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is very abundant in the literature; (see, for instance, [12],[13], [14], [16], [18], [19])
and references therein.

Let A and B be two nonempty subsets of a metric space (X, d). An element
x ∈ A is said to be a fixed point of a given map T : A → B if Tx = x. Clearly,
T (A) ∩ A ̸= ∅ is a necessary(but not sufficient) condition for the existence of a
fixed point of T . If T (A) ∩ A = ∅, then d(x, Tx) > 0 for all x ∈ A, that is, the
set of fixed point of T is empty. In a such situation, one often attempts to find
an element x which is in some sense closed to Tx. Best approximation theory and
best proximity point analysis have been developed in this direction. Recently, Jleli
and Samet [14] introduced the notion of α-ψ-proximal contractive type mappings
and established some best proximity point theorems. Many authors obtained
best proximity point theorems in different settings; (see [1],[2],[8],[9],[10], [15],[20],
[21],[23], for examples). Abkar and Gbeleh [4], Al-Thagafi and Shazad ([5],[6]),
Ali et al. [7], Xu and Fan [24] investigated best proximity points for multivalued
mappings.

Later, Hussain et al. [11] introduced new Suzuki and convex type contractions
and established new best proximity results for those contractions in the setting of
a metric space.

Let (X, d) be a metric space. For A,B ⊂ X, we use the following notations
subsequently:

d(A,B) = inf {d(a, b) : a ∈ A, b ∈ B} ,
D(x,B) = inf {d(x, b) : b ∈ B} ,

A0 = {a ∈ A : d(a, b) = d(A,B) for some b ∈ B} ,
B0 = {b ∈ B : d(a, b) = d(A,B) for some a ∈ A},

2X\∅ is the set of all nonempty subsets of X, CL(X) is the set of all nonempty
closed subsets of X, and K(X) is the set of all nonempty compact subsets of X.
For every A,B ∈ CL(X), let

H(A,B) =

max

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}
if the maximum exists;

∞ otherwise.

(1.1)

Such a map H is called the generalized Hausdorff metric induced by d. A point
x∗ ∈ X is said to be the best proximity point of a mapping T : A → B if
d(x∗, Tx∗) = d(A,B). When A = B, the best proximity point is essentially the
fixed point of the mapping T . We review the following essential definitions.

Definition 1.1 (see [22]). Let (A,B) be a pair of nonempty subsets of a metric
space (X, d) with A0 ̸= ∅. Then the pair (A,B) is said to have the P -property if
and only if, for any x1, x2 ∈ A and y1, y2 ∈ B,

d(x1, y1) = d(A,B)
d(x2, y2) = d(A,B)

}
⇒ d(x1, x2) = d(y1, y2). (1.2)
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Let Ψ denote the set of all functions ψ : [0,∞) → [0,∞) satisfying the following
properties:

(a) ψ is monotone nondecreasing;

(b)
∞∑

n=1
ψn(t) <∞ for each t > 0.

It is well-known that ψ(t) < t for all t > 0.
Let Θ denote the set of all functions θ : (0,∞) → [1,∞) with the following

conditions:

(a) θ is increasing;

(b) for all sequences {αn} ⊂ (0,∞), lim
n→∞

αn = 0 if and only if lim
n→∞

θ(αn) = 1;

(c) there exist r ∈ (0, 1) and l ∈ (0,∞] such that lim
t→0+

θ(t)− 1

tr
= l.

Definition 1.2 (see [11]). Let A and B be two nonempty subsets of a metric space
(X, d). A mapping T : A → B is called α+-proximal admissible if there exists a
mapping α : A×A→ [−∞,∞) such that

α(x1, x2) ≥ 0
d(u1, Tx1) = d(A,B)
d(u2, Tx2) = d(A,B)

 ⇒ α(u1, u2) ≥ 0 (1.3)

for all x1, x2, u1, u2 ∈ A.

Definition 1.3 (see [11]). The mapping T : A → B is called a Suzuki type α+

ψ-proximal contraction, if there exists a mapping α : A×A→ [−∞,∞) such that

1

2
d∗(x, Tx) ≤ d(x, y) ⇒ α(x, y) + d(Tx, Ty) ≤ ψ(M(x, y)) (1.4)

for all x, y ∈ A, where d∗(x, Tx) = d(x, Tx)− d(A,B), ψ ∈ Ψ, and

M(x, y) = max
{
d(x, y),

d(x, Tx) + d(y, Ty)

2
−d(A,B),

d(x, Ty) + d(y, Tx)

2
− d(A,B)

}
.

