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1 Introduction

In the past few years, mathematicians and statisticians have developed a powerful
technique known as the Stein-Chen method for approximating the distribution of a
sum of random indicators [1-2,6-7,13,15]. In contrast to many asymptotic methods,
this approximation carries with it explicit error bounds. Let Xα be a random
indicator with the probability P (Xα = 1) = 1− P (Xα = 0) = pα, where α ranges
over some finite index set Γ, and let W =

∑

α∈Γ

Xα and λ =
∑

α∈Γ

pα. If Γ = {1, ..., n}

and Xα’s are independent, then W has the Poisson binomial distribution, and in
case where pα’s are identical to p, W has the binomial distribution with parameter
n and p. It is well known that the Poisson distribution is a good model for counting
the number of occurrences of rare, or exceptional, events in an experiment with
many trials. That is, if the probabilities pα’s are small, then the distribution of W

is approximately Poisson with parameter λ = EW =
∑

α∈Γ

pα. Many authors used

the Stein-Chen method to investigate bounds for approximating the distribution

of W . For examples, in the case where X1, ..., Xn are independent and λ =
n∑

α=1

pα,
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Stein [15] gave an explicit uniform error bound
∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤ min{1, λ−1}
n∑

α=1

p2
α (1.1)

in the approximation of the distribution of W by the Poisson distribution, where
A ⊆ N ∪ {0}. Neammanee [13] then gave a non-uniform error bound

∣∣∣∣P (W = w0)− λw0e−λ

w0!

∣∣∣∣ ≤ min
{

1
w0

, λ−1

} n∑
α=1

p2
α (1.2)

in approximating the point probability of W by the Poisson probability, where
w0 ∈ {1, ..., n− 1}. Teerapabolarn and Neammanee [19] gave a non-uniform error
bound

∣∣∣∣∣P (W ≤ w0)−
w0∑

k=0

λke−λ

k!

∣∣∣∣∣ ≤ λ−1(1− e−λ)min
{

1,
eλ

w0 + 1

} n∑
α=1

p2
α (1.3)

in the approximation of the distribution function of W by the Poisson distribution
function, where w0 ∈ {0, 1, ..., n}.

In the case of dependent indicator summands, we first suppose that, for each
α ∈ Γ, a neighborhood Bα  Γ of α can be chosen so that Xα is independent of
those Xβ with β /∈ Bα. Let

b1 =
∑

α∈Γ

∑

β∈Bα

pαpβ (1.4)

and

b2 =
∑

α∈Γ

∑

β∈Bα\{α}
E[XαXβ ]. (1.5)

Barbour, Holst and Janson [6] gave a uniform bound in the form of
∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤ λ−1(1− e−λ)(b1 + b2) (1.6)

and Janson [9] used the coupling method to determine a uniform bound in the
form of

∣∣∣∣∣P (W ∈ A)−
∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤ λ−1(1− e−λ)
∑

α∈Γ

pαE|W −W ∗
α|, (1.7)

where W ∗
α is a random variable that has the same distribution as W −Xα condi-

tional on Xα = 1.
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Non-uniform counterparts of the uniform bounds in (1.6) and (1.7) were ob-
tained by Teerapabolarn and Neammanee. In [17], they gave two pointwise bounds,
i.e.

∣∣∣∣P (W = w0)− λw0e−λ

w0!

∣∣∣∣ ≤ min
{

1
w0

, λ−1

}
(b1 + b2) (1.8)

and
∣∣∣∣P (W = w0)− λw0e−λ

w0!

∣∣∣∣ ≤ min{ 1
w0

, λ−1}
∑

α∈Γ

pαE|W −W ∗
α|, (1.9)

where w0 ∈ {1, 2, ..., |Γ|} and |Γ| is the number of elements of Γ. They later
discovered two non-uniform bounds for A = {0, 1, ..., w0} in [19], which say that

∣∣∣∣∣P (W ≤ w0)−
w0∑

k=0

λke−λ

k!

∣∣∣∣∣ ≤ λ−1(1− e−λ)min
{

1,
eλ

w0 + 1

}
(b1 + b2) (1.10)

and
∣∣∣∣∣P (W ≤ w0)−

w0∑

k=0

λke−λ

k!

∣∣∣∣∣ ≤ λ−1(1− e−λ)min
{

1,
eλ

w0 + 1

} ∑

α∈Γ

pαE|W −W ∗
α|.

(1.11)

In this paper, our goal is to find non-uniform bounds that are counterparts
of (1.6) and (1.7) where A is any subset of {0, 1, ..., |Γ|}, and to illustrate some
applications of these formulas.

In section 2, we present formulas of non-uniform bounds on Poisson approxi-
mation theorems based on two approaches of the Stein-Chen method, the local and
coupling approaches. These theorems are applied to a wide collection of examples
that reduce to questions about sums of possibly dependent random indicators in
section 3.

