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1 Introduction

In recent years, the split feasibility problem (SFP) by Censor and Elfving [6]
has been intensively investigated, since many real-world problems can be reformu-
lated in signal processing, image reconstruction [19], intensity-modulated radiation
therapy[5] and many other applied fields. The SFP can be modeled as the problem
of finding a point x∗ in RN such that:

x∗ ∈ C and Ax∗ ∈ Q, (1.1)

where C and Q are nonempty closed convex subsets of RM and RN , respectively
and A is an M×N matrix. Throughout this paper, we denote by S the solution set

1Corresponding author email: prasitch2008@yahoo.com

Copyright c⃝ 2018 by the Mathematical Association of Thailand.
All rights reserved.



Strong Convergence of the Modified Projection and Contraction Methods 77

of (1.1). The SFP was first studied in Euclidean spaces. Later, Xu [22] considered
the SFP in Hilbert spaces.

In [3, 4], Byrne presented a new method called the CQ algorithm for solving
the SFP, which generates a sequence {xn} recursively as follows :

xn+1 = PC(xn − τnA
T (I − PQ)Axn) (1.2)

where PC and PQ denote the metric projections onto C and Q, respectively and
the stepsize τn is chosen in the interval (0, 2/∥A∥2), where ∥A∥2 is the spectral
radius of the operator ATA.

Recently, there have been many authors considered to establish some conver-
gence theorems for the SFP (see also [15, 14, 12, 16, 17, 18, 7]). In 2004, Yang [23]
introduced a relaxed CQ algorithm for solving the SFP, where two half spaces are
used instead of C and Q, respectively.

We note that both the CQ algorithm and the relaxed CQ algorithm use a
fixed stepsize depending on the largest eigenvalue of the matrix ATA, which is
in general not an easy work in practice. Hence, one way to avoid this estimation
was proposed by Qu and Xiu [13] by adopting an Armijo-line search in Euclidean
spaces. Subsequently, Gibali et al. [9] introduced relaxation CQ algorithm with
the Armijo-linesearch in real Hilbert spaces.

Korpelevich [11] and Antipin [1] proposed the following extragradient method:

yn = PC(xn − τnF (xn))

xn+1 = PC(xn − τnF (yn)) (1.3)

where F = AT (I −PQ)A and the fixed stepsize τn ∈ (0,
1

∥F∥
), which is a classical

two-step method. The second one is to select the self-adaptively the stepsize τn > 0
such that

τn∥F (xn)− F (yn)∥ ≤ µ∥xn − yn∥, ∀µ ∈ (0, 1). (1.4)

In [21], Tseng proposed the following extragradient methods:

yn = PC(xn − τnF (xn))

xn+1 = yn + τn(F (xn)− F (yn)) (1.5)

where τn ∈ (0,
1

∥F∥
) or {τn} is selected self-adaptively. Subsequently, Zhao et al.

[25] used Tseng’s method (1.5) to solve the SFP. Recently, Dong et al. [8] proposed
the modified projection and contraction methods and their relaxation variants to
solve the SFP as follows:

Algorithm 1.1. For any σ > 0, ρ ∈ (0, 1) and µ ∈ (0, 1), take arbitrarily x1 ∈ RN

and let
yn = PC(xn − τnF (xn)) (1.6)

where τn = σρmn and mn is the smallest nonnegative integer such that

τn∥F (xn)− F (yn)∥ ≤ µ∥xn − yn∥. (1.7)
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Define
xn+1 = xn − γϕnd(xn, yn) (1.8)

where γ ∈ (0, 2)

d(xn, yn) = (xn − yn)− τn(F (xn)− F (yn)) (1.9)

and

ϕn =
⟨xn − yn, d(xn, yn)⟩+ τn∥(I − PQ)A(yn)∥2

∥d(xn, yn)∥2
. (1.10)

It was proved that the sequence generated by Algorithm 1.1 converges to a
solution in SFP.

In this work, motivated by Dong et al. [8], we propose the modified projection
and contraction methods and relaxation to solve the SFP in real Hilbert spaces and
prove some strong convergence theorems of the proposed under mild assumptions.
Finally, we provide numerical experiments to show the efficiency of our proposed
algorithm.

