Thai Journal of Mathematics : (2018) 95-112 Special Issue (ACFPTO2018) on : Advances in fixed point theory towards real world optimization problems

http://thaijmath.in.cmu.ac.th Online ISSN 1686-0209

Best Proximity Point Theorems for Suzuki Type Proximal Contractive Multimaps

J. Nantadilok $^{\dagger 1}$, P. Sumati Kumari ‡ and B. Nuntadilok $^{\$}$

[†]Department of Mathematics, Faculty of Science, Lampang Rajabhat University, Lampang, Thailand e-mail : jamnian2010@gmail.com

[‡]Department of Mathematics, Basic Sciences and Humanities, GMR Institute of Technology, Rajam-532127,Andhra Pradesh, India e-mail : mumy1431431430gmail.com

> [§]Department of Mathematics, Faculty of Science, Maejo University, Chiang Mai, Thailand e-mail : buraskorn.nun@gmail.com

Abstract : The purpose of this manuscript is to establish new best proximity point results for Suzuki type proximal contractive multimaps. Our results extend some recent known results by Hussain *et al.* [11] as well as other results in the literature. An illustrative example is provided to highlight our main results.

Keywords : proximal contractive multivalued mapping; best proximity point; fixed point; Suzuki type proximal contraction **2000 Mathematics Subject Classification :** 47H09; 47H10 (2000 MSC)

1 Introduction and Preliminaries

The background concept on best proximity point results and related fixed point theory in (ordered) metric spaces, Banach spaces and fuzzy metric spaces

¹Corresponding author email: jamnian20100gmail.com

Copyright $\textcircled{}_{\odot}$ 2018 by the Mathematical Association of Thailand. All rights reserved.

is very abundant in the literature; (see, for instance, [12],[13], [14], [16], [18], [19]) and references therein.

Let A and B be two nonempty subsets of a metric space (X, d). An element $x \in A$ is said to be a fixed point of a given map $T : A \to B$ if Tx = x. Clearly, $T(A) \cap A \neq \emptyset$ is a necessary(but not sufficient) condition for the existence of a fixed point of T. If $T(A) \cap A = \emptyset$, then d(x, Tx) > 0 for all $x \in A$, that is, the set of fixed point of T is empty. In a such situation, one often attempts to find an element x which is in some sense closed to Tx. Best approximation theory and best proximity point analysis have been developed in this direction. Recently, Jleli and Samet [14] introduced the notion of α - ψ -proximal contractive type mappings and established some best proximity point theorems. Many authors obtained best proximity point theorems in different settings; (see [1],[2],[8],[9],[10], [15],[20], [21],[23], for examples). Abkar and Gbeleh [4], Al-Thagafi and Shazad ([5],[6]), Ali et al. [7], Xu and Fan [24] investigated best proximity points for multivalued mappings.

Later, Hussain *et al.* [11] introduced new Suzuki and convex type contractions and established new best proximity results for those contractions in the setting of a metric space.

Let (X, d) be a metric space. For $A, B \subset X$, we use the following notations subsequently:

$$d(A, B) = \inf \{ d(a, b) : a \in A, b \in B \},\$$

$$D(x, B) = \inf \{ d(x, b) : b \in B \},\$$

$$A_0 = \{ a \in A : d(a, b) = d(A, B) \text{ for some } b \in B \},\$$

$$B_0 = \{ b \in B : d(a, b) = d(A, B) \text{ for some } a \in A \},\$$

 $2^X \setminus \emptyset$ is the set of all nonempty subsets of X, $\operatorname{CL}(X)$ is the set of all nonempty closed subsets of X, and $\operatorname{K}(X)$ is the set of all nonempty compact subsets of X. For every $A, B \in \operatorname{CL}(X)$, let

$$H(A,B) = \begin{cases} \max\left\{\sup_{x \in A} d(x,B), \sup_{y \in B} d(y,A)\right\} & \text{if the maximum exists;} \\ \infty & \text{otherwise.} \end{cases}$$
(1.1)

Such a map H is called the generalized Hausdorff metric induced by d. A point $x^* \in X$ is said to be the best proximity point of a mapping $T : A \to B$ if $d(x^*, Tx^*) = d(A, B)$. When A = B, the best proximity point is essentially the fixed point of the mapping T. We review the following essential definitions.

Definition 1.1 (see [22]). Let (A, B) be a pair of nonempty subsets of a metric space (X, d) with $A_0 \neq \emptyset$. Then the pair (A, B) is said to have the P-property if and only if, for any $x_1, x_2 \in A$ and $y_1, y_2 \in B$,

$$\begin{aligned} & d(x_1, y_1) = d(A, B) \\ & d(x_2, y_2) = d(A, B) \end{aligned} \} \qquad \Rightarrow \quad d(x_1, x_2) = d(y_1, y_2). \end{aligned}$$
 (1.2)

Let Ψ denote the set of all functions $\psi : [0, \infty) \to [0, \infty)$ satisfying the following properties:

- (a) ψ is monotone nondecreasing;
- (b) $\sum_{n=1}^{\infty} \psi^n(t) < \infty$ for each t > 0.

It is well-known that $\psi(t) < t$ for all t > 0.

Let Θ denote the set of all functions $\theta : (0, \infty) \to [1, \infty)$ with the following conditions:

- (a) θ is increasing;
- (b) for all sequences $\{\alpha_n\} \subset (0,\infty)$, $\lim_{n \to \infty} \alpha_n = 0$ if and only if $\lim_{n \to \infty} \theta(\alpha_n) = 1$;
- (c) there exist $r \in (0,1)$ and $l \in (0,\infty]$ such that $\lim_{t \to 0^+} \frac{\theta(t)-1}{t^r} = l$.

Definition 1.2 (see [11]). Let A and B be two nonempty subsets of a metric space (X, d). A mapping $T : A \to B$ is called α^+ -proximal admissible if there exists a mapping $\alpha : A \times A \to [-\infty, \infty)$ such that

$$\begin{array}{c} \alpha(x_1, x_2) \ge 0\\ d(u_1, Tx_1) = d(A, B)\\ d(u_2, Tx_2) = d(A, B) \end{array} \right\} \qquad \Rightarrow \quad \alpha(u_1, u_2) \ge 0$$
 (1.3)

for all $x_1, x_2, u_1, u_2 \in A$.