2 A non-uniform bound on Poisson approxima-
tion

In 1972, Stein [14] introduced a powerful and general method for obtaining an
explicit bound for the error in the normal approximation for dependent random
variables. This method was adapted and applied to the Poisson approximation
by Chen [7] in 1975. He used the Stein’s method to find upper bounds for the
error in approximating the distribution of a sum of dependent random indicators
by the Poisson distribution. This method is usually referred to as the Stein-Chen
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method (or the Chen-Stein method). The idea of this method is based on the
Stein’s equation for Poisson distribution with parameter λ which says

λf(w + 1) + wf(w) = h(w)− Pλ(h), (2.1)

where Pλ(h) = e−λ

∞∑

l=0

h(l)
λl

l!
and f and h are bounded real-valued functions on

N ∪ {0}. For A ⊆ {0, 1, ..., |Γ|}, let hA : N ∪ {0} → R be defined as

hA(w) =

{
1 if w ∈ A,

0 if w /∈ A.
(2.2)

It follows from Barbour, Holst and Janson [6, p.7] that the solution UλhA of (2.1)
is of the form

UλhA(w) =

{
(w − 1)!λ−weλ[Pλ(hA∩Cw−1)− Pλ(hA)Pλ(hCw−1)] if w ≥ 1,

0 if w = 0,

(2.3)

where Cw−1 = {0, ..., w − 1}.

In this section, we use the Stein-Chen method to obtain two non-uniform error
bounds in the Poisson approximation of the distribution of W which follows by
the local and coupling approaches in subsections 2.1 and 2.2 respectively.

2.1 The local approach

The method of this approach exploits certain neighborhoods of depen-
dency Bα associated with each α ∈ Γ. That is, for each α ∈ Γ, we have
chosen Bα  Γ as a neighborhood of α such that Xα and Xβ are inde-
pendent for all β /∈ Bα. We first state our main result obtained by this
approach in Theorem 2.1 along with two lemmas necessary in proving the
theorem. Its proof is then duely followed.

Theorem 2.1 Let A ⊆ {0, 1, ..., |Γ|}. Then
∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤ λ−1 min
{

1, λ,
∆(λ)

MA + 1

}
(b1 + b2), (2.4)

and
∣∣∣P (W = 0)− e−λ

∣∣∣ ≤ λ−2(λ + e−λ − 1)max{b1, b2}, (2.5)



Two non-uniform bounds in Poisson approximation 19

where

∆(λ) =

{
eλ + λ− 1 if λ−1(eλ − 1) ≤ MA,

2(eλ − 1) if λ−1(eλ − 1) > MA,

and

MA =

{
max{w|Cw ⊆ A} if 0 ∈ A,

min{w|w ∈ A} if 0 /∈ A.

Lemma 2.1 Let A ⊆ {0, 1, ..., |Γ|}. Then the followings hold.
1. For any s, t ∈ N,

|VλhA(t, s)| ≤ sup
w≥1

|VλhA(w + 1, w)||t− s|,

where VλhA(t, s) = UλhA(t)− UλhA(s).
2. For w ≥ 1,

|VλhA(w)| ≤ λ−1 min
{

1, λ,
∆(λ)

MA + 1

}
, (2.6)

where VλhA(w) = VλhA(w + 1, w).

Proof.
1. Assume that t > s. Then

|VλhA(t, s)| =
∣∣∣∣∣
t−1∑
w=s

VλhA(w + 1, w)

∣∣∣∣∣

≤
t−1∑
w=s

|VλhA(w + 1, w)|

≤ sup
w≥1

|VλhA(w + 1, w)||t− s|.

2. From Stein [15, p.88], we have |VλhA(w)| ≤ λ−1 min{1, λ}. So, it suffices
to show that

|VλhA(w)| ≤ λ−1∆(λ)
MA + 1

.

Let’s consider three cases.
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Case 1. w ≥ MA + 1.
Since Vλh{t}(w) < 0 for all t 6= w, we have

VλhA(w) ≤
∑

t∈A

Vλh{t}(w) ≤ Vλh{w}(w)

and

VλhA(w) ≥ VλhA\{w}(w)

≥ Vλh{w}c(w)

= Vλ1(w)− Vλh{w}(w)

= −Vλh{w}(w).

Hence

|VλhA(w)| ≤ Vλh{w}(w) ≤ 1
w
≤ 1

MA + 1
≤ λ−1(eλ − 1)

MA + 1
<

λ−1∆(λ)
MA + 1

.

Case 2. w ≤ MA and 0 /∈ A.
Note first that if w ∈ A, then

VλhA(w) ≤ Vλh{w}(w)

and
VλhA(w) ≥ Vλh{w}c(w) ≥ −Vλh{w}(w).

Thus

|VλhA(w)| ≤ Vλh{w}(w) ≤ 1
w

=
1

MA
≤ λ−1(eλ − 1)

MA
≤ λ−1∆(λ)

MA + 1
.

On the other hand, if w /∈ A, then VλhA(w) < 0 and

0 < −VλhA(w) = UλhA(w)− UλhA(w + 1)

= w!λ−(w+1)eλPλ(hA)Pλ(hCw)− (w − 1)!λ−weλPλ(hA)Pλ(hCw−1)

= (w − 1)!λ−(w+1)eλPλ(hA)[wPλ(hCw)− λPλ(hCw−1)]

≤ eλw!λ−(w+1)Pλ(hA)

≤ eλw!λ−(w+1)Pλ(1− hCMA−1
)
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= w!
∞∑

k=MA

λk−(w+1)

k!

=
∞∑

k=MA

w!λk−(w+1)

k(k − 1) · · · (k − w)[k − (w + 1)]!

≤ 1
MA

∞∑

k=MA

λk−(w+1)

(
k−1
w

)
[k − (w + 1)]!

≤ 1
MA

{
1 +

λ

2!
+

λ2

3!
+ · · ·

}

=
λ−1(eλ − 1)

MA

≤ λ−1∆(λ)
MA + 1

.