2 Preliminaries

In this section, we give some definitions and lemmas, which are used in the
main results. Throughout this paper, we recall the following definitions:

(1) A mapping T : H1 → H1 is said to be firmly nonexpansive if, for all
x, y ∈ H1,

⟨x− y, Tx− Ty⟩ ≥ ∥Tx− Ty∥2. (2.1)

(2) A function f : H1 → R is said to be convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (2.2)

for all λ ∈ (0, 1) and x, y ∈ H1.

(3) F is said to be monotone on C if

⟨F (x)− F (y), x− y⟩ ≥ 0, ∀x, y ∈ C (2.3)

(4) F is said to be τn-inverse strongly monotone (shortly, τn-ism) with τn > 0
if

⟨F (x)− F (y), x− y⟩ ≥ τn∥F (x)− F (y)∥2, ∀x, y ∈ C; (2.4)

(5) F is said to be Lipschitz continuous on C with constant λ > 0 if

∥F (x)− F (y)∥ ≤ λ∥x− y∥, ∀x, y ∈ C. (2.5)

(6) A mapping f : H1 → H1 is said to be a contraction on H1 if there exists
a constant a ∈ (0, 1) such that

∥f(x)− f(y)∥ ≤ a∥x− y∥, ∀x, y ∈ H1. (2.6)
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(7)A differentiable function f is convex if and only if there holds the inequality:

f(z) ≥ f(x) + ⟨∇f(x), z − x⟩ (2.7)

for all z ∈ H1.

(8) An element g ∈ H1 is called a subgradient of f : H1 → R at x if

f(z) ≥ f(x) + ⟨g, z − x⟩ (2.8)

for all z ∈ H1, which is called the subdifferentiable inequality.

(9) A function f : H1 → R is said to be subdifferentiable at x if it has at least
one subgradient at x.

(10) The set of subgradients of f at the point x is called the subdifferentiable
of f at x, which is denoted by ∂f(x).

(11) A function f is said to be subdifferentiable if it is subdifferentiable at
all x ∈ H1. If a function f is differentiable and convex, then its gradient and
subgradient coincide.

(12) A function f : H1 → R is said to be weakly lower semi-continuous (shortly,
w-lsc) at x if xn ⇀ x implies

f(x) ≤ lim inf
n→∞

f(xn). (2.9)

We know that the orthogonal projection PC from H1 onto a nonempty closed
convex subset C ⊂ H1 is a typical example of a firmly nonexpansive mapping,
which is defined by

PCx := argmin
y∈C

∥x− y∥2 (2.10)

for all x ∈ H1.

Lemma 2.1. [2] For any x ∈ H and z ∈ C, then z = PCx if and only if

⟨x− z, y − z⟩ ≤ 0,∀y ∈ C. (2.11)

Lemma 2.2. [2] Let C be a nonempty closed convex subset of a real Hilbert space
H1. Then, for any x ∈ H1, the following assertions hold:

(1) ⟨x− PCx, z − PCx⟩ ≤ 0 for all z ∈ C;

(2) ∥PCx− PCy∥2 ≤ ⟨PCx− PCy, x− y⟩ for all x, y ∈ H1;

(3) ∥PCx− z∥2 ≤ ∥x− z∥2 − ∥PCx− x∥2 for all z ∈ C.

From Lemma 2.2, the operator I − PC is also firmly nonexpansive, where I
denotes the identity operator, i.e., for any x, y ∈ H1,

⟨(I − PC)x− (I − PC)y, x− y⟩ ≥ ∥(I − PC)x− (I − PC)y∥2. (2.12)
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Lemma 2.3. [10] Assume {sn} is a sequence of nonnegative real numbers such
that

sn+1 ≤ (1− cn)sn + cnδn, (2.13)

sn+1 ≤ sn − λn + φn, (2.14)

for all n ≥ 1 where {cn} is a sequence in (0, 1), {λn} is a sequence of nonnegative
real numbers and {δn} and {φn} are two sequences in R such that

(i)

∞∑
n=1

cn = ∞;

(ii) lim
n→∞

φn = 0;

(iii) limk→∞ λnk
= 0 implies lim sup

k→∞
δnk

≤ 0 for any subsequence {nk} of {n}.

Then lim
n→∞

sn = 0.

Lemma 2.4. [24] The line rule (3.4) is well defined. Besides, τ ′ ≤ τn ≤ σ, where
τ ′ = min{σ, µρ

L }.