Definition 1.4 (see [11]). A mapping T : A → B is called a Suzuki type α+θ-
proximal contraction, if for all x, y ∈ A with 1

2d
∗(x, Tx) ≤ d(x, y) and d(Tx, Ty) >

0,
⇒ α(x, y) + θ

(
d(Tx, Ty)

)
≤

[
θ
(
M(x, y)

)
]β (1.5)

where α : A×A→ [−∞,∞), 0 ≤ β < 1, and θ ∈ Θ.

The main results of Hussain et al. in [11] are the following.
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Theorem 1.5 (see [11]). Let A and B be two nonempty closed subsets of a com-
plete metric space (X, d) such that A0 ̸= ∅. Let T : A → B satisfy (1.4) together
with the following assertions:

(i) T (A0) ⊆ B0 and (A,B) satisfies the P -property;

(ii) T is an α+-proximal admissible map;

(iii) there exist elements x0, x1 in A0 such that

d(x1, Tx0) = d(A,B) , α(x0, x1) ≥ 0 (1.6)

(iv) T is continuous, or

(v) A is α-regular, that is, if {xn} is a sequence in A such that α(xn, xn+1) ≥ 0
and xn → x ∈ A as n→ ∞, then α(xn, x) ≥ 0 for all n ∈ N .

Then there exists an element x∗ ∈ A0 such that d(x∗, Tx∗) = d(A,B).

Theorem 1.6 (see [11]). Let X,A,A0, and B be as Theorem 1.5. Assume that
T : A→ B satisfies (1.4) and the assertions (i)-(v) in Theorem 1.5 and

α(p, q) + d(Tp, Tq) ≤ ψ(M(p, q)) (1.7)

holds for all p, q ∈ A. Then there exists an element x∗ ∈ A0 such that d(x∗, Tx∗) =
d(A,B).

Theorem 1.7 (see [11]). Let X,A,A0, and B be as Theorem 1.5. Assume that
T : A → B satisfies (1.5) and the assertions (i)-(v) in Theorem 1.5. Then there
exists an element x∗ ∈ A0 such that d(x∗, Tx∗) = d(A,B).

Definition 1.8 (see [3]). An element x∗ ∈ A is said to be the best proximity point
of a multivalued nonself mapping T , if D(x∗, Tx∗) = d(A,B).

Inspired and motivated by the results of Hussain et al. in [11] and by those
of Ali et al. in [7], we establish the best proximity point results for Suzuki type
proximal contractive multimaps. Our results extend the recent results of Hussain
et al. [11] to the best proximity point results for nonself multivalued mappings.
We also give an illustrative example to support our main results.

2 Main Results

We begin this section by introducing the following definitions.

Definition 2.1. Let A and B be two nonempty subsets of a metric space (X, d).
A mapping T : A → 2B\∅ is called an α+-proximal admissible multimap, if there
exists a mapping α : A×A→ [−∞,∞) such that

α(x1, x2) ≥ 0
D(u1, Tx1) = d(A,B)
D(u2, Tx2) = d(A,B)

 ⇒ α(u1, u2) ≥ 0 (2.1)

for all x1, x2, u1, u2 ∈ A.
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Definition 2.2. Let A and B be two nonempty subsets of a metric space (X, d).
A mapping T : A → CL(B) is called a Suzuki type α+ψ-proximal contractive
multimap, if there exists a mapping α : A×A→ [−∞,∞) such that

1

2
D∗(x, Tx) ≤ d(x, y) ⇒ α(x, y) +H(Tx, Ty) ≤ ψ(M(x, y)) (2.2)

for all x, y ∈ A, where D∗(x, Tx) = D(x, Tx)− d(A,B), ψ ∈ Ψ, and

M(x, y) = max
{
d(x, y),

D(x, Tx) +D(y, Ty)

2
− d(A,B),

D(x, Ty) +D(y, Tx)

2
− d(A,B)

}
.