Case 3. w ≤ MA and 0 ∈ A.
Since 0 < wPλ(hCw)− λPλ(hCw−1) and

VλhA(w) = w!λ−(w+1)eλ[Pλ(hA∩Cw)−Pλ(hA)Pλ(hCw)]

− (w − 1)!λ−weλ[Pλ(hA∩Cw−1)−Pλ(hA)Pλ(hCw−1)]

= (w − 1)!λ−(w+1)eλ(1− Pλ(hA))[wPλ(hCw)− λPλ(hCw−1)]

= (w − 1)!λ−(w+1)eλPλ(1− hA)[wPλ(hCw)− λPλ(hCw−1)],

we obtain, using the same argument as in the last inequality of Case 2,

0 < VλhA(w) = (w − 1)!λ−(w+1)eλPλ(1− hA)[wPλ(hCw)− λPλ(hCw−1)]

≤ eλw!λ−(w+1)Pλ(1− hA)

≤ eλw!λ−(w+1)Pλ(1− hCMA
)

=
λ−1(eλ − 1)

MA + 1

<
λ−1∆(λ)
MA + 1

.

Hence, from the three cases, we have proved (2.6). ¤
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Lemma 2.2 Let Zα =
∑

β∈Bα\{α}
Xβ, Yα = W −Xα − Zα =

∑

β /∈Bα

Xβ, and

f = UλhA. Then

1. |E[pα(f(W + 1)− f(Yα + 1))]|

≤ λ−1 min
{

1, λ,
∆(λ)

MA + 1

}
(p2

α + pαE[Zα]) and

2. |E[Xα(f(Yα + Zα + 1)− f(Yα + 1))]|

≤ λ−1 min
{

1, λ,
∆(λ)

MA + 1

}
E[XαZα].

Proof.
1. By Lemma 2.1, we have

|E[pα(f(W + 1)− f(Yα + 1))]|
≤ E|pα|f(Yα + Zα + Xα + 1)− f(Yα + 1))||
≤ sup

w≥1
|VλhA(w)|pαE[Xα + Zα]

≤ λ−1 min
{

1, λ,
∆(λ)

MA + 1

}
(p2

α + pαE[Zα]).

2. Proof is similar to that of 1. ¤

Proof of Theorem 2.1 Let Zα =
∑

β∈Bα\{α}
Xβ, Yα = W −Xα − Zα =

∑

β /∈Bα

Xβ

and Wα = W −Xα.
The inequality (2.5) was derived in [18]. It is now left to verify (2.4).

Substituting h = hA in (2.1) yields, in expected values,

P (W ∈ A)−
∑

k∈A

λke−λ

k!
= E[λf(W + 1)−Wf(W )], (2.7)

where f = UλhA is defined in (2.3).

By the fact that each Xα takes values 0 or 1, we can see that

E[Wf(W )] =
∑

α∈Γ

E[Xαf(Wα + 1)]

=
∑

α∈Γ

E[Xαf(Yα + 1)] +
∑

α∈Γ

E[Xα(f(Yα + Zα + 1)− f(Yα + 1))].
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Hence, by the independence of Xα and Yα,

E[λf(W + 1)−Wf(W )]

=
∑

α∈Γ

{E[pα(f(W + 1)− f(Yα + 1))]− E[Xα(f(Yα + Zα + 1)− f(Yα + 1))]

+ E[pαf(Yα + 1)−Xαf(Yα + 1)]}
=

∑

α∈Γ

{E[pα(f(W + 1)− f(Yα + 1))]− E[Xα(f(Yα + Zα + 1)− f(Yα + 1))]}

and, by Lemma 2.2 and equation (2.7), we have
∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ = |E[λf(W + 1)−Wf(W )]|

≤ λ−1 min
{

1, λ,
∆(λ)

MA + 1

}
(b1 + b2). ¤

2.2 The coupling approach

When the dependence between the Xα’s are global, we have an alter-
native approach for approximating the distribution of W . This approach
is particularly useful when it is possible to construct, for each α, a random
variable W ∗

α on a common probability space with W such that W ∗
α has the

same distribution as W −Xα conditional on Xα = 1. The main result via
this approach is the following.

Theorem 2.2 Let A ⊆ {0, 1, ..., |Γ|}. Then
∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤ λ−1 min
{

1, λ,
∆(λ)

MA + 1

} ∑

α∈Γ

pαE|W −W ∗
α|,

(2.8)

and
∣∣∣P (W = 0)− e−λ

∣∣∣ ≤ λ−2(λ + e−λ − 1)
∑

α∈Γ

pαE|W −W ∗
α|. (2.9)

From Theorem 2.2, if W ≥ W ∗
α or W −Xα ≤ W ∗

α for every α ∈ Γ, then we
have more convenient forms in the following corollary.
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Corollary 2.1 Let A ⊆ {0, 1, ..., |Γ|}. Then
1. ∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤ λ−1 min
{

1, λ,
∆(λ)

MA + 1

}
{λ− V ar[W ]},

(2.10)

and ∣∣∣P (W = 0)− e−λ
∣∣∣ ≤ λ−2(λ + e−λ − 1){λ− V ar[W ]}, (2.11)

where W ≥ W ∗
α a.s. for every α ∈ Γ and

2. ∣∣∣∣∣P (W ∈ A)−
∑

k∈A

λke−λ

k!