Definition 1.3 (see [11]). The mapping $T : A \to B$ is called a Suzuki type α^+ ψ -proximal contraction, if there exists a mapping $\alpha : A \times A \to [-\infty, \infty)$ such that

$$\frac{1}{2}d^*(x,Tx) \le d(x,y) \Rightarrow \alpha(x,y) + d(Tx,Ty) \le \psi(\mathcal{M}(x,y))$$
(1.4)

for all $x, y \in A$, where $d^*(x, Tx) = d(x, Tx) - d(A, B), \psi \in \Psi$, and

$$\mathcal{M}(x,y) = \max\left\{ d(x,y), \frac{d(x,Tx) + d(y,Ty)}{2} - d(A,B), \frac{d(x,Ty) + d(y,Tx)}{2} - d(A,B) \right\}.$$

Definition 1.4 (see [11]). A mapping $T : A \to B$ is called a Suzuki type $\alpha^+\theta$ -proximal contraction, if for all $x, y \in A$ with $\frac{1}{2}d^*(x, Tx) \leq d(x, y)$ and d(Tx, Ty) > 0,

$$\Rightarrow \alpha(x, y) + \theta(d(Tx, Ty)) \le [\theta(\mathcal{M}(x, y))]^{\beta}$$
(1.5)

where $\alpha: A \times A \rightarrow [-\infty, \infty), 0 \leq \beta < 1, \text{ and } \theta \in \Theta.$

The main results of Hussain *et al.* in [11] are the following.

Theorem 1.5 (see [11]). Let A and B be two nonempty closed subsets of a complete metric space (X, d) such that $A_0 \neq \emptyset$. Let $T : A \rightarrow B$ satisfy (1.4) together with the following assertions:

- (i) $T(A_0) \subseteq B_0$ and (A, B) satisfies the P-property;
- (ii) T is an α^+ -proximal admissible map;
- (iii) there exist elements x_0, x_1 in A_0 such that

$$d(x_1, Tx_0) = d(A, B) , \quad \alpha(x_0, x_1) \ge 0$$
(1.6)

- (iv) T is continuous, or
- (v) A is α -regular, that is, if $\{x_n\}$ is a sequence in A such that $\alpha(x_n, x_{n+1}) \ge 0$ and $x_n \to x \in A$ as $n \to \infty$, then $\alpha(x_n, x) \ge 0$ for all $n \in N$.

Then there exists an element $x^* \in A_0$ such that $d(x^*, Tx^*) = d(A, B)$.

Theorem 1.6 (see [11]). Let X, A, A_0 , and B be as Theorem 1.5. Assume that $T: A \rightarrow B$ satisfies (1.4) and the assertions (i)-(v) in Theorem 1.5 and

$$\alpha(p,q) + d(Tp,Tq) \le \psi(\mathcal{M}(p,q)) \tag{1.7}$$

holds for all $p, q \in A$. Then there exists an element $x^* \in A_0$ such that $d(x^*, Tx^*) = d(A, B)$.

Theorem 1.7 (see [11]). Let X, A, A_0 , and B be as Theorem 1.5. Assume that $T: A \to B$ satisfies (1.5) and the assertions (i)-(v) in Theorem 1.5. Then there exists an element $x^* \in A_0$ such that $d(x^*, Tx^*) = d(A, B)$.

Definition 1.8 (see [3]). An element $x^* \in A$ is said to be the best proximity point of a multivalued nonself mapping T, if $D(x^*, Tx^*) = d(A, B)$.

Inspired and motivated by the results of Hussain *et al.* in [11] and by those of Ali *et al.* in [7], we establish the best proximity point results for Suzuki type proximal contractive multimaps. Our results extend the recent results of Hussain *et al.* [11] to the best proximity point results for nonself multivalued mappings. We also give an illustrative example to support our main results.

2 Main Results

We begin this section by introducing the following definitions.

Definition 2.1. Let A and B be two nonempty subsets of a metric space (X, d). A mapping $T : A \to 2^B \setminus \emptyset$ is called an α^+ -proximal admissible multimap, if there exists a mapping $\alpha : A \times A \to [-\infty, \infty)$ such that

$$\alpha(x_1, x_2) \ge 0 D(u_1, Tx_1) = d(A, B) D(u_2, Tx_2) = d(A, B)$$

$$\Rightarrow \quad \alpha(u_1, u_2) \ge 0$$
 (2.1)

for all $x_1, x_2, u_1, u_2 \in A$.

Definition 2.2. Let A and B be two nonempty subsets of a metric space (X, d). A mapping $T : A \to CL(B)$ is called a Suzuki type $\alpha^+\psi$ -proximal contractive multimap, if there exists a mapping $\alpha : A \times A \to [-\infty, \infty)$ such that

$$\frac{1}{2}D^*(x,Tx) \le d(x,y) \Rightarrow \alpha(x,y) + H(Tx,Ty) \le \psi(\mathcal{M}(x,y))$$
(2.2)

for all $x, y \in A$, where $D^*(x, Tx) = D(x, Tx) - d(A, B), \psi \in \Psi$, and

$$\mathcal{M}(x,y) = \max\left\{ d(x,y), \frac{D(x,Tx) + D(y,Ty)}{2} - d(A,B), \frac{D(x,Ty) + D(y,Tx)}{2} - d(A,B) \right\}.$$

Definition 2.3. A mapping $T : A \to CL(B)$ is called a Suzuki type $\alpha^+ \theta$ -proximal contractive multimap, if for all $x, y \in A$ with $\frac{1}{2}D^*(x, Tx) \leq d(x, y)$ and H(Tx, Ty) > 0,

$$\Rightarrow \alpha(x, y) + \theta \big(H(Tx, Ty) \big) \le \big[\theta \big(\mathcal{M}(x, y) \big) \big]^{\beta}$$
(2.3)

where $\alpha: A \times A \rightarrow [-\infty, \infty), 0 \leq \beta < 1, \theta \in \Theta$, and

$$\mathcal{M}(x,y) = \max\left\{ d(x,y), \frac{D(x,Tx) + D(y,Ty)}{2} - d(A,B), \frac{D(x,Ty) + D(y,Tx)}{2} - d(A,B) \right\}.$$

The following are our main results.