Definition 2.3. A mapping T : A→ CL(B) is called a Suzuki type α+θ-proximal
contractive multimap, if for all x, y ∈ A with 1

2D
∗(x, Tx) ≤ d(x, y) and H(Tx, Ty) >

0,

⇒ α(x, y) + θ
(
H(Tx, Ty)

)
≤

[
θ
(
M(x, y)

)
]β (2.3)

where α : A×A→ [−∞,∞), 0 ≤ β < 1, θ ∈ Θ, and

M(x, y) = max
{
d(x, y),

D(x, Tx) +D(y, Ty)

2
− d(A,B),

D(x, Ty) +D(y, Tx)

2
− d(A,B)

}
.

The following are our main results.

Theorem 2.4. Let A and B be two nonempty closed subsets of a complete metric
space (X, d) such that A0 is nonempty. Let α : A × A → [−∞,∞) and let ψ ∈
Ψ be a strictly increasing map. Suppose that T : A → CL(B) is a mapping
satisfying(2.2) and the following conditions:

(i) T (A0) ⊆ B0 and (A,B) satisfies the P -property;

(ii) T is an α+-proximal admissible multimap;

(iii) there exist elements x0, x1 ∈ A0 such that

D(x1, Tx0) = d(A,B) and α(x0, x1) ≥ 0; (2.4)

(iv) T is continuous, or

(v) A is α-regular, that is, if {xn} is a sequence in A such that α(xn, xn+1) ≥ 0
and xn → x ∈ A as n→ ∞, then α(xn, x) ≥ 0 for all n.

Then there exists an element x∗ ∈ A0 such that

D
(
x∗, Tx∗

)
= d(A,B).
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Proof. Since T (A0) ⊆ B0, there exists x2 ∈ A0 such that

D(x2, Tx1) = d(A,B). (2.5)

As T satisfies (iii) and is α+-proximal admissible, we obtain α(x1, x2) ≥ 0. That
is

D(x2, Tx1) = d(A,B), α(x1, x2) ≥ 0. (2.6)

Again, since T (A0) ⊆ B0, there exists x3 ∈ A0 such that

D(x3, Tx2) = d(A,B). (2.7)

Therefore we have

D(x2, Tx1) = d(A,B), D(x3, Tx2) = d(A,B), α(x1, x2) ≥ 0. (2.8)

Again, since T is α+-proximal admissible, we obtain α(x2, x3) ≥ 0. Hence, we
have

D(x3, Tx2) = d(A,B), α(x2, x3) ≥ 0. (2.9)

Continuing this method, we get

D(xn+1, Txn) = d(A,B), α(xn, xn+1) ≥ 0 for all n ∈ N ∪ {0}. (2.10)

From (2.10), definition of D∗ and triangle inequality, we can write

1

2
D∗(xn−1, Txn−1

)
=

1

2

(
D(xn−1, Txn−1)− d(A,B)

)
≤ 1

2

(
d(xn−1, xn) +D(xn, Txn−1)− d(A,B)

)
=

1

2
d(xn−1, xn)

≤ d(xn−1, xn).

(2.11)

That is

1

2
D∗(xn−1, Txn−1

)
≤ d(xn−1, xn). (2.12)

From (2.2), we get

H(Txn−1, Txn) ≤ α(xn−1, xn) +H(Txn−1, Txn) ≤ ψ(M(xn−1, xn)). (2.13)
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By using (2.10), triangle inequality and the P -property, we obtain

M(xn−1, xn) = max
{
d(xn−1, xn),

D(xn−1, Txn−1) +D(xn, Txn)

2
− d(A,B),

D(xn−1, Txn) +D(xn, Txn−1)

2
− d(A,B)

}
≤ max

{
d(xn−1, xn),

d(xn−1, xn) +D(xn, Txn−1) + d(xn, xn+1) +D(xn+1, Txn)

2
− d(A,B),

d(xn−1, xn) +D(xn, Txn−1) + d(Txn−1, Txn) +D(xn, Txn−1)

2
− d(A,B)

}
= max

{
d(xn−1, xn),

d(xn−1, xn) + d(A,B) + d(xn, xn+1) + d(A,B)

2
− d(A,B),

d(xn−1, xn) + d(A,B) + d(Txn−1, Txn) + d(A,B)

2
− d(A,B)

}
= max

{
d(xn−1, xn),

d(xn−1, xn) + d(A,B) + d(xn, xn+1) + d(A,B)

2
− d(A,B),

d(xn−1, xn) + d(A,B) + d(xn, xn+1) + d(A,B)

2
− d(A,B)

}
= max

{
d(xn−1, xn),

d(xn−1, xn) + d(xn, xn+1)

2

}
≤ max

{
d(xn−1, xn), d(xn, xn+1)

}
.

