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1 Introduction

Monotone operators are an important class of operators used in the study of
modern nonlinear analysis and various types of optimization problems. The theory
of monotone operators (multifunctions) was first introduced by George Minty [20]
and later it was used substantially in proving existence results in partial differential
equations by Felix Browder and his school [9, 10, 11, 12, 15, 16, 1, 2, 31]. In
particular, maximal monotone operators have found their plethora of applications
in partial differential equations, optimization problems, variational inequalities,
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and mathematical economics.
Among all the problems related to the monotone operators and maximal mono-

tone operators, most studied and celebrated problem concerns the maximality of
the sum of two maximal monotone operators [3, 4, 6, 7, 8, 11, 22, 24, 25, 26, 27,
29, 30]. It is observed that certain qualification constraints are required to prove
the maximality of sum of monotone operators.

In 1970, Rockafellar [22] provided a solution for the maximality of the sum of
two maximal monotone operators under the constraint, i.e., one of the domain must
intersect the interior of the another one (Rockafellar’s constraint). Rockafellar
proved this results in reflexive spaces. If the domain of the maximal monotone
operators have empty interior, then the previous results cannot be applied. One
may note that there are many maximal monotone operators having domains with
empty interior [11].

Almost at the same time, Crandall and Pazy gave another qualification con-
straint for the maximality of the sum of two monotone operators. Interestingly,
this qualification constraint is suitable “in a certain sense” for handling the max-
imal monotone operators having domains with empty interior in Hilbert spaces.
Further, this result was extended to reflexive Banach space with some restricted
conditions by Brezis, Crandall and Pazy [11, 25]. Now, we formally state the
Crandall-Pazy result. Let X be a nonzero reflexive Banach spaces, A : X ⇒ X∗

and B : X ⇒ X∗ be maximal monotone, and satisfy following constraint qualifi-
cation conditions (Brézes-Crandall-Pazy constraint), i.e.,

(i) domA ⊂ domB,

(ii) |Bx| ≤ k(∥x∥)|Ax| + C(∥x∥), where k : [0,∞) → [0, 1) and C : [0,∞) →
[0,∞).

Then A+B is a maximal monotone operator [13, Theorem 4.3].
Here, we will show that the sum of an ultra maximal monotone operator and

a (D) type monotone operator with conditions (i) and (ii) is maximal in Banach
spaces which satisfy Grothendieck property (Grothendieck space) and weakly com-
pactly generated property.

The remainder of this paper is organized as follows. In Section 2, we provide
some auxiliary results and notions which will be used in our main results. Section
3, contains our main results.

2 Preliminaries

A real Banach space X is said to be Grothendieck [21] if every weak star con-
vergence sequence is weakly convergent in X∗. Every reflexive Banach space is a
Grothendieck space. But the converse is not true, e.g., the space of bounded nets
on some directed set Γ, l∞(Γ) [21]. The dual of X is denoted as X∗; X and X∗

are paired by ⟨x, x∗⟩ = x∗(x) for x ∈ X and x∗ ∈ X∗. If necessary, we identify
X ⊂ X∗∗ with its image under the canonical embedding of X into X∗∗. Weak

and weak star convergence are denoted by the notation
w→ and

w∗

→ respectively.
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For a given subset C of X, we denote interior of C as intC, closure of C as C,
boundary of C as bdry C, convex hull of C as convC and affine hull of C as
affC. Also, we denote the distance function by dist(x,C) := infc∈C ∥x − c∥ and
|C| = infc∈C ∥c∥. For any C,D ⊆ X, C −D := {|x − y| x ∈ C, y ∈ D}. For any
α > 0, αC := {αx| x ∈ C}. Let A : X ⇒ X∗ be a set-valued operator (also
known as multifunction or point-to-set mapping) from X to X∗, i.e., for every
x ∈ X, Ax ⊆ X∗.The domain of A is denoted as domA := {x ∈ X| Ax ̸= ϕ} and
the range of A is ranA := {x∗ ∈ Ax| x ∈ domA}. The graph of A is denoted as
graA = {(x, x∗) ∈ X ×X∗| x∗ ∈ Ax} and we define the inverse of A : X ⇒ X∗ as
A−1 : X∗ ⇒ X by A−1(x∗) := {x ∈ X : x∗ ∈ A(x)}. A is said to be linear relation
if graA is a linear subspace. The set-valued mapping A : X ⇒ X∗ is said to be
monotone if