Theorem 2.4. Let A and B be two nonempty closed subsets of a complete metric space (X, d) such that A_0 is nonempty. Let $\alpha : A \times A \rightarrow [-\infty, \infty)$ and let $\psi \in \Psi$ be a strictly increasing map. Suppose that $T : A \rightarrow CL(B)$ is a mapping satisfying (2.2) and the following conditions:

- (i) $T(A_0) \subseteq B_0$ and (A, B) satisfies the P-property;
- (ii) T is an α^+ -proximal admissible multimap;
- (iii) there exist elements $x_0, x_1 \in A_0$ such that

$$D(x_1, Tx_0) = d(A, B)$$
 and $\alpha(x_0, x_1) \ge 0;$ (2.4)

- (iv) T is continuous, or
- (v) A is α -regular, that is, if $\{x_n\}$ is a sequence in A such that $\alpha(x_n, x_{n+1}) \ge 0$ and $x_n \to x \in A$ as $n \to \infty$, then $\alpha(x_n, x) \ge 0$ for all n.

Then there exists an element $x^* \in A_0$ such that

$$D(x^*, Tx^*) = d(A, B).$$

J. Nantadilok, P. Sumati Kumari and B. Nantadilok

Proof. Since $T(A_0) \subseteq B_0$, there exists $x_2 \in A_0$ such that

$$D(x_2, Tx_1) = d(A, B).$$
(2.5)

As T satisfies (iii) and is α^+ -proximal admissible, we obtain $\alpha(x_1, x_2) \ge 0$. That is

$$D(x_2, Tx_1) = d(A, B), \quad \alpha(x_1, x_2) \ge 0.$$
(2.6)

Again, since $T(A_0) \subseteq B_0$, there exists $x_3 \in A_0$ such that

$$D(x_3, Tx_2) = d(A, B). (2.7)$$

Therefore we have

$$D(x_2, Tx_1) = d(A, B), \ D(x_3, Tx_2) = d(A, B), \ \alpha(x_1, x_2) \ge 0.$$
(2.8)

Again, since T is α^+ -proximal admissible, we obtain $\alpha(x_2, x_3) \ge 0$. Hence, we have

$$D(x_3, Tx_2) = d(A, B), \quad \alpha(x_2, x_3) \ge 0.$$
(2.9)

Continuing this method, we get

$$D(x_{n+1}, Tx_n) = d(A, B), \ \alpha(x_n, x_{n+1}) \ge 0 \quad \text{for all } n \in \mathbb{N} \cup \{0\}.$$
(2.10)

From (2.10), definition of D^* and triangle inequality, we can write

$$\frac{1}{2}D^*(x_{n-1}, Tx_{n-1}) = \frac{1}{2} \Big(D(x_{n-1}, Tx_{n-1}) - d(A, B) \Big) \\
\leq \frac{1}{2} \Big(d(x_{n-1}, x_n) + D(x_n, Tx_{n-1}) - d(A, B) \Big) \\
= \frac{1}{2} d(x_{n-1}, x_n) \\
\leq d(x_{n-1}, x_n).$$
(2.11)

That is

$$\frac{1}{2}D^*(x_{n-1}, Tx_{n-1}) \le d(x_{n-1}, x_n).$$
(2.12)

From (2.2), we get

$$H(Tx_{n-1}, Tx_n) \le \alpha(x_{n-1}, x_n) + H(Tx_{n-1}, Tx_n) \le \psi(\mathcal{M}(x_{n-1}, x_n)).$$
(2.13)

100

By using (2.10), triangle inequality and the *P*-property, we obtain

$$\begin{aligned} \mathcal{M}(x_{n-1}, x_n) &= \max\left\{ d(x_{n-1}, x_n), \frac{D(x_{n-1}, Tx_{n-1}) + D(x_n, Tx_n)}{2} - d(A, B), \\ \frac{D(x_{n-1}, Tx_n) + D(x_n, Tx_{n-1})}{2} - d(A, B) \right\} \\ &\leq \max\left\{ d(x_{n-1}, x_n), \frac{d(x_{n-1}, x_n) + D(x_n, Tx_{n-1}) + d(x_n, x_{n+1}) + D(x_{n+1}, Tx_n)}{2} - d(A, B), \\ \frac{d(x_{n-1}, x_n) + D(x_n, Tx_{n-1}) + d(Tx_{n-1}, Tx_n) + D(x_n, Tx_{n-1})}{2} - d(A, B) \right\} \\ &= \max\left\{ d(x_{n-1}, x_n), \frac{d(x_{n-1}, x_n) + d(A, B) + d(x_n, x_{n+1}) + d(A, B)}{2} - d(A, B), \\ \frac{d(x_{n-1}, x_n) + d(A, B) + d(Tx_{n-1}, Tx_n) + d(A, B)}{2} - d(A, B) \right\} \\ &= \max\left\{ d(x_{n-1}, x_n), \frac{d(x_{n-1}, x_n) + d(A, B) + d(x_n, x_{n+1}) + d(A, B)}{2} - d(A, B), \\ \frac{d(x_{n-1}, x_n) + d(A, B) + d(x_n, x_{n+1}) + d(A, B)}{2} - d(A, B), \\ \frac{d(x_{n-1}, x_n) + d(A, B) + d(x_n, x_{n+1}) + d(A, B)}{2} - d(A, B) \right\} \\ &= \max\left\{ d(x_{n-1}, x_n), \frac{d(x_{n-1}, x_n) + d(x_n, x_{n+1})}{2} \right\} \\ &\leq \max\left\{ d(x_{n-1}, x_n), \frac{d(x_{n-1}, x_n) + d(x_n, x_{n+1})}{2} \right\}. \end{aligned}$$

Since (A, B) satisfies the *P*-property, we obtain

$$d(x_n, x_{n+1}) = d(Tx_{n-1}, Tx_n)$$

$$\leq H(Tx_{n-1}, Tx_n)$$

$$\leq \alpha(x_{n-1}, x_n) + H(Tx_{n-1}, Tx_n)$$

$$\leq \psi \Big(\mathcal{M}(x_{n-1}, x_n) \Big) \text{ for all } n \in \mathbb{N}.$$

$$(2.15)$$

From (2.14) and (2.15), we have

$$d(x_n, x_{n+1}) \le \psi \Big(\mathcal{M}(x_{n-1}, x_n) \Big)$$

$$\le \psi \Big(\max \Big\{ d(x_{n-1}, x_n), d(x_n, x_{n+1}) \Big\} \Big) \text{ for all } n \in \mathbb{N}.$$
 (2.16)