Lemma 2.5. [8] Let {xn} and {yn} be the iterations generated by Algorithm 1.1.
Then we have

⟨xn − z, d(xn, yn)⟩ ≥ ϕn∥d(xn, yn)∥2, ∀z ∈ S. (2.15)

Lemma 2.6. [8] Let {xn} and {yn} be the iterations generated by Algorithm 1.1.
Then we have

⟨xn − yn, d(xn, yn)⟩ ≥ (1− µ)∥xn − yn∥2 (2.16)

and

ϕn ≥ 1− µ

1 + µ2
. (2.17)

3 Main Results

3.1 The modified projection and contraction methods

In this section, we introduce a projection algorithm using linesearch for the
strong convergence theorem. We define the functions

F (x) = AT (I − PQ)A(x). (3.1)

Algorithm 3.1. Let f : H → H be a contraction. For any σ > 0, ρ ∈ (0, 1) and
µ ∈ (0, 1), choose an arbitrary initial guess x1 ∈ H. Assume xn and yn have been
constructed. Compute the sequence xn+1 via the formula

yn = PC(xn − τnF (xn)) (3.2)

xn+1 = αnf(xn) + (1− αn)(xn − γϕnd(xn, yn)) (3.3)
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where γ ∈ (0, 2) and τn = σρmn and mn is the smallest nonnegative integer such
that

τn∥F (xn)− F (yn)∥ ≤ µ∥xn − yn∥, (3.4)

d(xn, yn) = (xn − yn)− τn(F (xn)− F (yn)) (3.5)

and

ϕn =
⟨xn − yn, d(xn, yn)⟩+ τn∥(I − PQ)Ayn∥2

∥d(xn, yn)∥2
. (3.6)

Theorem 3.2. Assume that lim
n→∞

αn = 0 and

∞∑
n=1

αn = ∞. If S ̸= ∅, then the

sequence {xn} generated by Algorithm 3.1 converges strongly to z = PSf(z) in S.

Proof. We set z = PSf(z). Then, by Lemma 2.5, we have

∥xn − γϕnd(xn, yn)− z∥2 = ∥xn − z∥2 − 2γϕn⟨xn − z, d(xn, yn)⟩
+γ2ϕ2

n∥d(xn, yn)∥2

≤ ∥xn − z∥2 − 2γϕ2
n∥d(xn, yn)∥2

+γ2ϕ2
n∥d(xn, yn)∥2

= ∥xn − z∥2 − γ(2− γ)ϕ2
n∥d(xn, yn)∥2. (3.7)

So, we obtain

∥xn+1 − z∥2

= ∥αnf(xn) + (1− αn)(xn − γϕnd(xn, yn))− z∥2

= ⟨αnf(xn) + (1− αn)(xn − γϕnd(xn, yn))− z, xn+1 − z⟩
= αn⟨f(xn)− f(z), xn+1 − z⟩+ αn⟨f(z)− z, xn+1 − z⟩

+(1− αn)⟨xn − γϕnd(xn, yn)− z, xn+1 − z⟩
≤ αn∥f(xn)− f(z)∥∥xn+1 − z∥+ αn⟨f(z)− z, xn+1 − z⟩

+(1− αn)∥xn − γϕnd(xn, yn)− z∥∥xn+1 − z∥

≤ 1

2
αn(∥f(xn)− f(z)∥2 + ∥xn+1 − z∥2) + αn⟨f(z)− z, xn+1 − z⟩

+
1

2
(1− αn)(∥xn − γϕnd(xn, yn)− z∥2 + ∥xn+1 − z∥2)

≤ 1

2
αna∥xn − z∥2 + 1

2
αn∥xn+1 − z∥2 + αn⟨f(z)− z, xn+1 − z⟩

+
1

2
(1− αn)(∥xn − z∥2 − γ(2− γ)ϕ2

n∥d(xn, yn)∥2 + ∥xn+1 − z∥2). (3.8)

It follows that

∥xn+1 − z∥2 ≤ (1− αn(1− a))∥xn − z∥2 + 2αn⟨f(z)− z, xn+1 − z⟩
−(1− αn)γ(2− γ)ϕ2

n∥d(xn, yn)∥2. (3.9)
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Next, we will show that {xn} is bounded. We see that