(2.14)
Since (A,B) satisfies the P -property, we obtain

d(xn, xn+1) = d(Txn−1, Txn)

≤ H(Txn−1, Txn)

≤ α(xn−1, xn) +H(Txn−1, Txn)

≤ ψ
(
M(xn−1, xn)

)
for all n ∈ N.

(2.15)

From (2.14) and (2.15), we have

d(xn, xn+1) ≤ ψ
(
M(xn−1, xn)

)
≤ ψ

(
max

{
d(xn−1, xn), d(xn, xn+1)

})
for all n ∈ N.

(2.16)

If xn0
= xn0+1, for some n0 ∈ N, from (2.10), we obtain

D(xn0 , Txn0) = D(xn0+1, Txn0) = d(A,B),

This means xn0
is a best proximity point of T . Therefore, we suppose that

d(xn+1, xn) > 0 for all n ∈ N ∪ {0}. (2.17)
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If max
{
d(xn−1, xn), d(xn, xn+1)

}
= d(xn, xn+1), then (2.16) implies

d(xn, xn+1) ≤ ψ
(
d(xn, xn+1)

)
< d(xn, xn+1), (2.18)

which is a contradiction. Therefore,

d(xn, xn+1) ≤ ψ
(
M(xn−1, xn)

)
≤ ψ

(
d(xn−1, xn)

)
for all n ∈ N. (2.19)

By the monotonicity of ψ and by induction, it follows from (2.19) that

d(xn, xn+1) ≤ ψn
(
d(x0, x1)

)
for all n ∈ N ∪ {0}. (2.20)

Suppose ϵ is any positive real number. There exists N ∈ N such that∑
n≥N

ψn
(
d(x0, x1)

)
< ϵ for all n ∈ N.

If m,n ∈ N with m > n ≥ N . By the triangle inequality, we have

d(xn, xm) ≤
m−1∑
k=n

d(xk, xk+1)

≤
∑
n≥N

ψn
(
d(x0, x1)

)
< ϵ.

Consequently lim
m,n→∞

d(xn, xm) = 0, which implies {xn} is a Cauchy sequence.

Since X is complete, xn → x∗ ∈ X. If (iv) holds, Then Txn → Tx∗ as n → ∞
and

d(A,B) = lim
n→∞

D(xn+1, Txn) = D(x∗, Tx∗).

Hence x∗ is the best proximity point of T .
Next, assume that (v) holds. Then α(xn, x

∗) ≥ 0. If the following inequalities
hold:

1

2
D∗(xn, Txn) > d(xn, x

∗) and
1

2
D∗(xn+1, Txn+1) > d(xn+1, x

∗),

for some n ∈ N, then by the triangle inequality, (2.10) and definition of D∗, we
obtain

d(xn, xn+1) ≤ d(xn, x
∗) + d(x∗, xn+1)

<
1

2
[D∗(xn, Txn) +D∗(xn+1, Txn+1)]

=
1

2
[D(xn, Txn) +D(xn+1, Txn+1)− 2d(A,B)]

≤ 1

2
[d(xn, xn+1) + d(xn+1, xn+2)]

≤ d(xn, xn+1),
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which is a contradiction. Consequently, for any n ∈ N, either

1

2
D∗(xn, Txn) ≤ d(xn, x

∗) or
1

2
D∗(xn+1, Txn+1) ≤ d(xn+1, x

∗)

holds.
Then, we may choose a subsequence {xnk

} of {xn} such that

1

2
D∗(xnk

, Txnk
) ≤ d(xnk

, x∗) and α(xnk
, xnk+1) ≥ 0,

for all k ∈ N. By (2.2), we have

H(Txnk
, Tx∗) ≤ α(xnk

, x∗) +H(Txnk
, Tx∗) ≤ ψ

(
M(xnk

, x∗)
)
. (2.21)

Observe that

M(xnk
, x∗) = max

{
d(xnk

, x∗),
D(xnk

, Txnk
) +D(x∗, Tx∗)

2
− d(A,B),

D(xnk
, Tx∗) +D(x∗, Txnk

)

2
− d(A,B)

}
≤ max

{
d(xnk

, x∗),
d(xnk

, xnk+1) +D(xnk+1, Txnk
) +D(x∗, Tx∗)

2
− d(A,B),

d(xnk
, x∗) +D(x∗, Tx∗) + d(x∗, xnk+1) +D(xnk+1, Txnk

)

2
− d(A,B)

}
= max

{
d(xnk

, x∗),
d(xnk

, xnk+1) + d(A,B) +D(x∗, Tx∗)

2
− d(A,B),

d(xnk
, x∗) +D(x∗, Tx∗) + d(x∗, xnk+1) + d(A,B)

2
− d(A,B)

}
.