If $x_{n_0} = x_{n_0+1}$, for some $n_0 \in \mathbb{N}$, from (2.10), we obtain

$$D(x_{n_0}, Tx_{n_0}) = D(x_{n_0+1}, Tx_{n_0}) = d(A, B),$$

This means x_{n_0} is a best proximity point of T. Therefore, we suppose that

$$d(x_{n+1}, x_n) > 0 \text{ for all } n \in \mathbb{N} \cup \{0\}.$$
 (2.17)

J. Nantadilok, P. Sumati Kumari and B. Nantadilok

If max $\left\{ d(x_{n-1}, x_n), d(x_n, x_{n+1}) \right\} = d(x_n, x_{n+1})$, then (2.16) implies

$$d(x_n, x_{n+1}) \le \psi \Big(d(x_n, x_{n+1}) \Big) < d(x_n, x_{n+1}),$$
(2.18)

which is a contradiction. Therefore,

$$d(x_n, x_{n+1}) \le \psi \Big(\mathcal{M}(x_{n-1}, x_n) \Big) \le \psi \Big(d(x_{n-1}, x_n) \Big) \text{ for all } n \in \mathbb{N}.$$
 (2.19)

By the monotonicity of ψ and by induction, it follows from (2.19) that

$$d(x_n, x_{n+1}) \le \psi^n \Big(d(x_0, x_1) \Big) \quad \text{for all } n \in \mathbb{N} \cup \{0\}.$$

$$(2.20)$$

Suppose ϵ is any positive real number. There exists $N \in \mathbb{N}$ such that

$$\sum_{n \ge N} \psi^n \big(d(x_0, x_1) \big) < \epsilon \quad \text{for all } n \in \mathbb{N}$$

If $m, n \in \mathbb{N}$ with $m > n \ge N$. By the triangle inequality, we have

$$d(x_n, x_m) \leq \sum_{k=n}^{m-1} d(x_k, x_{k+1})$$

$$\leq \sum_{n \geq N} \psi^n (d(x_0, x_1)) < \epsilon.$$

Consequently $\lim_{m,n\to\infty} d(x_n, x_m) = 0$, which implies $\{x_n\}$ is a Cauchy sequence. Since X is complete, $x_n \to x^* \in X$. If (iv) holds, Then $Tx_n \to Tx^*$ as $n \to \infty$ and

$$d(A,B) = \lim_{n \to \infty} D(x_{n+1},Tx_n) = D(x^*,Tx^*).$$

Hence x^* is the best proximity point of T.

Next, assume that (v) holds. Then $\alpha(x_n, x^*) \ge 0$. If the following inequalities hold:

$$\frac{1}{2}D^*(x_n, Tx_n) > d(x_n, x^*) \text{ and } \frac{1}{2}D^*(x_{n+1}, Tx_{n+1}) > d(x_{n+1}, x^*),$$

for some $n \in \mathbb{N}$, then by the triangle inequality, (2.10) and definition of D^* , we obtain

$$\begin{aligned} d(x_n, x_{n+1}) &\leq d(x_n, x^*) + d(x^*, x_{n+1}) \\ &< \frac{1}{2} \left[D^*(x_n, Tx_n) + D^*(x_{n+1}, Tx_{n+1}) \right] \\ &= \frac{1}{2} \left[D(x_n, Tx_n) + D(x_{n+1}, Tx_{n+1}) - 2d(A, B) \right] \\ &\leq \frac{1}{2} \left[d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) \right] \\ &\leq d(x_n, x_{n+1}), \end{aligned}$$

102

which is a contradiction. Consequently, for any $n \in \mathbb{N}$, either

$$\frac{1}{2}D^*(x_n, Tx_n) \le d(x_n, x^*) \text{ or } \frac{1}{2}D^*(x_{n+1}, Tx_{n+1}) \le d(x_{n+1}, x^*)$$

holds.

Then, we may choose a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that

$$\frac{1}{2}D^*(x_{n_k}, Tx_{n_k}) \le d(x_{n_k}, x^*) \text{ and } \alpha(x_{n_k}, x_{n_k+1}) \ge 0,$$

for all $k \in \mathbb{N}$. By (2.2), we have

$$H(Tx_{n_k}, Tx^*) \le \alpha(x_{n_k}, x^*) + H(Tx_{n_k}, Tx^*) \le \psi \big(\mathcal{M}(x_{n_k}, x^*) \big).$$
(2.21)

Observe that

$$\mathcal{M}(x_{n_k}, x^*) = \max\left\{ d(x_{n_k}, x^*), \frac{D(x_{n_k}, Tx_{n_k}) + D(x^*, Tx^*)}{2} - d(A, B), \\ \frac{D(x_{n_k}, Tx^*) + D(x^*, Tx_{n_k})}{2} - d(A, B) \right\}$$

$$\leq \max\left\{ d(x_{n_k}, x^*), \frac{d(x_{n_k}, x_{n_k+1}) + D(x_{n_k+1}, Tx_{n_k}) + D(x^*, Tx^*)}{2} - d(A, B), \\ \frac{d(x_{n_k}, x^*) + D(x^*, Tx^*) + d(x^*, x_{n_k+1}) + D(x_{n_k+1}, Tx_{n_k})}{2} - d(A, B) \right\}$$

$$= \max\left\{ d(x_{n_k}, x^*), \frac{d(x_{n_k}, x_{n_k+1}) + d(A, B) + D(x^*, Tx^*)}{2} - d(A, B), \\ \frac{d(x_{n_k}, x^*) + D(x^*, Tx^*) + d(x^*, x_{n_k+1}) + d(A, B)}{2} - d(A, B), \\ \frac{d(x_{n_k}, x^*) + D(x^*, Tx^*) + d(x^*, x_{n_k+1}) + d(A, B)}{2} - d(A, B) \right\}.$$

Taking the limit as $k \to \infty$, we obtain

$$\lim_{k \to \infty} \mathcal{M}(x_{n_k}, x^*) \leq \frac{D(x^*, Tx^*) - d(A, B)}{2}.$$
 (2.22)

Further,

$$D(x^*, Tx^*) \leq d(x^*, x_{n_{k+1}}) + D(x_{n_k+1}, Tx_{n_k}) + d(Tx_{n_k}, Tx^*)$$