∣∣∣∣∣

≤ λ−1 min
{

1, λ,
∆(λ)

MA + 1

}{
V ar[W ]− λ + 2

∑

α∈Γ

p2
α

}
, (2.12)

and
∣∣∣P (W = 0)− e−λ

∣∣∣ ≤ λ−2(λ + e−λ − 1)

{
V ar[W ]− λ + 2

∑

α∈Γ

p2
α

}
,

(2.13)

where W −Xα ≤ W ∗
α a.s. for every α ∈ Γ.

Proof of Theorem 2.2 Let f = UλhA. From Teerapabolarn, Neammanee
and Chongcharoen [16], we have (2.9). Next we will show that (2.8) is also
valid. Note that E[Wf(W )] =

∑

α∈Γ

E[Xαf(W )] and, for each α,

E[Xαf(W )] = E[E[Xαf(W )|Xα]]
= E[Xαf(W )|Xα = 0]P (Xα = 0) + E[Xαf(W )|Xα = 1]P (Xα = 1)
= E[f(W )|Xα = 1]P (Xα = 1)
= pαE[f(W ∗

α + 1)].

Thus

E[λf(W + 1)−Wf(W )] =
∑

α∈Γ

pαE[f(W + 1)]−
∑

α∈Γ

pαE[f(W ∗
α + 1)]

=
∑

α∈Γ

pαE[f(W + 1)− f(W ∗
α + 1)].
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By Lemma 2.1, we have

|E[λf(W + 1)−Wf(W )]| ≤
∑

α∈Γ

pαE|f(W + 1)− f(W ∗
α + 1)|

≤ λ−1 min
{

1, λ,
∆(λ)

MA + 1

} ∑

α∈Γ

pαE|W −W ∗
α|.

Hence, by (2.7), the estimate (2.8) immediately follows. ¤

Remarks.
1. We note that, for Γ = {1, 2, ..., n}, if X1, X2, ..., Xn are independent

then b1 =
n∑

α=1

p2
α and b2 vanishes, since Zα = 0 for all α. So the Poisson

local estimates in Theorem 2.1 reduce to
∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤ λ−1 min
{

1, λ,
∆(λ)

MA + 1

} n∑

α=1

p2
α, (2.14)

where A ⊆ {0, 1, ..., n}.
2. If the coupling (W,W ∗

α) in Theorem 2.2 can be constructed in such
a way that E|W −W ∗

α| is small, then the result via the coupling approach
yields good Poisson approximation. For instance, with independent Xi’s,
one can take the original space such that W ∗

α = W −Xα. So E|W −W ∗
α| =

E[Xα] = pα and the Poisson coupling estimate reduce to the same result
as (2.14).

3. It is well-known that the Poisson estimate works best in many ap-
plications when λ is small. It is then worth noting that if λ ≤ 1 then

min
{

1, λ,
∆(λ)

MA + 1

}
=





λ if MA ≤ 1,

eλ + λ− 1
MA + 1

if MA ≥ 2.
(2.15)

3 Applications of the local approach

There are many applications of the Poisson local estimate which were
proposed by many authors during the past few years, e.g., the birthday
problem and the longest head run in Arratia, Goldstein and Gordon [1-2],
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applications in the theory of random graphs in Barbour, Holst and Jan-
son[6], the problem of estimating statistical significance in sequence com-
parison in Goldstein and Waterman [8], sequence comparison significance
in Waterman and Vingron [20], applications to time series analysis in Kim
[10] and the somatic cell hybrid model in Lange [11]. In this section, we
present some examples of this approach that are useful in applications of
Theorems 2.1.
Example 3.1 (The birthday problem)

Suppose n balls (people) are uniformly and independently distributed
into d boxes (days of the year). The birthday problem involves finding an
approximate distribution of the number of boxes that receive k or more
balls for some fixed positive integer k. To get started, let the index set
Γ be the collection of all sets of trials α ⊂ {1, 2, ..., n} having |α| = k
elements, where {1, 2, ..., n} is a set of n balls. Let Xα be the indicator of
the event that the balls indexed by α all fall into the same box probability
pα = P (Xα = 1) = d1−k. The number of sets of k balls that fall into the
same box is given by W =

∑

α∈Γ

Xα. It seems reasonable to approximate W

as a Poisson random variable with mean λ = E[W ] if pα’s are small. Since
all pα are identical, we have

λ = |Γ|pα =
(

n

k

)
d1−k.

We now define the neighborhood Bα of α so that Xα is independent of
those Xβ with β not in Bα by taking Bα = {β ∈ Γ : α∩β 6= ∅}. We observe
that Xα and Xβ are independent if α ∩ β = ∅. Since |Bα| =

(
n
k

) − (
n−k

k

)
,

we have

b1 = |Γ||Bα|p2
α

= λ|Bα|d1−k.

For a given α, we have 1 ≤ |α ∩ β| ≤ k − 1 for β ∈ Bα \ {α} and

b2 =
(

n

k

) k−1∑

j=1

(
k

j

)(
n− k

k − j

)
d1+j−2k

= λb,
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where b =
k−1∑

j=1

(
k

j

)(
n− k

k − j

)
dj−k. By (2.4) and (2.5), we have

∣∣∣∣∣P (W ∈ A)−
∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤ min
{

1, λ,
∆(λ)

MA + 1

} (
|Bα|d1−k + b

)
,

where A ⊆ {
0, 1, ...,

(
n
k

)}
and

∣∣∣P (W = 0)− e−λ
∣∣∣ ≤ λ−1(λ + e−λ − 1)max

{
|Bα|d1−k, b

}
.