∥xn+1 − z∥ = ∥αnf(xn) + (1− αn)(xn − γϕnd(xn, yn))− z∥
≤ αn∥f(xn)− z∥+ (1− αn)∥xn − γϕnd(xn, yn)− z∥
≤ αn∥f(xn)− f(z)∥+ αn∥f(z)− z∥+ (1− αn)∥xn − z∥
≤ αna∥xn − z∥+ αn∥f(z)− z∥+ (1− αn)∥xn − z∥
= (1− αn(1− a))∥xn − z∥+ αn∥f(z)− z∥. (3.10)

By induction, we can show that {xn} is bounded. Employing Lemma 2.3 and
(3.9), we set

sn = ∥xn − z∥2

φn = 2αn⟨f(z)− z, xn+1 − z⟩

δn =
2

1− a
⟨f(z)− z, xn+1 − z⟩

λn = (1− αn)γ(2− γ)ϕ2
n∥d(xn, yn)∥2

cn = (1− a)αn. (3.11)

So, (3.9) reduces to the inequalities

sn+1 ≤ (1− cn)sn + cnδn (3.12)

sn+1 ≤ sn − λn + φn. (3.13)

Let {nk} be a subsequence of {n} and suppose that

lim sup
k→∞

λnk
≤ 0. (3.14)

It follows that

lim sup
k→∞

(1− αnk
)γ(2− γ)ϕ2

nk
∥d(xnk

, ynk
)∥2 ≤ 0. (3.15)

Using Lemma 2.6, we obtain

lim
k→∞

∥d(xnk
, ynk

)∥ = 0. (3.16)

By (3.5) we see that

∥xnk
− ynk

∥ ≤ ∥d(xnk
, ynk

)∥+ τnk
∥F (xnk

)− F (ynk
)∥

≤ ∥d(xnk
, ynk

)∥+ µ∥xnk
− ynk

∥. (3.17)

It follows that
(1− µ)∥xnk

− ynk
∥ ≤ ∥d(xnk

, ynk
)∥. (3.18)

From (3.16), we obtain
lim
k→∞

∥xnk
− ynk

∥ = 0. (3.19)
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Consider

∥xnk+1 − xnk
∥

= ∥αnk
f(xnk

) + (1− αnk
)(xnk

− γϕnk
d(xnk

, ynk
))− xnk

∥
≤ αnk

∥f(xnk
)− xnk

∥+ (1− αnk
)∥xnk

− γϕnk
d(xnk

, ynk
)− xnk

∥
= αnk

∥f(xnk
)− xnk

∥+ (1− αnk
)γϕnk

∥d(xnk
, ynk

)∥
→ 0, as k → ∞. (3.20)

By the definitions of {ynk
} and d(xnk

, ynk
), we get

ynk
= PC(ynk

− (τnk
F (ynk

)− d(xnk
, ynk

))). (3.21)

From Lemma 2.1, it follows that

⟨x− ynk
, τnk

F (ynk
)− d(xnk

, ynk
)⟩ ≥ 0, ∀x ∈ C. (3.22)

Take arbitrarily z ∈ S ⊂ C. By setting x = z in (3.22), we have

⟨ynk
− z, d(xnk

, ynk
)− τnk

F (ynk
)⟩ ≥ 0, (3.23)

which implies that

⟨ynk
− z, d(xnk

, ynk
)⟩ ≥ τnk

⟨ynk
− z, F (ynk

)⟩ (3.24)

Since {xnk
} is bounded, the set ωw(xnk

) is nonempty. Let x∗ ∈ ωw(xnk
) then

there exists a subsequence {xnki
} of {xnk

} such that xnki
⇀ x∗.