= $d(x^*, x_{n_k+1}) + d(A, B) + d(Tx_{n_k}, Tx^*),$

which gives

$$D(x^*, Tx^*) - d(x^*, x_{n_k+1}) - d(A, B) \leq d(Tx_{n_k}, Tx^*).$$
(2.23)

Taking the limit as $k \to \infty$ in (2.23), we obtain

$$D(x^*, Tx^*) - d(A, B) \leq \lim_{k \to \infty} d(Tx_{n_k}, Tx^*).$$
 (2.24)

Therefore, from (2.21), (2.22) and (2.24), we have

$$D(x^*, Tx^*) - d(A, B) \leq \lim_{k \to \infty} d(Tx_{n_k}, Tx^*)$$

$$\leq \lim_{k \to \infty} H(T_{n_k}, Tx^*)$$

$$\leq \psi(\lim_{k \to \infty} \mathcal{M}(x_{n_k}, x^*))$$

$$\leq \psi\left(\frac{D(x^*, Tx^*) - d(A, B)}{2}\right)$$

Now, if $D(x^*, Tx^*) - d(A, B) > 0$, we have that

$$D(x^*, Tx^*) - d(A, B) < \frac{D(x^*, Tx^*) - d(A, B)}{2}.$$

This is a contradiction. Hence, $D(x^*, Tx^*) = d(A, B)$. Therefore x^* is the best proximity point of T.

Theorem 2.5. Let A and B be two nonempty closed subsets of a complete metric space (X, d) such that A_0 is nonempty. Let $\alpha : A \times A \rightarrow [-\infty, \infty)$ and let $T : A \rightarrow K(B)$ be a mapping satisfying (2.2) and the following conditions:

- (i) $T(A_0) \subseteq B_0$ for each $x \in A_0$ and (A, B) satisfies the P-property;
- (ii) T is an α^+ -proximal admissible multimap;
- (iii) there exist elements x_0, x_1 in A_0 such that

$$D(x_1, Tx_0) = d(A, B), \quad \alpha(x_0, x_1) \ge 0; \tag{2.25}$$

- (iv) T is continuous, or
- (v) A is α -regular, that is, if $\{x_n\}$ is a sequence in A such that $\alpha(x_n, x_{n+1}) \ge 0$ and $x_n \to x \in A$ as $n \to \infty$, then $\alpha(x_n, x) \ge 0$ for all n.

Then there exists an element $x^* \in A_0$ such that

$$D(x^*, Tx^*) = d(A, B).$$

The following result can be deduced easily from Theorem 2.4.

Theorem 2.6. Let X, A, A_0 and B be the same as in Theorem 2.4. Assume that $T: A \to CL(B)$ satisfies the conditions (i)-(v) in Theorem 2.4 and

$$\alpha(p,q) + H(Tp,Tq) \le \psi(\mathcal{M}(p,q))$$

holds for all $p, q \in A$. Then there exists an element $x^* \in A_0$ such that

$$D(x^*, Tx^*) = d(A, B).$$

Therefore we also obtain the following theorem.

Theorem 2.7. Let X, A, A_0 and B be the same as in Theorem 2.4. Assume that $T: A \to K(B)$ satisfies the conditions (i)-(v) in Theorem 2.4 and

$$\alpha(p,q) + H(Tp,Tq) \le \psi \big(\mathcal{M}(p,q) \big)$$

holds for all $p, q \in A$. Then there exists an element $x^* \in A_0$ such that

$$D(x^*, Tx^*) = \operatorname{dist}(A, B).$$

Theorem 2.8. Let X, A, A_0 , and B be as in Theorem 2.4. Assume that $T : A \to CL(B)$ satisfies (2.3) and the following assertions:

- (i) $T(A_0) \subseteq B_0$ and (A, B) satisfies the P-property;
- (ii) T is an α^+ -proximal admissible multimap;
- (iii) there exist elements $x_0, x_1 \in A_0$ such that

$$D(x_1, Tx_0) = d(A, B)$$
 and $\alpha(x_0, x_1) \ge 0;$ (2.26)

- (iv) T is continuous, or
- (v) A is α -regular, that is, if $\{x_n\}$ is a sequence in A such that $\alpha(x_n, x_{n+1}) \ge 0$ and $x_n \to x \in A$ as $n \to \infty$, then $\alpha(x_n, x) \ge 0$ for all n.

Then there exists an element $x^* \in A_0$ such that

$$D(x^*, Tx^*) = d(A, B).$$

Proof. As in the proof of Theorem 2.4, we can construct a sequence $\{x_n\}$ satisfying

$$D(x_{n+1}, Tx_n) = d(A, B), (2.27)$$

and

$$\frac{1}{2}D^*(x_{n-1}, Tx_{n-1}) \le d(x_{n-1}, x_n) \text{ and } \alpha(x_{n-1}, x_n) \ge 0 \quad \text{for all } n \in \mathbb{N}.$$

Now (2.3) implies

$$\theta \left(H(Tx_{n-1}, Tx_n) \right) \le \alpha(x_{n-1}, x_n) + \theta \left(H(Tx_{n-1}, Tx_n) \right) \le \left[\theta \left(\mathcal{M}(x_{n-1}, x_n) \right) \right]^{\beta}.$$
(2.28)

From Theorem 2.4, we obtain

$$\mathcal{M}(x_{n-1}, x_n) \le \max\left\{ d(x_{n-1}, x_n), d(x_n, x_{n+1}) \right\}$$
(2.29)

and

$$d(x_n, x_{n+1}) \le H(Tx_{n-1}, Tx_n)$$
 for all $n \in \mathbb{N}$.