If k = 3, n = 50 and d = 365, we have λ =
(
50
3

)
(365)−2 = 0.14711953, |Bα| =(

50
3

)− (
47
3

)
= 3385 and b = 3

(
47
2

)
(365)−2 + 3(47)(365)−1 = 0.41064365. So,

by (2.15), a non-uniform bound for approximating the distribution of the
number of sets of three balls that fall into the same box is

∣∣∣∣∣P (W ∈ A)−
∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤




0.064152 if MA ≤ 1,
0.133263
MA + 1

if MA ≥ 2,

where A ⊆ {0, 1, ..., 19600} and
∣∣∣P (W = 0)− e−λ

∣∣∣ ≤ 0.0287784.

That is, the probability that no box gets three or more balls is

0.8344124 ≤ P (W = 0) ≤ 0.8919692.

Example 3.2 (A random graph problem)
Consider the n-dimensional unit cube [0, 1]n. Suppose that each of the

n2n−1 edges is independently assigned one of two equally likely orienta-
tions. Let Γ be the set of all 2n vertices, and for each α ∈ Γ, let Xα be
the indicator that vertex α has all of its edges directed inward with the
probability pα = P (Xα = 1) = 2−n. Let W =

∑
α∈Γ Xα be the number of

vertices at which all n edges point inward. Its distribution seems reason-
able to be approximated by Poisson distribution with mean λ = E[W ] = 1
when n is large.

Following Arratia, Goldstein and Gordon [2], we define the neighbor-
hood of α so that Xα and Xβ are independent for all β /∈ Bα by setting the
set Bα = {β ∈ Γ : |α − β| = 1}. We note that Xα is independent of those



28 Thai J. Math. 5(2007)/ K. Teerapabolarn and T. Santiwipanont

Xβ with |α− β| > 1, and also E[XαXβ] = 0 for |α− β| = 1, hence b2 = 0.
Since |Bα| = n, we have

b1 = |Γ||Bα|p2
α

= n2−n.

It follows from Theorem 2.1 and (2.15) that

∣∣∣∣∣P (W ∈ A)−
∑

k∈A

e−1

k!

∣∣∣∣∣ ≤




n2−n if MA ≤ 1,

n2−ne

MA + 1
if MA ≥ 2,

where A ⊆ {0, 1, ..., 2n−1} and
∣∣P (W = 0)− e−1

∣∣ ≤ ne−12−n.

For n = 10, a non-uniform bound for approximating the distribution of the
number of vertices at which all n edges point inward is of the form

∣∣∣∣∣P (W ∈ A)−
∑

k∈A

e−1

k!

∣∣∣∣∣ ≤




0.0097656 if MA ≤ 1,
0.0265457
MA + 1

if MA ≥ 2,

where A ⊆ {0, 1, ..., 512} and
∣∣P (W = 0)− e−1

∣∣ ≤ 0.0035926.

Example 3.3 (Sequence alignments problem)
Let C1, ..., Cn+m−1 be independent random variables with common dis-

tribution µ over a finite alphabet A. Let ω = a1a2...am be a specific
sequence of m letters of A without self overlaps: that is, for all k =
1, 2, ..., m− 1, a1a2...ak 6= am−k+1am−k+2...am.

Now we define Xα to be a random indicator I(Cα = a1, ..., Cα+m−1 =

am), for α ∈ Γ = {1, ..., n}, with the probability p = E[Xα] =
m∏

l=1

P (Cα+l−1 =

al). Let W =
n∑

α=1

Xα be the number of times that the sequence ω appears

in the long random string C1, ..., Cn+m−1, and its distribution can be ap-
proximated by Poisson distribution with parameter λ = np when p is small.
Following Barbour [4], the Xα’s are locally dependent in the sense that Xα
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is independent of those Xβ with β /∈ Bα, where Bα = {β ∈ Γ : |α−β| < m}.
Since the self overlaps do not occur in ω, b2 = 0, and

b1 = |Γ||Bα|p2

≤ λ(2m− 1)p.

Substituting these values into Theorem 2.1, a non-uniform error bound in
approximating the distribution of the number of times that the sequence ω
appears in the long random string C1, ..., Cn+m−1 is of the form∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤ (2m− 1)pmin
{

1, λ,
∆(λ)

MA + 1

}
,

where A ⊆ {0, 1, ..., n} and∣∣∣P (W = 0)− e−λ
∣∣∣ ≤ λ−1(λ + e−λ − 1)(2m− 1)p.

The bounds are small if p is small. If λ ≤ 1, then by (2.15) we have
∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤




λ(2m− 1)p if MA ≤ 1,

(eλ + λ− 1)(2m− 1)p
MA + 1

if MA ≥ 2,

where A ⊆ {0, 1, ..., n}.
Example 3.4 (A random graph problem)

Consider a graph with n nodes created by randomly connecting some
pairs of nodes by edges. If the connection probability per pair is p, then all
pairs in a triple of nodes are connected with probability p3. Let Γ be the
set of all triples of nodes in the random graph. Define Xα = 1 if the triple
of nodes α is connected to form a triangle and Xα = 0 otherwise. Then the
probability pα = P (Xα = 1) = p3. Let W =

∑

α∈Γ

Xα, then W is the number

of such triangles in the random graph. If p is small, W is approximately

Poisson with mean λ = |Γ|p3 =
(

n

3

)
p3.

