9.23E-07
x8 100 731 1.326527 5.27E-07 119 472 1.044182 9.99E-07

100000

x1 93 694 2.9377 8.14E-07 108 426 2.153943 7.76E-07
x2 60 300 1.438234 8.29E-07 79 294 1.556848 8.93E-07
x3 56 279 1.301234 9.25E-07 101 386 1.965254 8.53E-07
x4 62 307 1.427271 9.27E-07 124 470 2.439437 7.8E-07
x5 186 1663 6.861447 5.53E-07 167 739 3.638497 8.5E-07
x6 169 1228 5.663522 6.33E-07 131 542 2.689844 7.67E-07
x7 104 637 3.048335 7.01E-07 154 649 3.234712 7.99E-07
x8 140 1192 5.539761 9.41E-07 142 574 2.872369 7.79E-07
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Figure 1: Performance profile with respect to number of itera-
tions

Figure 2: Performance profile with respect to number of functions
evaluation



144 A.M. Awwal, P. Kumam, A. B. Abubakar, A. Wakili and N. Pakkaranang

Figure 3: Performance profile with respect to CPU time

5 Conclusions

In this paper, we proposed a new hybrid positive spectral gradient projection
method for monotone system of nonlinear equations with convex constraints. The
search direction satisfies the sufficient descent property. The proposed method can
be applied to solve nonsmooth equations as well as large scale equations because it
does not require the Jacobian information of the nonlinear equation or it storage
space. The global convergent under some suitable assumptions was established.
Preliminary numerical experiments show that our proposed methods is efficient
and promising.
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