⟨x− y, x∗ − y∗⟩ ≥ 0, ∀(x, x∗), (y, y∗) ∈ graA.

Let A : X ⇒ X∗ be monotone and (x, x∗) ∈ X × X∗. We say that (x, x∗) is
monotonically related to graA if

⟨x− y, x∗ − y∗⟩ ≥ 0, ∀(y, y∗) ∈ graA.

And a set-valued mapping A is said to be maximal monotone if A is monotone
and A has no proper monotone extension (in the sense of graph inclusion). In
the other word A is maximal monotone if any (x, x∗) ∈ X ×X∗ is monotonically
related to graA belongs to graA. A monotone operator A : X ⇒ X∗ is said to
be ultramaximal monotone [5, 28] if A is maximally monotone with respect to
X∗∗ ×X∗.

Let f : X →]−∞,+∞] be a function, its domain is defined as domf := f−1(R).
f is said to be proper if domf ̸= ϕ. Let f be any proper convex function. Then
the subdifferential operator of f is defined as ∂f : X ⇒ X∗ : x 7→ {x∗ ∈ X∗| ⟨y −
x, x∗⟩ + f(x) ≤ f(y),∀y ∈ X}. Similarly, for ϵ ≥ 0, the ϵ−subdifferetial of f is
defined by

∂ϵf = {(x, x∗) : f(y) ≥ f(x) + ⟨y − x, x∗⟩ − ϵ,∀y ∈ X}.

The duality map J : X → X∗ is defined as J = ∂( 12∥.∥
2). Similarly, the ϵ−duality

mapping is defined as Jϵ := ∂ϵ(
1
2∥.∥

2). Using f(x) = 1
2∥x∥

2 in the above definitions,
we get

x∗ ∈ J(x) ⇔ 1

2
∥x∥2 + 1

2
∥x∗∥2 = ⟨x, x∗⟩

or equivalently,

J(x) = {x∗ ∈ X∗|⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}.

Similarly,

Jϵ(x) = {x∗ ∈ X∗| 1
2
∥x∥2 + 1

2
∥x∗∥2 ≤ ⟨x, x∗⟩+ ϵ}.

The Gossez’s monotone closure of J is defined by

J̃ = J−1
X∗ ,
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where JX∗ denotes as the duality map on X∗. For any two monotone operators
A and B, the sum operator is defined as A + B : X ⇒ X∗ : x 7→ Ax + Bx =
{a∗ + b∗| a∗ ∈ Ax and b∗ ∈ Bx}.

For our convenience, we recall some fundamental properties of maximal mono-
tone operators. Let A : X ⇒ X∗ be maximally monotone. We say A is of dense
type or type (D) [14] if for every (x∗∗, x∗) ∈ X∗∗ ×X∗ with

inf
(a,a∗)∈graA

⟨a− x∗∗, a∗ − x∗⟩ ≥ 0,

there exists a bounded net (aα, a
∗
α)α∈Γ in graA such that (aα, a

∗
α)α∈Γ converges

to (x∗∗, x∗) with respect to (weak∗× strong) norm and A is said to be of type
negative infimum (NI) [23] if

inf
(a,a∗)∈graA

⟨a− x∗∗, a∗ − x∗⟩ ≤ 0, ∀ (x∗∗, x∗) ∈ X∗∗ ×X∗.