We now choose the neighborhood Bα of α such that Xα and Xβ are
independent for β /∈ Bα by taking Bα = {β : |α ∩ β| ≥ 2}. Note that, for
α 6= β, E[XαXβ] = P (Xα = 1, Xβ = 1) = p5 and |Bα| = 3(n − 3) + 1.
Hence

b1 = |Γ||Bα|p2
α

= λ|Bα|p3

= (3(n− 3) + 1)λp3
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and

b2 = |Γ||Bα − 1|p5

= λ|Bα − 1|p2

= 3(n− 3)λp2.

By applying Theorem 2.1, a non-uniform bound for the error in Poisson
approximation to the distribution of the number of triangles in the random
graph is in the term of
∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤ min
{

1, λ,
∆(λ)

MA + 1

}
3(n− 3)p2(1 + p) + p3,

where A ⊆ {
0, 1, ...,

(
n
3

)}
and

∣∣∣P (W = 0)− e−λ
∣∣∣ ≤ λ−1(λ + e−λ − 1) max

{
(3(n− 3) + 1)p3, 3(n− 3)p2

}
.

For n = 30 and p = 0.05, we have λ =
(
30
3

)
(0.05)3 = 0.5075 and, by (2.15),

∣∣∣∣∣P (W ∈ A)−
∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤




0.10797 if MA ≤ 1,
0.24863
MA + 1

if MA ≥ 2,

where A ⊆ {0, 1, ..., 4060} and
∣∣∣P (W = 0)− e−λ

∣∣∣ ≤ 0.0436916.

Example 3.5 (The longest perfect head run)
Consider an infinite sequence Y1, Y2, ... of independent random indica-

tors with common success probability p. Let Γ = {1, ..., n} and fix a positive
integer value t. Let Xα be the indicator of the event that a success run

of length t or longer begins at position α. Note that X1 =
t∏

k=1

Yk and for

α = 2 to n,

Xj = (1− Yj−1)
j+t−1∏

k=j

Yk.

Let W =
∑

α∈Γ

Xα be the number of such success runs starting in the first n

positions. The Poisson heuristic suggests that W is approximately Poisson
with mean λ = E[W ] = pt[(n− 1)(1− p) + 1].
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Following Arratia, Goldstein and Gordon [2], we define a neighborhood
Bα of α by setting Bα = {β ∈ Γ : |β − α| ≤ t}. We observe that Xα is
independent of those Xβ for β /∈ Bα and E[XαXβ] = 0, hence b2 = 0 and

b1 =
∑

α∈Γ

∑

β∈Bα

pαpβ

= p2t + 2tp2t(1− p) + [2nt− t2 + n− 3t− 1]p2t(1− p)2

≤ λ2(2t + 1)
n

+ 2λpt.

A non-uniform bound, from Theorem 2.1, in approximating the distribution
of the number of success runs starting in the first n positions by Poisson
distribution is of the form

∣∣∣∣∣P (W ∈ A)−
∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤ min
{

1, λ,
∆(λ)

MA + 1

} [
λ(2t + 1)

n
+ 2pt

]
,

where A ⊆ {0, 1, ..., n} and

∣∣∣P (W = 0)− e−λ
∣∣∣ ≤ λ−1(λ + e−λ − 1)

[
λ(2t + 1)

n
+ 2pt

]
.

Assume that n = 100, p = 0.5 and t = 10, we have λ = 0.0493164 and, by
(2.15), a non-uniform bound is

∣∣∣∣∣P (W ∈ A)−
∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤




0.0006071 if MA ≤ 1,
0.0012294
MA + 1

if MA ≥ 2,

where A ⊆ {0, 1, ..., 100} and
∣∣∣P (W = 0)− e−λ

∣∣∣ ≤ 0.0002986.

4 Applications of the coupling approach

As a local approach, many applications for the coupling approach in
Poisson approximation of a sum of random indicators were proposed by
several authors. Some examples are random graphs problems in Barbour
[3-4], Stein [15], Barbour, Holst and Janson [6] and Janson [9], the ran-
dom allocation problem in Mikhailov [12], occupancy and urn models in
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Barbour, Holst and Janson [6] and ménage problem, birthday problem and
biggest random gap problem in Lange [11]. In this section, we present some
examples that are useful in applications of this approach.

Example 4.1 (The hypergeometric distribution)
Suppose a random sample of size n is chosen without replacement from

a finite population containing N elements of two types (n < N), of which m
are of type A and N−m (6= 0) are of type B. Let the random variable W be
the number of type A elements in the sample. It is well-known that W has
the hypergeometric distributionH(N,n, m) where, for max{0, n+m−N} ≤
k ≤ min{n,m},

P (W = k) =

(
m

k

)(
N −m

n− k

)

(
N

n

) .

For each α ∈ {1, ..., n}, let Xα = 1 if the α’th element in the sample is

of type A and Xα = 0 otherwise, and let W =
n∑

i=1

Xi. We then have

the probability P (Xi = 1) =
m

N
and λ = E[W ] =

nm

N
. If

m

N
and

n

N
are

small then it seems reasonable to approximate the distribution of W by
Poisson distribution with mean λ. For the hypergeometric distribution,
the variance of W is

V ar[W ] =
N − n

N − 1
· nm

N

(
1− m

N

)
.