Next, we show that x∗ is a solution of the SFP. From (3.16) and the bound-
edness of {ynk

} implies

τnk
∥Aynk

− PQAynk
∥2 ≤ τnk

⟨Aynk
−Az, (I − PQ)Aynk

− (I − PQ)Az⟩
= τnk

⟨Aynk
−Az, (I − PQ)Aynk

⟩
= τnk

⟨ynk
− z,AT (I − PQ)Aynk

⟩
= τnk

⟨ynk
− z, F (ynk

)⟩. (3.25)

By (3.24), (3.16) and Lemma 2.2, we have

∥Aynk
− PQAynk

∥2 ≤ 1

τ ′
⟨ynk

− z, d(xnk
, ynk

)⟩

≤ 1

τ ′
∥ynk

− z∥∥d(xnk
, ynk

)∥

→ 0. (3.26)

Hence,

lim
k→∞

∥Aynk
− PQAynk

∥ = 0. (3.27)
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Thus Ax∗ ∈ Q. From (3.1) and (3.27), it follows that lim
k→∞

∥F (ynk
)∥ = 0. By (3.2)

and Lemma 2.2 (3), we have

∥ynk
− PC(ynk

)∥ ≤ ∥xnk
− ynk

− τnk
F (xnk

)∥
≤ ∥xnk

− ynk
∥+ τnk

∥F (xnk
)∥

≤ ∥xnk
− ynk

∥+ τnk
∥F (xnk

)− F (ynk
)∥+ τnk

∥F (ynk
)∥

≤ (1 + µ)∥xnk
− ynk

∥+ τnk
∥F (ynk

)∥
→ 0 as k → ∞, (3.28)

which implies x∗ ∈ C. From Lemma 2.2 (1), we obtain

lim sup
k→∞

⟨f(z)− z, xnk
− z⟩ = lim

i→∞
⟨f(z)− z, xnki

− z⟩

= ⟨f(z)− z, x∗ − z⟩
≤ 0. (3.29)

From (3.20) and (3.29), we obtain

lim sup
k→∞

⟨f(z)− z, xnk+1 − z⟩ ≤ 0. (3.30)

Hence, we get
lim sup
k→∞

δnk
≤ 0. (3.31)

Using Lemma 2.3, we conclude that the sequence {xn} converges strongly to z =
PSf(z).

3.2 The modified relaxation projection and contraction
methods

In this section, we introduce the modified relaxation projection and contraction
methods, in which the closed convex subsets C and Q have particular structure.

For the SFP, we assume that the convex sets C and Q satisfy the following
conditions:

(A1) The set C is given by

C = {x ∈ H1 : c(x) ≤ 0}, (3.32)

where c : H1 → R is a convex function and C is a nonempty set. The set Q is
given by

Q = {y ∈ H2 : q(y) ≤ 0}, (3.33)

where q : H2 → R is a convex function and Q is a nonempty set. Assume that c
and q are subdifferentiable on C and Q, respectively, and c and q are bounded on
bounded sets. Note that this condition is automatically satisfied in finite dimen-
sional spaces.
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For any x ∈ H1 , at least one subgradient ξ ∈ ∂c(x) can be calculated, where
∂c(x) is defined as follows:

∂c(x) = {z ∈ H1 : c(u) ≥ c(x) + ⟨u− x, z⟩,∀u ∈ H1}. (3.34)

For any y ∈ RM , at least one subgradient η ∈ ∂q(y) can be calculated, where

∂q(x) = {w ∈ H2 : q(u) ≥ q(y) + ⟨v − y, w⟩,∀v ∈ H2}. (3.35)

Define the sets Cn and Qn by the following half-spaces:

Cn = {x ∈ H1 : c(xn) + ⟨ξn, x− xn⟩ ≤ 0}, (3.36)

where ξn ∈ ∂c(xn), and

Qn = {y ∈ H2 : q(Axn) + ⟨ηn, y −Axn⟩ ≤ 0}, (3.37)

where ηn ∈ ∂q(Axn).
By the definition of the subgradient, it is clear that C ⊆ Cn and Q ⊆ Qn.

The projections onto Cn and Qn are easy to compute since Cn and Qn are two
half-spaces.

Define fn(x) =
1
2∥(I − PQn

)A(x)∥2 and

Fn(x) = AT (I − PQn)A(x). (3.38)

Algorithm 3.3. Let f : H → H be a contraction. For any σ > 0, ρ ∈ (0, 1)
and µ ∈ (0, 1), choose an arbitrary initial guess x1. Assume xn and yn have been
constructed. Compute the sequence xn+1 via the formula

yn = PCn(xn − τnFn(xn))

xn+1 = αnf(xn) + (1− αn)(xn − γϕnd(xn, yn)) (3.39)

where γ ∈ (0, 2) and τn = σρmn and mn is the smallest nonnegative integer such
that