Taking the limit as k → ∞, we obtain

lim
k→∞

M(xnk
, x∗) ≤ D(x∗, Tx∗)− d(A,B)

2
. (2.22)

Further,

D(x∗, Tx∗) ≤ d(x∗, xnk+1
) +D(xnk+1, Txnk

) + d(Txnk
, Tx∗)

= d(x∗, xnk+1) + d(A,B) + d(Txnk
, Tx∗),

which gives

D(x∗, Tx∗)− d(x∗, xnk+1)− d(A,B) ≤ d(Txnk
, Tx∗). (2.23)

Taking the limit as k → ∞ in (2.23), we obtain

D(x∗, Tx∗)− d(A,B) ≤ lim
k→∞

d(Txnk
, Tx∗). (2.24)
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Therefore, from (2.21), (2.22) and (2.24), we have

D(x∗, Tx∗)− d(A,B) ≤ lim
k→∞

d(Txnk
, Tx∗)

≤ lim
k→∞

H(Tnk
, Tx∗)

≤ ψ
(
lim
k→∞

M(xnk
, x∗)

)
≤ ψ

(
D(x∗, Tx∗)− d(A,B)

2

)
.

Now, if D(x∗, Tx∗)− d(A,B) > 0, we have that

D(x∗, Tx∗)− d(A,B) <
D(x∗, Tx∗)− d(A,B)

2
.

This is a contradiction. Hence, D(x∗, Tx∗) = d(A,B). Therefore x∗ is the best
proximity point of T .

Theorem 2.5. Let A and B be two nonempty closed subsets of a complete metric
space (X, d) such that A0 is nonempty. Let α : A×A→ [−∞,∞) and let T : A→
K(B) be a mapping satisfying (2.2) and the following conditions:

(i) T (A0) ⊆ B0 for each x ∈ A0 and (A,B) satisfies the P -property;

(ii) T is an α+-proximal admissible multimap;

(iii) there exist elements x0, x1 in A0 such that

D(x1, Tx0) = d(A,B), α(x0, x1) ≥ 0; (2.25)

(iv) T is continuous, or

(v) A is α-regular, that is, if {xn} is a sequence in A such that α(xn, xn+1) ≥ 0
and xn → x ∈ A as n→ ∞, then α(xn, x) ≥ 0 for all n.

Then there exists an element x∗ ∈ A0 such that

D
(
x∗, Tx∗

)
= d(A,B).

The following result can be deduced easily from Theorem 2.4.

Theorem 2.6. Let X,A,A0 and B be the same as in Theorem 2.4. Assume that
T : A→ CL(B) satisfies the conditions (i)-(v) in Theorem 2.4 and

α(p, q) +H(Tp, Tq) ≤ ψ
(
M(p, q)

)
holds for all p, q ∈ A. Then there exists an element x∗ ∈ A0 such that

D
(
x∗, Tx∗

)
= d(A,B).
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Therefore we also obtain the following theorem.

Theorem 2.7. Let X,A,A0 and B be the same as in Theorem 2.4. Assume that
T : A→ K(B) satisfies the conditions (i)-(v) in Theorem 2.4 and

α(p, q) +H(Tp, Tq) ≤ ψ
(
M(p, q)

)
holds for all p, q ∈ A. Then there exists an element x∗ ∈ A0 such that

D
(
x∗, Tx∗

)
= dist(A,B).

Theorem 2.8. Let X,A,A0, and B be as in Theorem 2.4. Assume that T : A→
CL(B) satisfies (2.3) and the following assertions:

(i) T (A0) ⊆ B0 and (A,B) satisfies the P -property;

(ii) T is an α+-proximal admissible multimap;

(iii) there exist elements x0, x1 ∈ A0 such that

D(x1, Tx0) = d(A,B) and α(x0, x1) ≥ 0; (2.26)

(iv) T is continuous, or

(v) A is α-regular, that is, if {xn} is a sequence in A such that α(xn, xn+1) ≥ 0
and xn → x ∈ A as n→ ∞, then α(xn, x) ≥ 0 for all n.

