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Abstract : The aim of this paper is to apply the metric fixed point method for
proving the Hyers-Ulam stability of the generalized linear functional equation of
the form

2f(x+ y) + f(x− y) + f(y − x) = 2f(x) + 2f(y),

for all x, y ∈ X, where f maps from a Banach space X into a Banach space Y .
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1 Introduction

Nowadays, the study of Hyers-Ulam stability problem is consistently becom-
ing one of the most popular topics in the theory of functional equations. This
study originated from a question of Ulam [19] concerning the stability of a group
homomorphism. Afterwards, Hyers [13] gave a partial answer to Ulam’s question
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and established the stability result. The result of Hyers in [13] was generalized by
many mathematicians as Aiemsomboon and Sintunavarat [1, 2], Aoki [3], Bourgin
[4], Forti [9], Gajda [10] and Rassias [18] and references therein.

The main objective of this paper is to introduce the new type of the generalized
linear functional equations in normed spaces and establish Hyers-Ulam stability
results of such functional equations via the metric fixed point method.

2 Preliminaries

The goal of this section is to present some related concepts and results which
are mainly derived from fixed point theory.

Definition 2.1. Let X be a set. A function d : X × X → [0,∞] is called a
generalized metric on X if d satisfies the following conditions for all x, y, z ∈ X:

1. d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x);

3. d(x, z) ≤ d(x, y) + d(y, z).

Also, (X, d) is called a generalized metric space.

Definition 2.2. A generalized metric space (X, d) is called complete if every d-
Cauchy sequence in X is d-convergent, that is, if {xn} is a sequence in X such
that lim

n,m→∞
d(xn, xm) = 0, then there is a point x ∈ X such that lim

n→∞
d(xn, x) = 0.

We now recall the classical fundamental result from the metric fixed point
theory which is the main tool of the proof used in the main result. We refer to [7]
for the proof of this result.

Theorem 2.3. (Diaz and Margolis [7, Theorem]) Let (X, d) be a complete gener-
alized metric space and J : X → X be a contraction mapping with the contractive
constant L < 1, that is, d(Jx, Jy) ≤ Ld(x, y) for all x, y ∈ X. Then for each given
element x ∈ X, either

d(Jnx, Jn+1x) = ∞
for all nonnegative integers n or there exists a positive integer n0 satisfying the
following conditions:

1. d(Jnx, Jn+1x) <∞ for all n ≥ n0;

2. J has a unique fixed point y∗ in the set

Y := {y ∈ X : d(Jn0x, y) <∞};

3. the sequence {Jnx} converges to a fixed point y∗ of J ;

4. d(y, y∗) ≤ 1
1−Ld(y, Jy), ∀y ∈ Y .

This result was used for the first time in [14] which was applied to investigate
the stability result of some functional equations and was studied by many authors
([5, 6, 8, 11, 15, 16, 17] and references therein).
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3 Main Results

First, we introduce the new functional equation as follows:

Definition 3.1. Let X and Y be two normed spaces. A mapping f : X → Y
is said to be the generalized linear function if it satisfies the generalized linear
functional equation

2f(x+ y) + f(x− y) + f(y − x) = 2f(x) + 2f(y) (3.1)

for all x, y ∈ X.

Remark 3.2. If f is a mapping from a normed space X into a normed space Y
over the same field with X such that it satisfies the linear functional equation, that
is,

f(αx+ βy) = αf(x) + βy

for all x, y ∈ X and for all scalars α, β, then it also satisfies the generalized linear
functional equation but the converse is not true.

Next, we give an example satisfying the generalized linear functional equation.

Example 3.3. Let X = Y = R be a usual normed space over the same field and
f : R → R be defined by f(x) = ax+ b for all x ∈ R, where a and b are fixed real
numbers. Then f satisfies the generalized linear functional equation but f dose
not satisfies linear functional equation.

Throughout this work, if X,Y are two normed spaces, f : X → Y is a given
mapping and x, y ∈ X, we will use the following symbol:

Df(x, y) := 2f(x+ y) + f(x− y) + f(y − x)− 2f(x)− 2f(y).