τn∥Fn(xn)− Fn(yn)∥ ≤ µ∥xn − yn∥, (3.40)

d(xn, yn) = (xn − yn)− τn(Fn(xn)− Fn(yn)) (3.41)

and

ϕn =
⟨xn − yn, d(xn, yn)⟩+ τn∥(I − PQn

)Ayn∥2

∥d(xn, yn)∥2
. (3.42)

Theorem 3.4. Assume that lim
n→∞

αn = 0 and

∞∑
n=1

αn = ∞. If S ̸= ∅, then the

sequence {xn} generated by Algorithm 3.3 converges strongly to z = PSf(z) in S.
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Proof. As in the proof of Theorem 3.2, we see that

∥xn+1 − z∥2 ≤ (1− αn(1− a))∥xn − z∥2 + 2αn⟨f(z)− z, xn+1 − z⟩
−(1− αn)γ(2− γ)ϕ2

n∥d(xn, yn)∥2. (3.43)

Moreover, the sequence {xn} is bounded and ∥xn − yn∥ → 0. Let x∗ be a cluster
point of {xn} with {xnk

} converging to x∗. From (3.19), it follows that {ynk
} also

converges to x∗.
Now, we show that x∗ is a solution of the SFP. In fact, since ynk

∈ Cnk
, by

the definition of {Cnk
}, we have

c(xnk
) + ⟨ξnk

, ynk
− xnk

⟩ ≤ 0, (3.44)

where ξnk
∈ ∂c(xnk

). Since ∂c is bounded and (3.19), we have

c(xnk
) ≤ ⟨ξnk

, xnk
− ynk

⟩
≤ ∥ξnk

∥∥ynk
− xnk

∥
→ 0 as k → ∞. (3.45)

which implies c(x∗) ≤ 0, i.e., x∗ ∈ C. As in Theorem 3.2, we can show that
∥Aynk

− PQnk
(Aynk

)∥ → 0 as k → ∞. Since PQnk
(Aynk

) ∈ Qnk
, we have

q(Aynk
) + ⟨ηnk

, PQnk
(Aynk

)−Aynk
⟩ ≤ 0 (3.46)

where ηnk
∈ ∂q(Aynk

). From (3.27), we obtain

q(Aynk
) ≤ ∥ηnk

∥∥PQnk
(Aynk

)−Aynk
∥

→ 0 as k → ∞. (3.47)

Similarly, we have q(Ax∗) ≤ 0, i.e., Ax∗ ∈ Q. Thus x∗ is a solution of the SFP.
Following the line of the proof of Theorem 3.2 we get that {xn} converges

strongly to z = PSf(z).

4 Numerical Experiments

In this section, we present some numerical examples and illustrate its per-
formance by using Algorithm 3.1 in Theorem 3.2 and Algorithm 3.3 in Theorem
3.4.

Example 4.1. Let

C = {(x1, x2, x3) ∈ R3 : ∥(x1, x2, x3)− (0.5, 0, 0)∥2 ≤ 10},
Q = {(y1, y2, y3) ∈ R3 : (15, 0, 0) ≤ (y1, y2, y3) ≤ (25, 0, 0)},
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and A =

−1 0 −9
5 9 1
−1 0 1

. Choose αn =
1

100n
, for all n ∈ N and f(x) =

1

2
x where

x ∈ R3.The stopping criterion is defined by En = ∥xn+1 − xn∥2 < 10−4.
We consider four cases as follows:

Case 1: x1 = (−2, 1, 0), σ = 1, ρ = 0.5, µ = 0.6 and γ = 1.5.
Case 2: x1 = (−1, 0, 3), σ = 2, ρ = 0.6, µ = 0.7 and γ = 0.5.
Case 3: x1 = (−4, 0, 2), σ = 3, ρ = 0.2, µ = 0.3 and γ = 1.9.
Case 4: x1 = (0,−2, 1), σ = 4, ρ = 0.9, µ = 0.5 and γ = 0.3.

Using Algorithm 3.1 in Theorem 3.2, we obtain the following results:

Table 1: Algorithm 3.1 with different cases.