By Simons [24, Theorem 36.3(a)] and Marques Alves and Svaiter [19, Theorem 4.4]
we see that these two operators coincide. By definition of ultramaximal monotone
it is clear that every ultramaximal monotone operator is of type (D). But the
converse is not true for more details refer [28]. For a maximal monotone operator
A : X ⇒ X∗ we will define Ã : X∗∗ ⇒ X∗ as

Ã = {(x∗∗, x∗) ∈ X∗∗ ×X∗ : (x∗∗, x∗) is monotonically related to graA}.

When A is of type (D), Ã is the unique maximal monotone extension on X∗∗×X∗.
Let us collect some well-known results for the forthcoming sections.

Fact 2.1. [19, Lemma 3.2] Let A : X ⇒ X∗ be monotone and µ > 0. Then the
following conditions are equivalent:

1. ran(A(.+ z0) + µJϵ) = X∗, for any ϵ > 0, and z0 ∈ X.

2. ran(A(.+ z0) + µJϵ) = X∗, for any ϵ > 0, and z0 ∈ X.

Fact 2.2. [19, Lemma 3.3] Let A : X ⇒ X∗ be monotone and µ > 0. If

ranA(.+ z0) + µJϵ = X∗, ∀ ϵ > 0, z0 ∈ X

then A, the closure of A in the norm-topology of X × X∗, is maximal monotone
and of type NI.

Remark 2.3. For any z ∈ X, A(. + z) is the translation of the operator A and
the translation is given by A(.+ z) := A− (z, 0).

Fact 2.4. [28, Theorem 3.3] Let A,B : X ⇒ X∗ be maximal monotone operators.
Assume that

∪
λ>0 λ[domA − domB] is a closed subspace. Suppose that A is

ultramaximally monotone, and that B is of type (NI). Then A+B is ultramaximally
monotone.
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Fact 2.5. [28, Corollary 3.6] Let A : X ⇒ X∗ be ultramaximally monotone. Then
A+ J is ultramaximally monotone and ran(A+ J) = X∗.

For a maximal monotone operatorB : X ⇒ X∗ of type (D), the Moreau-Yosida
regularization and the resolvent of B, (see [18]) with regularization parameter
λ > 0 are given by Bλ : X ⇒ X∗ and Rλ : X ⇒ X∗∗

Bλ =
{
(x, x∗) ∈ X ×X∗ :∃z∗∗ ∈ X∗s.t.

0 ∈ λx∗ + J̃(z∗∗ − x), x∗ ∈ B̃(z∗∗)
}

(2.1)

Rλ =
{
(x, z∗∗) ∈ X ×X∗ :∃x∗ ∈ X∗s.t.

0 ∈ λx∗ + J̃(z∗∗ − x), x∗ ∈ B̃(z∗∗)
}
. (2.2)

We recall some properties of Bλ.

Fact 2.6. ([19, Theorem 3.6] and [17, Theorem 4.4]) Let B : X ⇒ X∗ be a
maximal monotone of type (D), λ > 0. Then

1. Bλ is a maximal monotone of type (D).

2. dom(Bλ) = X.

3. Bλ maps bounded sets into bounded sets.

3 Main Results

We remind that we assume X as a real Grothendieck space. Also, we assume
it satisfies weakly compactly generated property. A Banach space X is called
as weakly compactly generated if there is a weakly compact set K in X such
that X = span(K). Let B : X ⇒ X∗ be a maximal monotone operator of
type (D), then by Fact 2.6, Bλ is a maximal monotone operator of type (D)
and domBλ = X for λ > 0. For any ultramaximal monotone operator A, we have
domA∩int (domBλ) ̸= ϕ. Therefore,

∪
t>0 t[domA−domBλ] is a closed subspace

of X, in fact, whole space X. Using Fact 2.4, A+Bλ is a ultramaximal monotone
operator and Fact 2.5

ran(A+Bλ + J) = X∗. (3.1)

The proof of the following lemma is in the same line as the proof of [11, Lemma
1.2].