Then there exists an element x∗ ∈ A0 such that

D(x∗, Tx∗) = d(A,B).

Proof. As in the proof of Theorem 2.4, we can construct a sequence {xn} satifying

D(xn+1, Txn) = d(A,B), (2.27)

and

1

2
D∗(xn−1, Txn−1

)
≤ d(xn−1, xn) and α(xn−1, xn) ≥ 0 for all n ∈ N.

Now (2.3) implies

θ
(
H(Txn−1, Txn)

)
≤ α(xn−1, xn) + θ

(
H(Txn−1, Txn)

)
≤

[
θ
(
M(xn−1, xn)

)
]β .

(2.28)
From Theorem 2.4, we obtain

M(xn−1, xn) ≤ max
{
d(xx−1, xn), d(xn, xn+1)

}
(2.29)

and
d(xn, xn+1) ≤ H(Txn−1, Txn) for all n ∈ N.
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Therefore from (2.28) and (2.29), we get

θ
(
d(xn, xn+1)

)
≤ θ

(
H(Txn−1, Txn)

)
≤

[
θ
(
M(xn−1, xn)

)
]β

≤
[
θ
(
max

{
d(xx−1, xn), d(xn, xn+1)

})
]β for all n ∈ N.

(2.30)

Now if max
{
d(xn−1, xn), d(xn, xn+1)

}
= d(xn, xn+1), then from (2.30) we get

θ
(
d(xx, xn+1)

)
≤

[
θ
(
d(xn, xn+1)

)
]β < θ

(
d(xn, xn+1)

)
,

which is a contradiction. Therefore, we have

θ
(
d(xx, xn+1)

)
≤

[
θ
(
d(xn−1, xn)

)
]β for all n ∈ N. (2.31)

Therefore from (2.31), we get

1 ≤ θ
(
d(xx, xn+1)

)
≤

(
θ
(
d(xn−1, xn)

)
)β

≤
((
θ
(
d(xn−2, xn−1)

)β)β
. . .

≤
(
θ
(
d(x0, x1)

))βn

.

(2.32)

Letting n→ ∞ in (2.32), we obtain

lim
n→∞

θ
(
d(xn, xn+1)

)
= 1, (2.33)

and since θ ∈ Θ, we have
lim

n→∞
d(xn, xn+1) = 0. (2.34)

Again since θ ∈ Θ, there exists 0 < r < 1 and 0 < l ≤ ∞ with

lim
n→∞

θ
(
d(xn, xn+1)

)
− 1[

d(xn, xn+1)
]r = l. (2.35)

Assume that l <∞. Let C = l
2 . Thus there exists n0 ∈ N such that

|
θ
(
d(xn, xn+1)

)
− 1[

d(xn, xn+1)
]r − l| ≤ C for all n ≥ n0.

Hence
θ
(
d(xn, xn+1)

)
− 1[

d(xn, xn+1)
]r ≥ l − C = C for all n ≥ n0,

and also

n
[
d(xn, xn+1)

]r ≤ nK
[
θ
(
d(xn, xn+1)

)
− 1

]
for all n ≥ n0,
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where K =
1

C
. If l = ∞, then there exists n0 ∈ N,

θ
(
d(xn, xn+1)

)
− 1[

d(xn, xn+1)
]r ≥ C for all n ≥ n0,

which implies

n
[
d(xn, xn+1)

]r ≤ nK
[
θ
(
d(xn, xn+1)

)
− 1

]
for all n ≥ n0,

where K =
1

C
. Hence, in all cases there exist K > 0 and n0 ∈ N such that

n
[
d(xn, xn+1)

]r ≤ nK
[
θ
(
d(xn, xn+1)

)
− 1

]
for all n ≥ n0. (2.36)

From (2.33) and (2.36), letting n→ ∞, we obtain

lim
n→∞

n
[
d(xn, xn+1)

]r
= 0. (2.37)

It follows from (2.37) that there is n1 ∈ N with

n
[
d(xn, xn+1)

]r ≤ 1 for all n > n1.