Therefore from (2.28) and (2.29), we get

$$\theta(d(x_n, x_{n+1})) \leq \theta(H(Tx_{n-1}, Tx_n))$$

$$\leq [\theta(\mathcal{M}(x_{n-1}, x_n))]^{\beta}$$

$$\leq [\theta(\max\{d(x_{n-1}, x_n), d(x_n, x_{n+1})\})]^{\beta} \text{ for all } n \in \mathbb{N}.$$
(2.30)

Now if $\max \{ d(x_{n-1}, x_n), d(x_n, x_{n+1}) \} = d(x_n, x_{n+1})$, then from (2.30) we get

$$\theta(d(x_n, x_{n+1})) \leq [\theta(d(x_n, x_{n+1}))]^{\beta} < \theta(d(x_n, x_{n+1})),$$

which is a contradiction. Therefore, we have

$$\theta(d(x_x, x_{n+1})) \le [\theta(d(x_{n-1}, x_n))]^{\beta} \quad \text{for all } n \in \mathbb{N}.$$
(2.31)

Therefore from (2.31), we get

$$1 \leq \theta (d(x_x, x_{n+1})) \leq (\theta (d(x_{n-1}, x_n)))^{\beta} \leq ((\theta (d(x_{n-2}, x_{n-1}))^{\beta})^{\beta} \dots \leq (\theta (d(x_0, x_1)))^{\beta^n}.$$

$$(2.32)$$

Letting $n \to \infty$ in (2.32), we obtain

$$\lim_{n \to \infty} \theta \left(d(x_n, x_{n+1}) \right) = 1, \tag{2.33}$$

and since $\theta \in \Theta$, we have

$$\lim_{n \to \infty} d(x_n, x_{n+1}) = 0.$$
(2.34)

Again since $\theta \in \Theta$, there exists 0 < r < 1 and $0 < l \le \infty$ with

$$\lim_{n \to \infty} \frac{\theta(d(x_n, x_{n+1})) - 1}{\left[d(x_n, x_{n+1})\right]^r} = l.$$
 (2.35)

Assume that $l < \infty$. Let $C = \frac{l}{2}$. Thus there exists $n_0 \in \mathbb{N}$ such that

$$\left|\frac{\theta(d(x_n, x_{n+1})) - 1}{\left[d(x_n, x_{n+1})\right]^r} - l\right| \le C \quad \text{for all } n \ge n_0.$$

Hence

$$\frac{\theta(d(x_n, x_{n+1})) - 1}{[d(x_n, x_{n+1})]^r} \ge l - C = C \quad \text{for all } n \ge n_0,$$

and also

$$n\left[d(x_n, x_{n+1})\right]^r \le nK\left[\theta\left(d(x_n, x_{n+1})\right) - 1\right] \quad \text{for all } n \ge n_0,$$

where $K = \frac{1}{C}$. If $l = \infty$, then there exists $n_0 \in \mathbb{N}$,

$$\frac{\theta(d(x_n, x_{n+1})) - 1}{\left[d(x_n, x_{n+1})\right]^r} \ge C \quad \text{for all } n \ge n_0,$$

which implies

$$n[d(x_n, x_{n+1})]^r \le nK[\theta(d(x_n, x_{n+1})) - 1] \quad \text{for all } n \ge n_0,$$

where $K = \frac{1}{C}$. Hence, in all cases there exist K > 0 and $n_0 \in \mathbb{N}$ such that

$$n[d(x_n, x_{n+1})]^r \le nK[\theta(d(x_n, x_{n+1})) - 1] \quad \text{for all } n \ge n_0.$$
(2.36)

From (2.33) and (2.36), letting $n \to \infty$, we obtain

$$\lim_{n \to \infty} n \left[d(x_n, x_{n+1}) \right]^r = 0.$$
 (2.37)

It follows from (2.37) that there is $n_1 \in \mathbb{N}$ with

$$n[d(x_n, x_{n+1})]^r \le 1$$
 for all $n > n_1$.

This implies

$$d(x_n, x_{n+1}) \le \frac{1}{n^{1/r}}$$
 for all $n > n_1$.

If $m > n > n_1$, then by the triangle inequality, we have

$$d(x_n, x_m) \le \sum_{i=n}^{m-1} d(x_i, x_{i+1}) \le \sum_{i=n}^{m-1} \frac{1}{i^{1/r}}.$$

Since 0 < r < 1, $\sum_{i=n}^{\infty} \frac{1}{i^{1/r}} < \infty$. Therefore, $d(x_n, x_m) \to 0$ as $m, n \to \infty$, which means that $\{x_n\}$ is a Cauchy sequence. Since X is complete, there exists $x^* \in X$ such that $x_n \to x^*$ as $n \to \infty$. Suppose that (iv) holds. Thus $Tx_n \to Tx^*$ as $n \to \infty$, which implies

$$d(A,B) = \lim_{n \to \infty} (D(x_{n+1},Tx_n)) = D(x^*,Tx^*),$$

as required. Next, assume that (v) holds. As in the proof of Theorem 2.4, we can deduce that there is a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ satisfying

$$\frac{1}{2}D^*(x_{n_k}, Tx_{n_k}) \le d(x_{n_k}, x^*) \text{ and } \alpha(x_{n_k}, x_{n_k+1}) \ge 0,$$

for all $k \in \mathbb{N}$. By (2.3) we have

$$\theta \big(H(Tx_{n_k}, Tx^*) \big) \le \big[\theta \big(\mathcal{M}(x_{n_k}, x^*) \big) \big]^{\beta} < \theta \big(\mathcal{M}(x_{n_k}, x^*) \big),$$

107

where $0 \leq \beta < 1, \theta \in \Theta$. This implies

$$H(Tx_{n_k}, Tx^*) \le \mathcal{M}(x_{n_k}, x^*).$$
 (2.38)

As in Theorem 2.4, we obtain

$$\lim_{k \to \infty} \mathcal{M}(x_{n_k}, x^*) \leq \frac{D(x^*, Tx^*) - d(A, B)}{2}$$
(2.39)

and

$$D(x^*, Tx^*) - d(A, B) \leq \lim_{k \to \infty} d(Tx_{n_k}, Tx^*).$$
 (2.40)

If $D(x^*, Tx^*) - d(A, B) > 0$, therefore from (2.38), (2.39) and (2.40), we obtain

$$D(x^*, Tx^*) - d(A, B) \leq \frac{D(x^*, Tx^*) - d(A, B)}{2}$$

which is a contradiction. Therefore $D(x^*, Tx^*) = d(A, B)$, as required.