Case 1 Case 2 Case 3 Case 4

No. of Iter. 159 101 266 119

cpu (Time) 0.0682 0.0593 0.0814 0.2459

The convergence behavior of the error En for each Cases is shown in Figure 1-4,
respectively.
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Figure 1: Error plotting En for Case 1 in Example 4.1
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Figure 2: Error plotting En for Case 2 in Example 4.1
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Figure 3: Error plotting En for Case 3 in Example 4.1
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Figure 4: Error plotting En for Case 4 in Example 4.1

Example 4.2. Consider the following LASSO problem [20]:

min{1
2
∥Ax− b∥2 : x ∈ R5, ∥x∥1 ≤ τ}, (4.1)

where A =


1 3 2 1 0
5 6 1 −1 1
4 2 3 0 −2
0 2 −2 1 9
0 −1 3 0 1

, b = (6, 12, 9, 0, 1). We define C = {x ∈

R5 : ∥x∥1 ≤ τ} and Q = {b}. Since the projection onto the closed convex C does
not have a closed form solution and so we make use of the subgradient projection.
Define a convex function c(x) = ∥x∥1 − τ and denote the level set Cn by :

Cn = {x ∈ R5 : c(xn) + ⟨ξn, x− xn⟩ ≤ 0}, (4.2)

where ξn ∈ ∂c(xn). Then the orthogonal projection onto Cn can be calculated by
the following:

PCn
(x) =

x, if c(xn) + ⟨ξn, x− xn⟩ ≤ 0,

x− c(xn) + ⟨ξn, x− xn⟩
∥ξn∥2

ξn, otherwise.
(4.3)

It is worth noting that the subdifferential ∂c at xn is

∂c(xn) =


1, if xn > 0,

[−1, 1], if xn = 0,

−1, if xn < 0.

(4.4)
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The iteration process is stopped when the following criteria satisfied ∥xn+1−xn∥ <

10−4. Choose αn =
1

100n
, for all n ∈ N and let f(x) =

1

2
x.

We consider four cases as follows:
Case 1: x1 = (−1, 1, 1, 0, 1), σ = 1, ρ = 0.5, µ = 0.2 and γ = 1.5.
Case 2: x1 = (0,−1, 3, 0, 5), σ = 2, ρ = 0.4, µ = 0.3 and γ = 0.9.
Case 3: x1 = (1, 9,−2, 0, 5), σ = 3, ρ = 0.7, µ = 0.6 and γ = 1.9.
Case 4: x1 = (−5, 0, 1, 3, 2), σ = 4, ρ = 0.2, µ = 0.9 and γ = 0.3.

Table 2: Algorithm 3.3 with different cases.

Case 1 Case 2 Case 3 Case 4

No. of Iter. 272 44 228 54

cpu (Time) 0.1444 0.0283 0.2045 0.0204

The convergence behavior of the error En for each Cases is shown in Figure
5-8, respectively.
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Figure 5: Error plotting En for Case 1 in Example 4.2
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Figure 6: Error plotting En for Case 2 in Example 4.2
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Figure 7: Error plotting En for Case 3 in Example 4.2
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Figure 8: Error plotting En for Case 4 in Example 4.2

5 Conclusions

This paper discusses the strong convergence of the modified projection and
contraction methods for split feasibility problem. Numerical experiments show
the efficiency of our algorithm.

Acknowledgement(s) : The authors would like to thank University of Phayao.
P. Cholamjiak was supported by The Thailand Research Fund and University of
Phayao under granted RSA6180084.

References

[1] Antipin, A.S.: On a method for convex programs using a symmetrical modi-
fication of the Lagrange function. Ekon. Mat. Metody 12, 1164-1173 (1976)

[2] Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator
Theory in Hilbert Spaces. Springer, London (2011)

[3] Byrne, C.: Iterative oblique projection onto convex sets and the split feasi-
bility problem. Inverse Probl. 18, 441-453 (2002)

[4] Byrne, C.: A unified treatment of some iterative algorithms in signal process-
ing and image reconstruction. Inverse Probl. 20, 103-120 (2004)

[5] Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for
inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol.
51, 2353-2365(2003).



Strong Convergence of the Modified Projection and Contraction Methods 93

[6] Censor, Y., Elfving, T.: A multiprojection algorithms using Bregman projec-
tion in a product space. Numer. Algor. 8, 221-239 (1994)

[7] N.T. Vinh, P. Cholamjiak and S. Suantai, A new CQ algorithm for solving
split feasibility problems in Hilbert spaces, Bull. Malays. Math. Sci. Soc.
(2018).