Next, we will prove the stability result of the generalized linear functional
equation which split into even and odd mappings as follows.

Theorem 3.4. Let X and Y be two normed spaces and ρ : X ×X → [0,∞) be a
function such that there exists a real number L with L < 1 and

ρ(x, y) ≤ 2Lρ
(x
2
,
y

2

)
(3.2)

for all x, y ∈ X. Suppose that fe : X → Y is an even mapping satisfying fe(0) = 0
and

∥Dfe(x, y)∥ ≤ ρ(x, y) (3.3)

for all x, y ∈ X. Then there exists a unique mapping Ae : X → Y satisfying the
generalized linear functional equation (3.1) and

∥fe(x)−Ae(x)∥ ≤ 1

4− 4L
ρ(x, x) (3.4)

for all x ∈ X.



116 L. Aiemsomboon and W. Sintunavarat

Proof. Let V be the class of all mappings from X into Y and a function d : V →
[0,∞] be defined by

d(u, v) = inf{β ∈ R+ : ∥u(x)− v(x)∥ ≤ βρ(x, x), ∀x ∈ X} (3.5)

for all u, v ∈ V , where inf ∅ = ∞. Then (V, d) is a complete generalized metric
space(see [?]).

Next, we define the linear mapping J : V → V by

(Ju)(x) =
1

2
u(2x) for all x ∈ X (3.6)

and for all u ∈ V . First, we claim that J is a contraction mapping. Let u, v ∈ V .
If d(u, v) = ∞, we get

d(Ju, Jv) ≤ Ld(u, v). (3.7)

If d(u, v) <∞, we will assume that

Ω := {β > 0 : ∥u(x)− v(x)∥ ≤ βρ(x, x) for all x ∈ X}. (3.8)

Since d(u, v) < ∞, we obtain Ω ̸= ∅. Suppose that β ∈ Ω. For each x ∈ X, we
have

∥(Ju)(x)− (Jv)(x)∥ =

∥∥∥∥12u(2x)− 1

2
v(2x)

∥∥∥∥ ≤ 1

2
βρ(2x, 2x) ≤ Lβρ(x, x). (3.9)

It follows that
d(Ju, Jv) ≤ Lβ. (3.10)

By taking the infimum on β, we obtain

d(Ju, Jv) ≤ Ld(x, y). (3.11)

From (3.7) and (3.11), we conclude that

d(Ju, Jv) ≤ Ld(u, v) (3.12)

for all u, v ∈ V . This means that J is a contraction mapping.
Putting y = x in (3.3), we obtain

∥2fe(2x)− 4fe(x)∥ ≤ ρ(x, x) (3.13)

and hence ∥∥∥∥fe(x)− 1

2
fe(2x)

∥∥∥∥ ≤ 1

4
ρ(x, x) (3.14)

for all x ∈ X. It follows from (3.14) that

d(fe, Jfe) ≤
1

4
<∞.

By Theorem 2.3, there exist a positive integer n0 and a mapping Ae : X → Y
satisfying the following conditions.
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1. Ae is a unique fixed point of J , that is,

Ae(2x) = 2Ae(x) (3.15)

for all x ∈ X. Also, the mapping Ae belongs to the set

P := {v ∈ V | d(fe, v) <∞}.

This implies that Ae is a unique mapping satisfying (3.15). Furthermore,
there exists a β ∈ (0,∞) such that

∥fe(x)−Ae(x)∥ ≤ βρ(x, x)

for all x ∈ X.

2. d(Jnfe, Ae) → 0 as n→ ∞. This implies that

lim
n→∞

1

2n
fe(2

nx) = Ae(x) (3.16)

for all x ∈ X.

3. d(fe, Ae) ≤ 1
1−Ld(fe, Jfe), which implies the inequality

d(fe, Ae) ≤
1

4− 4L
.