Theorem 2.9. Let X, A, A_0 , and B be as Theorem 2.4. Assume that $T : A \to K(B)$ satisfies (2.3) and the assertions (i)-(v) in Theorem 2.8. Then there exists an element $x^* \in A_0$ such that

$$D(x^*, Tx^*) = d(A, B).$$

Theorem 2.10. Let X, A, A_0 and B be the same as in Theorem 2.4. Assume that $T: A \to CL(B)$ satisfies the conditions (i)-(v) in Theorem 2.8 and

$$\alpha(p,q) + \theta \big(H(Tp,Tq) \big) \le \big[\theta \big(\mathcal{M}(p,q) \big) \big]^{\beta}$$

holds for all $p, q \in A$, where $\alpha : A \times A \to [-\infty, \infty), 0 \leq \beta < 1, \theta \in \Theta$. Then there exists an element $x^* \in A_0$ such that

$$D(x^*, Tx^*) = d(A, B).$$

Theorem 2.11. Let X, A, A_0 and B be the same as in Theorem 2.4. Assume that $T: A \to K(B)$ satisfies the conditions (i)-(v) in Theorem 2.8 and

$$\alpha(p,q) + \theta \big(H(Tp,Tq) \big) \le \big[\theta \big(\mathcal{M}(p,q) \big) \big]^{\beta}$$

holds for all $p, q \in A$, where $\alpha : A \times A \to [-\infty, \infty), 0 \leq \beta < 1, \theta \in \Theta$. Then there exists an element $x^* \in A_0$ such that

$$D(x^*, Tx^*) = d(A, B).$$

Example 2.12. Let $X = [0, \infty) \times [0, \infty)$ be a product space endowed with the usual metric d. Suppose that $A = \{(\frac{1}{2}, x) : 0 \le x < \infty\}$ and $B = \{(0, x) : 0 \le x < \infty\}$.

Define $T: A \to CL(B)$ by

$$T\left(\frac{1}{2},a\right) = \begin{cases} \left\{(0,\frac{x}{2}): 0 \le x \le a\right\} & \text{if } a \le 1\\ \left\{(0,x^2): 0 \le x \le a^2\right\} & \text{if } a > 1, \end{cases}$$
(2.41)

and define $\alpha: A \times A \to [-\infty, \infty)$ by

$$\alpha(x,y) = \begin{cases} 0 & \text{if } x, y \in \left\{ (\frac{1}{2}, a) : 0 \le a \le 1 \right\} \\ -\infty & \text{otherwise.} \end{cases}$$

Let $\psi(t) = \frac{t}{2}$ for all $t \ge 0$. Note that $A_0 = A, B_0 = B$, and $Tx \subseteq B_0$ for each $x \in A_0$. Also, the pair (A, B) satisfies the P-property. For $x_0, x_1 \in \{(\frac{1}{2}, x) : 0 \le x \le 1\}$; then $Tx_0, Tx_1 \subseteq \{(0, \frac{x}{2}) : 0 \le x \le 1\}$. Consider $u_1 \in Tx_0, u_2 \in Tx_1$ and $w_1, w_2 \in A$ such that $d(w_1, u_1) = d(A, B)$ and $d(w_2, u_2) = d(A, B)$. Then we have $w_1, w_2 \in \{(\frac{1}{2}, x) : 0 \le x \le \frac{1}{2}\}$, so $\alpha(w_1, w_2) = 0$. Therefore, T is an α^+ -proximal admissible map. For $x_0 = (\frac{1}{2}, 1) \in A_0$ and $u_1 = (0, \frac{1}{2}) \in Tx_0 \in B_0$, we have $x_1 = (\frac{1}{2}, \frac{1}{2}) \in A_0$ such that

$$d(x_1, u_1) = \operatorname{dist}(A, B), \quad \alpha(x_0, x_1) = \alpha\left((\frac{1}{2}, 1), (\frac{1}{2}, \frac{1}{2})\right) = 0.$$

Note that $d(A, B) = \frac{1}{2}$, $A_0 = \{(\frac{1}{2}, x) : 0 \le x < \infty\}$ and $B_0 = \{(0, x) : 0 \le x < \infty\}$. Let $d(x_1, y_1) = d(A, B) = \frac{1}{2}$ and $d(x_2, y_2) = d(A, B) = \frac{1}{2}$, where $x_1 = (\frac{1}{2}, u_1), x_2 = (\frac{1}{2}, u_2) \in A_0$ and $y_1 = (0, v_1), y_2 = (0, v_2) \in B_0$. Then

$$\frac{1}{2} + |u_1 - v_1| = \frac{1}{2}$$

and

$$\frac{1}{2} + |u_2 - v_2| = \frac{1}{2}$$

so $|u_1 - v_1| = 0$ and $|u_2 - v_2| = 0$. So, we have $v_1 = u_1$ and $v_2 = u_2$. This shows that $d(x_1, x_2) = d(y_1, y_2)$. So (A, B) satisfies the P-property.

Notice that $T(A_0) \subset B_0$. Assume $\frac{1}{2}D^*(p,Tp) \leq d(p,q)$ and $\alpha(p,q) \geq 0$, for $p,q \in A$. Then

$$\begin{cases} p = (\frac{1}{2}, 1), q = (\frac{1}{2}, \frac{1}{2}) & or \\ p = (\frac{1}{2}, \frac{1}{2}), q = (\frac{1}{2}, 1) & or \\ q = (\frac{1}{2}, 0), p = (\frac{1}{2}, \frac{1}{2}) & or \\ q = (\frac{1}{2}, 1), p = (\frac{1}{2}, 0). \end{cases}$$

Since d(Tp,Tq) = d(Tq,Tp) and $\mathcal{M}(p,q) = \mathcal{M}(q,p)$ for all $p,q \in A$, we can suppose that

$$(p,q) = ((\frac{1}{2},1),(\frac{1}{2},\frac{1}{2})) \ or \ (p,q) = ((\frac{1}{2},\frac{1}{2}),(\frac{1}{2},0)).$$

Now we consider the following cases:

(i) if
$$(p,q) = ((\frac{1}{2},1), (\frac{1}{2},\frac{1}{2})) \in A_0$$
, then

$$H(T(\frac{1}{2},1), T(\frac{1}{2},\frac{1}{2})) \leq \frac{1}{4} = \psi(d((\frac{1}{2},1), (\frac{1}{2},\frac{1}{2})) \leq \psi(\mathcal{M}(p,q))$$

(ii) if
$$(p,q) = ((\frac{1}{2}, \frac{1}{2})), (\frac{1}{2}, 0)) \in A_0$$
, then

$$H(T(\frac{1}{2}, \frac{1}{2}), T(\frac{1}{2}, 0)) \leq \frac{1}{4} = \psi(d((\frac{1}{2}, \frac{1}{2}), (\frac{1}{2}, 0)) \leq \psi(\mathcal{M}(p,q)).$$