[8] Dong, Q.L., Tang, Y.C., Cho, Y.J., Rassias, T.M.: . Optimal choice of the
step length of the projection and contraction methods for solving the split
feasibility problem. J. Glob.Optim., 71(2), 341-360(2018).

[9] Gibali, A., Liu, L.W., Tang, Y.C.: Note on the modified relaxation CQ algo-
rithm for the split feasibility problem. Optimization Letters. 12, 1-14 (2017)

[10] He, S., Yang, C.: Solving the variational inequality problem de-
fined on intersection of finite level sets. Abstr. Appl. Anal. (2013).
https://doi.org/10.1155/2013/942315.

[11] Korpelevich, G.M.: The extragradient method for finding saddle points and
other problems. Ekon. Mate. Metody 12, 747-756 (1976)

[12] Padcharoen, A., Kumam, P., Cho, Y. J., Thounthong, P.: A modified itera-
tive algorithm for split feasibility problems of right Bregman strongly quasi-
nonexpansive mappings in Banach spaces with applications. Algorithms, 9(4),
75(2016).

[13] Qu, B., Xiu, N.: A note on the CQ algorithm for the split feasibility problem.
Inverse Prob. 21, 1655-1665 (2005)

[14] Saewan, S., Kumam, P.:Modified hybrid block iterative algorithm for convex
feasibility problems and generalized equilibrium problems for uniformly quasi-
asymptotically nonexpansive mappings. In Abstract and Applied Analysis
(Vol. 2010). Hindawi.

[15] Sitthithakerngkiet, K., Deepho, J., Kumam, P.: Modified hybrid steepest
method for the split feasibility problem in image recovery of inverse problems.
Numer. Funct. Anal. Optim., 38(4), 507-522(2017).

[16] Suantai, S., Shehu, Y., Cholamjiak, P., Iyiola, O. S.: . Strong convergence
of a self-adaptive method for the split feasibility problem in Banach spaces.
Journal of Fixed Point Theory and Applications, 20(2), 68(2018).

[17] Suantai, S., Shehu, Y., Cholamjiak, P.: Nonlinear iterative methods for solv-
ing the split common null point problem in Banach spaces. Optimization
Methods and Software, 1-22(2018).

[18] Suantai, S., Pholasa, N., Cholamjiak, P.: The modified inertial relaxed CQ
algorithm for solving the split feasibility problems. Journal of Industrial and
Management Optimization, 3-11(2018).



94 S. Kesornprom and P. Cholamjiak

[19] Stark, H.: Image Recovery: Theory and Applications (San Diego, CA: Aca-
demic) Stark H Iterative algorithms for the multiple-sets split feasibility prob-
lem Biomedical Mathematics: Promising Directions in Imaging, Therapy
Planning and Inverse Problems ed Censor,Y., Jiang, M., Wang, G.: (Madison,
WI: Medical Physics Publishing) 243-79(2010)

[20] Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat.
Soc. Ser. B. Stat. Methodol. 58, 267-288 (1996)

[21] Tseng, P.: A modified forwardbackward splitting method for maximal mono-
tone mappings. SIAM J. Control Optim. 38, 431-446 (2000)

[22] Xu, H.K.: Iterative methods for the split feasibility problem in infinite-
dimensional Hilbert spaces. Inverse Prob. 26, 105018 (2010)

[23] Yang, Q.: The relaxed CQ algorithm for solving the split feasibility problem.
Inverse Prob. 20, 1261-1266 (2004)

[24] Zhang,W., Han, D., Li, Z.: A self-adaptive projectionmethod for solving
themultiple-sets split feasibility problem. Inverse Probl. 25, 115001 (2009)

[25] Zhao, J., Zhang, Y., Yang, Q.: Modified projection methods for the split
feasibility problem and the multiple-sets split feasibility problem. Appl. Math.
Comput. 219, 1644-1653 (2012)

(Received 14 August 2018)
(Accepted 16 October 2018)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

http://thaijmath.in.cmu.ac.th

	Introduction
	Preliminaries
	Main Results
	The modified projection and contraction methods
	The modified relaxation projection and contraction  methods

	Numerical Experiments
	Conclusions