This implies that the inequality (3.4) holds.
It follows from (3.2), (3.3) and (3.16) that

∥DAe(x, y)∥ = lim
n→∞

1

2n
∥Dfe(2nx, 2ny)∥

≤ lim
n→∞

1

2n
ρ(2nx, 2ny)

≤ lim
n→∞

Lnρ(x, y)

= 0

for all x, y ∈ X. This implies that

DAe(x, y) = 0

for all x, y ∈ X, that is,

2Ae(x+ y) +Ae(x− y) +Ae(y − x) = 2Ae(x) + 2Ae(y)

for all x, y ∈ X. Therefore, Ae : X → Y is a unique mapping satisfying the
generalized linear functional equation and (3.4).
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Corollary 3.5. Let X and Y be two normed spaces, c > 0 and 0 ≤ p < 1. Suppose
that fe : X → Y is an even mapping satisfying fe(0) = 0 and

∥Dfe(x, y)∥ ≤ c(∥x∥p + ∥y∥p)

for all x, y ∈ X. Then there exists a unique mapping Ae : X → Y satisfying the
generalized linear functional equation (3.1) and

∥fe(x)−Ae(x)∥ ≤ c

2− 2p
∥x∥p

for all x ∈ X.

Proof. Letting ρ(x, y) = c(∥x∥p + ∥y∥p) for all x, y ∈ X and choosing L = 2p−1 in
Theorem 3.4, we obtain this result.

Corollary 3.6. Let X and Y be two normed spaces, c > 0, p > 0 and q > 0 with
p+ q < 1. Suppose that fe : X → Y is an even mapping satisfying fe(0) = 0 and

∥Dfe(x, y)∥ ≤ c∥x∥p∥y∥p

for all x, y ∈ X. Then there exists a unique mapping Ae : X → Y satisfying the
generalized linear functional equation (3.1) and

∥fe(x)−Ae(x)∥ ≤ c

4− 2p+q+1
∥x∥p+q

for all x ∈ X.

Proof. Letting ρ(x, y) = c∥x∥p∥y∥q for all x, y ∈ X and choosing L = 2p+q−1 in
Theorem 3.4, we obtain this result.

Corollary 3.7. Let X and Y be two normed spaces, c1 > 0, c2 > 0 and 0 ≤ p < 1.
Suppose that fe : X → Y is an even mapping satisfying fe(0) = 0 and

∥Dfe(x, y)∥ ≤ c1(∥x∥p + ∥y∥p) + c2∥x∥
p
2 ∥y∥

p
2

for all x, y ∈ X. Then there exists a unique mapping Ae : X → Y satisfying the
generalized linear functional equation (3.1) and

∥fe(x)−Ae(x)∥ ≤ (2c1 + c2)

4− 2p+1
∥x∥p

for all x ∈ X.

Proof. Letting ρ(x, y) = c1(∥x∥p+∥y∥p)+c2∥x∥
p
2 ∥y∥

p
2 for all x, y ∈ X and choos-

ing L = 2p−1 in Theorem 3.4, we obtain this result.

In the same way of the proof in Theorem 3.4, we can prove the following
theorem.
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Theorem 3.8. Let X and Y be two normed spaces and ρ : X ×X → [0,∞) be a
function such that there exists an L < 1 with

ρ(x, y) ≤ L

2
ρ (2x, 2y)

for all x, y ∈ X. Suppose that fe : X → Y is an even mapping satisfying fe(0) =
0 and (3.3). Then there exists a unique mapping Ae : X → Y satisfying the
generalized linear functional equation (3.1) and

∥fe(x)−Ae(x)∥ ≤ L

4− 4L
ρ(x, x) (3.17)

for all x ∈ X.

Proof. Let (V, d) be the generalized metric space defined in the proof of Theorem
3.4. Now we consider the linear mapping J : V → V such that

(Ju)(x) := 2u
(x
2

)
for all x ∈ X

and for all u ∈ V . The remain of the proof is similar to the proof of Theorem
3.4.

Corollary 3.9. Let X and Y be two normed spaces, c > 0 and p > 1. Suppose
that fe : X → Y is an even mapping satisfying fe(0) = 0 and

∥Dfe(x, y)∥ ≤ c(∥x∥p + ∥y∥p)

for all x, y ∈ X. Then there exists a unique mapping Ae : X → Y satisfying the
generalized linear functional equation (3.1) and

∥fe(x)−Ae(x)∥ ≤ c

2p − 2
∥x∥p

for all x ∈ X.