Consequently, we have

$$\frac{1}{2}D^*(p,Tp) \le d(p,q) \Rightarrow \alpha(p,q) + H(Tp,Tq) \le \psi(\mathcal{M}(p,q))$$

If $x, y \in \left\{ \left(\frac{1}{2}, a\right) : 0 \le a \le 1 \right\}$, then we have

$$\alpha(x,y) + H(Tx,Ty) = 0 + \frac{|x-y|}{2} = \frac{1}{2}d(x,y) = \psi(d(x,y)) \le \psi(\mathcal{M}(x,y)).$$

Therefore

$$\alpha(x,y) + H(Tx,Ty) \leq \psi \big(\mathcal{M}(x,y) \big).$$

Hence, T is an $\alpha^+\psi$ -proximal contractive multimap. Moreover, if $\{x_n\}$ is a sequence in A such that $\alpha(x_n, x_{n+1}) \ge 0$ for all n and $x_n \to x \in A$ as $n \to \infty$, then there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\alpha(x_{n_k}, x) \ge 0$ for all k. Therefore, all the conditions of Theorem 2.4 hold true and T has the best proximity point. Here $p = (\frac{1}{2}, 0)$ is the best proximity point of T.

Acknowledgement(s) : The first author is grateful to Lampang Rajabhat University for financial support during the preparation of this manuscript and to the referees for useful comments.

References

[1] M.U. Ali, A.H. Ansari, K. Khammahawong, P. Kumam, Best proximity points for generalized α - ψ proximal contractions, Econometrics for Financial Applications. ECONVN 2018. Studies in Computational Intelligence, Vol. 760, 341-352.

- [2] A. Abkar, M. Gabeleh, Best proximity points for asymptotic cyclic contraction mappings. Nonlinear Analysis, 74(18):7261-7268, 2011.
- [3] A. Abkar, M. Gabeleh, Best proximity points for cyclic mappings in ordered metric spaces. Journal of Optimization Theory and Applications, 151(2):418-424, 2011.
- [4] A. Abkar, M. Gabeleh, The existence of best proximity points for multivalued non-self mappings. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 107(2):319-325, 2012.
- [5] M. Al-Thafagi, N. Shazad, Best proximity sets and equilibrium pairs for a finite family of multimaps. Fixed Point Theory and Applications, 2008, 2008. Article ID 457069.
- [6] M. Al-Thafagi, N. Shazad, Best proximity pairs and equilibrium pairs for kukutani multimaps. Nonlinear Analysis: Theory, Methods & Applications, 70(3):1209-1216, 2009.
- [7] M. Ali, T. Kamran, N. Shazad, Best proximity point for α-ψ proximal contractive multimaps. Abstract and Applied Analysis, 2014. 2014. Article ID 181598.
- [8] M. Derafshpour, S. Rezapour, N. Shahzad, Best proximity points of cyclic φ-contractions in ordered metric spaces. Topological Methods in Nonlinear Analysi, 37(1):193-202, 2011.
- [9] P. Dechboon, P. Sa Ngiamsunthorn, P. Kumam, P. Chaipunya, Berinde-Borcut tripled best proximity points with generalized contraction pairs, Thai J. Math. Vol.16, No.2, 287-305, 2018.
- [10] A. A. Eldred, P. Veeramani, Existence and convergence of best proximity points. Journal of Mathematical Analysis and Applications, 323:1001-1006, 2006.
- [11] N. Hussain, M. Hezarjaribi, M. Kutbi, P. Salami, Best proximity results for suzuki and convex type contractions. Fixed Point Theory and Applications, 2016, 2016. Article 14.
- [12] N. Hussain, M. Kutbi, P. Salimi, Best proximity point results for modified α - ψ -proximal contractions. Abstract and Applied Analysis, 2013, 2013. Article ID 927457.
- [13] M. Jleli, E. Karapinar, B. Samet, Best proximity points for generalized α - ψ -proximal contractive type mappings and applications. Journal of Applied Mathematics, 2013, 2013. Article ID 534127.
- [14] M. Jleli, B. Samet, Best proximity points for $(\alpha \psi)$ -proximal contractive type mappings and applications. Bulletin des Mathématiques, 137(8):977-995, 2013.

- [15] K. Khammahawong, P. Kumam, A best proximity point theorem for Roger-Hardy type generalized *F*-contractive mappings in complete metric spaces with some examples, RACSAM (2017) 112: 1503-1519. https://doi.org/10.1007/s13398-017-0440-5.
- [16] A. Latif, M. Hezarjaribi, N. Hussain, Best proximity point theorems for α - ψ -proximal contractions in intuitionistic fuzzy metric spaces type mappings and applications. Journal of Inequalities and Applications, 352, 2014.
- [17] C. Mongkolkeha, P. Kumam, Best proximity point theorems for generalized cyclic contractions in ordered metric spaces. Journal of Optimization Theory and Applications, 155:215-226, 2012.
- [18] C. Mongkolkeha, Y.J. Cho, P. Kumam, Best proximity points for generalized proximal *C*-contraction mappings in metric spaces with partial orders, Journal of Inequalities and Applications, Article Number: 94 Published: 2013.
- [19] C. Mongkolkeha, Y.J. Cho, P. Kumam, Best proximity points for Geraghty's proximal contraction mappings, Fixed Point Theory and Applications, Article Number: 180 Published: 2013.
- [20] C. Mongkolkeha, P. Kumam, Some best proximity points for proximity commuting mappings, Optimization Letters, Volume 7, Issue 8, 1825-1836, Published 2013.
- [21] J. Nantadilok, Best proximity point results in s-metric spaces. International Journal of Mathematical Analysis, 10(27), 2016.
- [22] S. Raj, A best proximity point theorem for weakly contractive non-self mappings. Nonlinear Analysis, 74(14):4804-4808, 2011.
- [23] C. Vetro, Best proximity points: convergence and existence theorems for p-cyclic mappings. Nonlinear Analysis. Theory, Methods & Applications, 73:2283-2291, 2010.
- [24] X. Xu, X. Fan, Best proximity and coupled best proximity results for suzuki type proximal multivalued mappings. Journal of Nonlinear Science and Applications, 9:1-16, 2016.

(Received 16 August 2018) (Accepted 4 December 2018)

THAI J. MATH. Online @ http://thaijmath.in.cmu.ac.th