We shall then construct the coupled random variable W ∗
α which has the

same distribution as W −Xα conditional on Xα = 1. Consider the number
of type A elements in the sample other than the α’th element conditional
on Xα = 1, which is obtained by swapping the α’th element chosen, if it is
of type B, for a randomly chosen an element of type A. Following Barbour
[4], let

W ∗
α = W −Xα −

n∑

β=1,β 6=α

XβIβ,

where Iβ is the indicator of the event that the β’th element in the sample
is chosen to be swapped with the α’th. Then W ∗

α has the same distribution
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as W −Xα conditional on Xα = 1, and we observe that W ≥ W ∗
α for every

α ∈ {1, ..., n}. Thus, by (2.10) and (2.11),
∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤ λ−1 min
{

1, λ,
∆(λ)

MA + 1

}
{λ− V ar[W ]}

= min
{

1, λ,
∆(λ)

MA + 1

}[
n + m− 1

N − 1
− nm

N(N − 1)

]

≤ min
{

1, λ,
∆(λ)

MA + 1

}(
n + m− 1

N − 1

)
,

where A ⊆ {0, ...,min{m,n}} and

∣∣∣P (W = 0)− e−λ
∣∣∣ ≤ λ−1(λ + e−λ − 1)

(
n + m− 1

N − 1

)
.

The bounds are both small provided that
m

N
and

n

N
are small. Suppose

N = 1000, m = 20 and n = 10. We have λ = 0.20 and, by (2.15),
non-uniform error bounds in Poisson approximation to the hypergeometric
distribution is of the form

∣∣∣∣∣P (W ∈ A)−
∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤




0.0058 if MA ≤ 1,
0.0122
MA + 1

if MA ≥ 2,

where A ⊆ {0, ..., 10}} and
∣∣∣P (W = 0)− e−λ

∣∣∣ ≤ 0.00272.

Example 4.2 (The classical occupancy problem)
Let m balls be thrown independently of each other into n boxes where

each ball has probability 1/n of falling into the α’th box. Let Xα = 1 if

the α’th box is empty and Xα = 0 otherwise, then W =
n∑

α=1

Xα is the

number of empty boxes. The probability P (Xi = 1) is (1 − 1/n)m and
λ = E[W ] = n(1− 1/n)m. Since E[XαXβ] = (1− 2/n)m 6= (1− 1/n)2m =
E[Xα]E[Xβ] for α 6= β, Xα’s are not independent. The distribution of
W can be approximated by a Poisson distribution with parameter λ if
(1− 1/n)m is small, or m/n is large.
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We now construct W ∗
α such that W ∗

α is distributed as W−Xα conditional
on Xα = 1. Consider the number of empty boxes other than the α’th box
conditional on Xα = 1, which is obtained by throwing each ball in the α’th
box, if it is not empty, into one of the other boxes in such a way that the
probability of a ball falling into box β, β 6= α, is 1/(n− 1). Thus, we can
take

W ∗
α = W −Xα −

n∑

β=1,β 6=α

XβIβ,

where Iβ is the indicator of the event that there is at least one ball from
the α’th box falling into the empty β’th box. Then W ∗

α has the same
distribution as W −Xα conditional on Xα = 1, and for every α ∈ {1, ..., n},
W ≥ W ∗

α. So, by (2.10) and (2.11), a non-uniform bound for approximating
the distribution of the number of empty boxes by Poisson distribution is of
the form
∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤ min
{

1, λ,
∆(λ)

MA + 1

}{
λ− (n− 1)

(
n− 2
n− 1

)m}
,

where A ⊆ {0, ..., n} and

∣∣∣P (W = 0)− e−λ
∣∣∣ ≤ λ−1(λ + e−λ − 1)

{
λ− (n− 1)

(
n− 2
n− 1

)m}
.

For m = 50 and n = 10, we get λ = 0.051538 and, by (2.15), a non-uniform
bound for this approximation is

∣∣∣∣∣P (W ∈ A)−
∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤




0.00137 if MA ≤ 1,
0.00278
MA + 1

if MA ≥ 2,

where A ⊆ {0, ..., 10} and
∣∣∣P (W = 0)− e−λ

∣∣∣ ≤ 0.0006742.

Example 4.3 (A random graph problem)
A random graph G(n, p) is a graph on n labeled vertices {1, 2, . . . , n}

where each possible edge {α, β} is present randomly and independently
with probability p, 0 < p < 1. Let Eαβ be the independent edge indicator
of the event that edge {α, β} ∈ G(n, p), then P (Eαβ = 1) = p. Let Xα = 1
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if vertex α is an isolated vertex in G(n, p) and Xα = 0 otherwise. Then

W =
n∑

α=1

Xα is the number of isolated vertices in G(n, p). We now have the

probability pα = P (Xα = 1) = (1 − p)n−1, λ = E[W ] = n(1 − p)n−1 and
V ar[W ] = λ+n(n− 1)(1− p)2n−3−λ2. Since E[XαXβ] 6= E[Xα]E[Xβ] for
α 6= β, it indicates that Xα’s are not independent.

We then construct W ∗
α by considering the number of isolated vertices in

G(n, p) other than the α’th vertex conditional on Xα = 1, which is obtained
by deleting all the edges {α, β} (1 ≤ β ≤ n, β 6= α) in G(n, p). Following
Barbour [4], we let

W ∗
α = W −Xα +

n∑

β=1,β 6=α

Eαβ

∏

γ 6=α,β

(1−Eβγ),

where
n∑

β=1,β 6=α

Eαβ

∏

γ 6=α,β

(1− Eβγ) is the number of isolated vertices which

are connected to the vertex α. Then W ∗
α has the same distribution as

W − Xα conditional on Xα = 1, and we observe that W ∗
α ≥ W − Xα for

every α ∈ {1, ..., n}. Thus, by (2.12) and (2.13), a non-uniform bound for
approximating the distribution of the number of isolated vertices in G(n, p)
by Poisson distribution is of the form

∣∣∣∣∣P (W ∈ A)−
∑

k∈A

λke−λ

k!