This implies

d(xn, xn+1) ≤
1

n1/r
for all n > n1.

If m > n > n1, then by the triangle inequality, we have

d(xn, xm) ≤
m−1∑
i=n

d(xi, xi+1)
)
≤

m−1∑
i=n

1

i1/r
.

Since 0 < r < 1,
∑∞

i=n

1

i1/r
< ∞. Therefore, d(xn, xm) → 0 as m,n → ∞, which

means that {xn} is a Cauchy sequence. Since X is complete, there exists x∗ ∈ X
such that xn → x∗ as n → ∞. Suppose that (iv) holds. Thus Txn → Tx∗ as
n→ ∞, which implies

d(A,B) = lim
n→∞

(
D(xn+1, Txn)

)
= D(x∗, Tx∗),

as required. Next, assume that (v) holds. As in the proof of Theorem 2.4, we can
deduce that there is a subsequence {xnk

} of {xn} satisfying

1

2
D∗(xnk

, Txnk
) ≤ d(xnk

, x∗) and α(xnk
, xnk+1) ≥ 0,

for all k ∈ N. By (2.3) we have

θ
(
H(Txnk

, Tx∗)
)
≤

[
θ
(
M(xnk

, x∗)
)]β

< θ
(
M(xnk

, x∗)
)
,



108 J. Nantadilok, P. Sumati Kumari and B. Nantadilok

where 0 ≤ β < 1, θ ∈ Θ. This implies

H(Txnk
, Tx∗) ≤ M(xnk

, x∗). (2.38)

As in Theorem 2.4, we obtain

lim
k→∞

M(xnk
, x∗) ≤ D(x∗, Tx∗)− d(A,B)

2
(2.39)

and

D(x∗, Tx∗)− d(A,B) ≤ lim
k→∞

d(Txnk
, Tx∗). (2.40)

If D(x∗, Tx∗)− d(A,B) > 0, therefore from (2.38), (2.39) and (2.40), we obtain

D(x∗, Tx∗)− d(A,B) ≤ D(x∗, Tx∗)− d(A,B)

2
,

which is a contradiction. Therefore D(x∗, Tx∗) = d(A,B), as required.

Theorem 2.9. Let X,A,A0, and B be as Theorem 2.4. Assume that T : A →
K(B) satisfies (2.3) and the assertions (i)-(v) in Theorem 2.8. Then there exists
an element x∗ ∈ A0 such that

D(x∗, Tx∗) = d(A,B).

Theorem 2.10. Let X,A,A0 and B be the same as in Theorem 2.4. Assume that
T : A→ CL(B) satisfies the conditions (i)-(v) in Theorem 2.8 and

α(p, q) + θ
(
H(Tp, Tq)

)
≤

[
θ
(
M(p, q)

)
]β

holds for all p, q ∈ A, where α : A× A → [−∞,∞), 0 ≤ β < 1, θ ∈ Θ. Then there
exists an element x∗ ∈ A0 such that

D
(
x∗, Tx∗

)
= d(A,B).

Theorem 2.11. Let X,A,A0 and B be the same as in Theorem 2.4. Assume that
T : A→ K(B) satisfies the conditions (i)-(v) in Theorem 2.8 and

α(p, q) + θ
(
H(Tp, Tq)

)
≤

[
θ
(
M(p, q)

)
]β

holds for all p, q ∈ A, where α : A× A → [−∞,∞), 0 ≤ β < 1, θ ∈ Θ. Then there
exists an element x∗ ∈ A0 such that

D
(
x∗, Tx∗

)
= d(A,B).

Example 2.12. Let X = [0,∞)×[0,∞) be a product space endowed with the usual
metric d. Suppose that A =

{
( 12 , x) : 0 ≤ x <∞

}
and B = {(0, x) : 0 ≤ x <∞}.
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Define T : A→ CL(B) by

T
(
1
2 , a

)
=

{{
(0, x2 ) : 0 ≤ x ≤ a

}
if a ≤ 1{

(0, x2) : 0 ≤ x ≤ a2
}

if a > 1,
(2.41)

and define α : A×A→ [−∞,∞) by

α(x, y) =

{
0 if x, y ∈

{
( 12 , a) : 0 ≤ a ≤ 1

}
−∞ otherwise.