Proof. Letting ρ(x, y) = c(∥x∥p + ∥y∥p) for all x, y ∈ X and choosing L = 21−p in
Theorem 3.8, we obtain this result.

Corollary 3.10. Let X and Y be two normed spaces, c > 0, p > 0 and q > 0 with
p+ q > 1. Suppose that fe : X → Y is an even mapping satisfying fe(0) = 0 and

∥Dfe(x, y)∥ ≤ c∥x∥p∥y∥q

for all x, y ∈ X. Then there exists a unique mapping Ae : X → Y satisfying the
generalized linear functional equation (3.1) and

∥fe(x)−Ae(x)∥ ≤ c

2p+q+1 − 4
∥x∥p+q

for all x ∈ X.
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Proof. Letting ρ(x, y) = c∥x∥p∥y∥q for all x, y ∈ X and choosing L = 21−(p+q) in
Theorem 3.8, we obtain this result.

Corollary 3.11. Let X and Y be two normed spaces, c1 > 0, c2 > 0 and p > 1.
Suppose that fe : X → Y is an even mapping satisfying fe(0) = 0 and

∥Dfe(x, y)∥ ≤ c1(∥x∥p + ∥y∥p) + c2∥x∥
p
2 ∥y∥

p
2

for all x, y ∈ X. Then there exists a unique mapping Ae : X → Y satisfying the
generalized linear functional equation (3.1) and

∥fe(x)−Ae(x)∥ ≤ (2c1 + c2)

2p+1 − 4
∥x∥p

for all x ∈ X.

Proof. Letting ρ(x, y) = c1(∥x∥p+∥y∥p)+c2∥x∥
p
2 ∥y∥

p
2 for all x, y ∈ X and choos-

ing L = 21−p in Theorem 3.8, we obtain this result.

The condition of fe(0) = 0 of the even function fe in Theorem 3.4 is very
important in the proof of such theorem but we can omit this condition in the case
of the odd function. Next, we give the mentioned results.

Theorem 3.12. Let X and Y be two normed spaces and ρ : X ×X → [0,∞) be
a function such that there exists an L < 1 with

ρ(x, y) ≤ 2Lρ
(x
2
,
y

2

)
for all x, y ∈ X. Suppose that fo : X → Y is an odd mapping satisfying

∥Dfo(x, y)∥ ≤ ρ(x, y) (3.18)

for all x, y ∈ X. Then there exists a unique mapping Ao : X → Y satisfying the
generalized linear functional equation (3.1) and

∥fo(x)−Ao(x)∥ ≤ 1

4− 4L
ρ(x, x)

for all x ∈ X.

Remark 3.13. For letting ρ(x, y) = c(∥x∥p + ∥y∥p) for all x, y ∈ X with c > 0
and p > 1 or ρ(x, y) = c∥x∥p∥y∥q for all x, y ∈ X with c, p, q > 0 and p+ q > 1 or
ρ(x, y) = c1(∥x∥p + ∥y∥p) + c2∥x∥

p
2 ∥y∥

p
2 for all x, y ∈ X with c1, c2 > 0 and p > 1

in Theorem 3.4, we have results which are similar to Corollaries 3.5, 3.6 and 3.7.

Theorem 3.14. Let X and Y be two normed spaces and ρ : X ×X → [0,∞) be
a function such that there exists an L < 1 with

ρ(x, y) ≤ L

2
ρ (2x, 2y)
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for all x, y ∈ X. Suppose that fo : X → Y is an odd mapping satisfying (3.18).
Then there exists a unique mapping Ao : X → Y satisfying the generalized linear
functional equation (3.1) and

∥fo(x)−Ao(x)∥ ≤ L

4− 4L
ρ(x, x)

for all x ∈ X.