∣∣∣∣∣

≤ λ−1 min
{

1, λ,
∆(λ)

MA + 1

}{
V ar[W ]− λ + 2

n∑

α=1

p2
α

}

≤ min
{

1, λ,
∆(λ)

MA + 1

}
[(n− 2)p + 1]e−(n−2)p,

where A ⊆ {0, 1, ..., n} and
∣∣∣P (W = 0)− e−λ

∣∣∣ ≤ λ−1(λ + e−λ − 1)[(n− 2)p + 1]e−(n−2)p.

The bounds are small whenever np is large. If n = 100 and p = 0.1, then
we have λ = 0.00295 and, by (2.15), a non-uniform bound of the error in
the Poisson approximation of the distribution of W is of the form

∣∣∣∣∣P (W ∈ A)−
∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤




0.000001770 if MA ≤ 1,
0.000003546

MA + 1
if MA ≥ 2,



36 Thai J. Math. 5(2007)/ K. Teerapabolarn and T. Santiwipanont

where A ⊆ {0, 1, ..., 100} and

∣∣∣P (W = 0)− e−λ
∣∣∣ ≤ 0.000000883.

Example 4.4 (The matching problem)
Suppose that n cards (numbered 1, 2, ..., n) are placed at random onto

n numbered places, labelled 1, 2, . . . , n, on a table in such a way that each
place receives one card. We say that a match occurs at the α’th place if the
card numbered α is placed there. For each α ∈ {1, ..., n}, let Xα = 1 if the
card numbered α is at the α’th place and 0 otherwise. Then the probability

P (Xα = 1) =
1
n

. Let W =
n∑

α=1

Xα be the total number of matches. We

observe that the distribution of W seems reasonable to be approximated
by Poisson distribution with mean λ = E[W ] = 1 when n is large.

We have to construct the coupled random variable W ∗
α from the number

of matches excluding the match at α’th place conditional on Xα = 1, which
is obtained by swapping the card at the α’th place, if match at α’th place
is not occurs, with the card numbered α at the β’th place. Thus, we can
set

W ∗
α = W −Xα +

n∑

β=1,β 6=α

Iβ,

where Iβ is the indicator of the event that the card at the β’th place is
chosen to be swapped with the card at α’th place and the card at α’th place
numbered β. Then W ∗

α has the same distribution as W −Xα conditional
on Xα = 1, and for every α ∈ {1, ..., n}, W ∗

α ≥ W − Xα. So, by (2.12),
(2.13) and (2.15), a non-uniform bound in approximating the distribution
of the number of matches is of the form

∣∣∣∣∣P (W ∈ A)−
∑

k∈A

e−1

k!

∣∣∣∣∣ ≤





2
n

if MA ≤ 1,

2e

n(MA + 1)
if MA ≥ 2,

where A ⊆ {0, 1, ..., n} and

∣∣∣P (W = 0)− e−λ
∣∣∣ ≤ 2e−1

n
.
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The bounds are small whenever n is large. For n = 100, we obtain non-
uniform bound for this approximation in the form of

∣∣∣∣∣P (W ∈ A)−
∑

k∈A

e−1

k!

∣∣∣∣∣ ≤




0.02 if MA ≤ 1,
0.0544
MA + 1

if MA ≥ 2,

where A ⊆ {0, 1, ..., 100} and
∣∣∣P (W = 0)− e−λ

∣∣∣ ≤ 0.00736.

Example 4.5 (The ménage problem)
The classical ménage problem asks for the number of seatings of n

married couples at a round table, with men and women alternating, so
that no one sits next to his or her partner. More generally, we may ask
for the probability that a random seating gives exactly k couples sitting
together. We number the seats around the table from 1 to 2n, and let
Xα = 1 if a couple occupies seats α and α+1 and Xα = 0 otherwise. Then
W , the number of couples sitting next to each other, can be represented by

W =
2n∑

α=1

Xα, where X2n+1 = X1 and, by symmetry, pα = P (Xα = 1) =

1/n, and λ = E[W ] = 2.
To construct the coupled random variable W ∗

α, we exchange the person
in seat α + 1 with the spouse of the person in seat α and then count the
number of adjacent spouse pairs, excluding the pair now occupying seats α
and α + 1. From Lange [11, p.251], he bounded the term E|W −W ∗

α| by
6(n− 2)
n(n− 1)

, i.e., E|W −W ∗
α| ≤

6(n− 2)
n(n− 1)

. By applying Theorem 2.2, a non-

uniform bound in approximating the distribution of the number of couples
sitting next to each other by Poisson distribution with mean 2 is of the
form

∣∣∣∣∣P (W ∈ A)−
∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤





6(n− 2)
n(n− 1)

if MA ≤ 8,

6(n− 2)(e2 + 1)
n(n− 1)(MA + 1)

if MA ≥ 9,

where A ⊆ {0, 1, ..., 2n} and

∣∣∣P (W = 0)− e−λ
∣∣∣ ≤ 3(1 + e−2)(n− 2)

n(n− 1)
.
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A non-uniform bound for this approximation when n = 100 is
∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤




0.0594 if MA ≤ 8,
0.4983
MA + 1

if MA ≥ 9,

where A ⊆ {0, 1, ..., 200} and
∣∣∣P (W = 0)− e−λ

∣∣∣ ≤ 0.03372.
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