Let ψ(t) =
t

2
for all t ≥ 0. Note that A0 = A,B0 = B, and Tx ⊆ B0

for each x ∈ A0. Also, the pair (A,B) satisfies the P -property. For x0, x1 ∈{
( 12 , x) : 0 ≤ x ≤ 1

}
; then Tx0, Tx1 ⊆

{
(0, x2 ) : 0 ≤ x ≤ 1

}
. Consider u1 ∈

Tx0, u2 ∈ Tx1 and w1, w2 ∈ A such that d(w1, u1) = d(A,B) and d(w2, u2) =
d(A,B). Then we have w1, w2 ∈

{
( 12 , x) : 0 ≤ x ≤ 1

2

}
, so α(w1, w2) = 0. There-

fore, T is an α+-proximal admissible map. For x0 = ( 12 , 1) ∈ A0 and u1 = (0, 12 ) ∈
Tx0 ∈ B0, we have x1 = ( 12 ,

1
2 ) ∈ A0 such that

d(x1, u1) = dist(A,B), α(x0, x1) = α

(
(
1

2
, 1), (

1

2
,
1

2
)

)
= 0.

Note that d(A,B) =
1

2
, A0 =

{
( 12 , x) : 0 ≤ x <∞

}
and B0 = {(0, x) : 0 ≤ x <∞}.

Let d(x1, y1) = d(A,B) =
1

2
and d(x2, y2) = d(A,B) =

1

2
, where x1 = (

1

2
, u1), x2 =

(
1

2
, u2) ∈ A0 and y1 = (0, v1), y2 = (0, v2) ∈ B0. Then

1

2
+ |u1 − v1| =

1

2

and
1

2
+ |u2 − v2| =

1

2

so |u1 − v1| = 0 and |u2 − v2| = 0. So, we have v1 = u1 and v2 = u2. This shows
that d(x1, x2) = d(y1, y2). So (A,B) satifies the P -property.

Notice that T (A0) ⊂ B0. Assume
1

2
D∗(p, Tp) ≤ d(p, q) and α(p, q) ≥ 0, for

p, q ∈ A. Then 

p = (
1

2
, 1), q = (

1

2
,
1

2
) or

p = (
1

2
,
1

2
), q = (

1

2
, 1) or

q = (
1

2
, 0), p = (

1

2
,
1

2
) or

q = (
1

2
, 1), p = (

1

2
, 0).
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Since d(Tp, Tq) = d(Tq, Tp) and M(p, q) = M(q, p) for all p, q ∈ A, we can
suppose that

(p, q) = ((
1

2
, 1), (

1

2
,
1

2
)) or (p, q) = ((

1

2
,
1

2
), (

1

2
, 0)).

Now we consider the following cases:

(i) if (p, q) = ((
1

2
, 1), (

1

2
,
1

2
)) ∈ A0, then

H(T (
1

2
, 1), T (

1

2
,
1

2
)) ≤ 1

4
= ψ(d((

1

2
, 1), (

1

2
,
1

2
)) ≤ ψ(M(p, q)).

(ii) if (p, q) = ((
1

2
,
1

2
)), (

1

2
, 0)) ∈ A0, then

H(T (
1

2
,
1

2
), T (

1

2
, 0)) ≤ 1

4
= ψ(d((

1

2
,
1

2
), (

1

2
, 0)) ≤ ψ(M(p, q)).

Consequently, we have

1

2
D∗(p, Tp) ≤ d(p, q) ⇒ α(p, q) +H(Tp, Tq) ≤ ψ(M(p, q))

If x, y ∈
{
( 12 , a) : 0 ≤ a ≤ 1

}
, then we have

α(x, y) +H (Tx, Ty) = 0 +
|x− y|

2
=

1

2
d(x, y) = ψ (d(x, y)) ≤ ψ

(
M(x, y)

)
.

Therefore
α(x, y) +H (Tx, Ty) ≤ ψ

(
M(x, y)

)
.

Hence, T is an α+ψ-proximal contractive multimap. Moreover, if {xn} is a se-
quence in A such that α(xn, xn+1) ≥ 0 for all n and xn → x ∈ A as n → ∞,
then there exists a subsequence {xnk

} of {xn} such that α(xnk
, x) ≥ 0 for all k.

Therefore, all the conditions of Theorem 2.4 hold true and T has the best proximity

point. Here p = (
1

2
, 0) is the best proximity point of T .
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