Remark 3.15. For letting ρ(x, y) = c(∥x∥p + ∥y∥p) for all x, y ∈ X with c > 0
and p > 1 or ρ(x, y) = c∥x∥p∥y∥q for all x, y ∈ X with c, p, q > 0 and p + q > 1
or ρ(x, y) = c1(∥x∥p + ∥y∥p) + c2∥x∥

p
2 ∥y∥

p
2 for all x, y ∈ X with c1, c2 > 0 and

p > 1 in Theorem 3.8, we have results which are similar to Corollaries 3.9, 3.10
and 3.11.

Let X,Y be two normed spaces and f : X → Y be a mapping. Define
fe, fo : X → Y by

fe(x) =
f(x) + f(−x)

2

and

fo(x) =
f(x)− f(−x)

2

for all x ∈ X. Then fe is and even mapping and fo is an odd mapping such that
f = fe + fo.

In order to obtain the stability results of the generalized linear functional
equation concerning an even mapping and an odd mapping, we also need the next
lemma.

Lemma 3.16. If f is a mapping from a normed space X into a normed space Y
and f satisfies

∥Df(x, y)∥ ≤ ρ(x, y)

for all x, y ∈ X, then an even mapping fe : X → Y satisfies

∥Dfe(x, y)∥ ≤ ρ(x, y)

for all x, y ∈ X, where fe(x) =
f(x)+f(−x)

2 .

Proof. For each x, y ∈ X, we have ∥2fe(x+ y) + fe(x− y) + fe(y − x)− 2fe(x)−
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2fe(y)∥

=

∥∥∥∥∥2
[
f(x+ y)− f(−(x+ y))

2

]
+
f(x− y)− f(−(x− y))

2
+
f(y − x)− f(−(y − x))

2

−2

[
f(x)− f(−x)

2

]
− 2

[
f(y)− f(−y)

2

] ∥∥∥∥∥
≤

∥∥∥∥f(x+ y) +
f(x− y)

2
+
f(y − x)

2
− f(x)− f(y)

∥∥∥∥
+

∥∥∥∥f(−x− y) +
f(−x+ y)

2
+
f(−y + x)

2
− f(−x)− f(−y)

∥∥∥∥
≤ ρ(x, y)

2
+
ρ(x, y)

2
≤ ρ(x, y).

By using the same technique in the previous lemma, we obtain the next result.

Lemma 3.17. If f is a mapping from a normed space X into a normed space Y
and f satisfies

∥Df(x, y)∥ ≤ ρ(x, y)

for all x, y ∈ X, then an odd mapping fo : X → Y satisfies

∥Dfo(x, y)∥ ≤ ρ(x, y)

for all x, y ∈ X, where fo(x) =
f(x)−f(−x)

2 .

From Theorems 3.4, 3.12 and Lemma 3.16 with the fact that f = fo + fe, we
get the following result.

Theorem 3.18. Let X and Y be two normed spaces and ρ : X ×X → [0,∞) be
a function such that there exists an L < 1 with

ρ(x, y) ≤ 2Lρ
(x
2
,
y

2

)
for all x, y ∈ X. Suppose that f : X → Y is a mapping satisfying

∥Df(x, y)∥ ≤ ρ(x, y)

for all x, y ∈ X. Then there exist mappings Ae, Ao : X → Y satisfying the
generalized linear functional equation (3.1) and

∥f(x)−Ae(x)−Ao(x)∥ ≤ 1

2− 2L
ρ(x, x)

for all x ∈ X.
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From Theorems 3.8, 3.14 and Lemma 3.17 with the fact that f = fo + fe, we
get the following result.

Theorem 3.19. Let X and Y be two normed spaces and ρ : X ×X → [0,∞) be
a function such that there exists an L < 1 with

ρ(x, y) ≤ L

2
ρ(2x, 2y)

for all x, y ∈ X. Suppose that f : X → Y is a mapping satisfying

∥Df(x, y)∥ ≤ ρ(x, y)

for all x, y ∈ X. Then there exist mappings Ae, Ao : X → Y satisfying the
generalized linear functional equation (3.1) and

∥f(x)−Ae(x)−Ao(x)∥ ≤ L

2− 2L
ρ(x, x)

for all x ∈ X.
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