Lemma 3.1. Let A : X ⇒ X∗ be a monotone operator. If (xn, x
∗
n) ∈ graA,

xn
w∗

→ x∗∗ in X∗∗, x∗
n

w∗

→ x∗ in X∗ and

lim sup
m,n→∞

⟨xn − xm, x∗
n − x∗

m⟩ ≤ 0. (3.2)

Then ⟨xn, x
∗
n⟩ −→ ⟨x∗∗, x∗⟩.
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Proof. Using (xn, x
∗
n), (xm, x∗

m) ∈ graA, monotonicity of A and (3.2), we get

lim
m,n→∞

⟨xn − xm, x∗
n − x∗

m⟩ = 0. (3.3)

Let {ni} be a subsequence of {n} such that ⟨xni
, xni

∗⟩ → L (say). Thus, from
(3.3), we have

0 = lim
ni→∞

[
lim

nk→∞
⟨xni − xnk

, xni

∗ − xnk

∗⟩
]

= lim
ni→∞

[⟨xni , xni

∗⟩ − ⟨xni , x
∗⟩ − ⟨x∗∗, xni

∗⟩+ L] .

Since X is a Gronthendieck space, now we treat x∗
ni

w∗

→ x∗ as x∗
ni

w→ x∗ in X∗.
Thus,

0 = L− ⟨x∗∗, x∗⟩ − ⟨x∗∗, x∗⟩+ L

= 2L− 2⟨x∗∗, x∗⟩.

Hence, L = ⟨x∗∗, x∗⟩. Therefore, ⟨xn, x
∗
n⟩ −→ ⟨x∗∗, x∗⟩.

Lemma 3.2. Let B : X ⇒ X∗ be a maximal monotone operator of type (D). Let
x ∈ domB and (x, b∗) ∈ graBλ. Then ∥b∗∥ ≤ |B(x)|.

Proof. Since (x, b∗) ∈ graBλ, then by the definition of Bλ, there exists z∗∗ ∈ X∗∗

such that (z∗∗, b∗) ∈ gra(B̃) and 0 ∈ λb∗ + J̃(z∗∗ − x). By hypothesis, we have
x ∈ domB. Let a∗ ∈ B(x). Then by definition of B̃,

⟨x− z∗∗, a∗ − b∗⟩ ≥ 0. (3.4)

Since 0 ∈ λb∗+ J̃(z∗∗−x), then there exists u∗ ∈ J̃(z∗∗−x) such that 0 = λb∗+u∗

which implies that

b∗ = −u∗

λ
. (3.5)

Using (3.5) in (3.4), we obtain

0 ≤ ⟨x− z∗∗, a∗ +
u∗

λ
⟩

= ⟨x− z∗∗, a∗⟩+ ⟨x− z∗∗,
u∗

λ
⟩

= − 1

λ
⟨z∗∗ − x, u∗⟩+ ⟨x− z∗∗, a∗⟩.

Since u∗ ∈ J̃(z∗∗ − x), we have

0 ≤ − 1

λ
∥z∗∗ − x∥2 + ∥z∗∗ − x∗∥∥a∗∥. (3.6)

By (3.5),

∥b∗∥ =
∥u∗∥
λ

=
∥z∗∗ − x∥

λ
.

Thus, by (3.6) ∥b∗∥ ≤ ∥a∗∥. Since a∗ ∈ B(x) is arbitrary, ∥b∗∥ ≤ |B(x)|.
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We require the following proposition to prove the main result.

Proposition 3.3. Let A : X ⇒ X∗ be an ultramaximal monotone operator, B :
X ⇒ X∗ be a maximal monotone operator of type (D) with domA ⊆ domB and
for any λ > 0, the net (xλ) satisfy, x∗ ∈ (A + Bλ + J)(xλ), where x∗ ∈ X∗. If
|B(xλ)| is bounded as λ → 0, then

x∗ ∈ ran(A+B + J).

Proof. By assumption, (xλ) satisfy x∗ ∈ (A+Bλ + J)(xλ), where x∗ ∈ X∗. There
exists (xλ, x

∗
λ) ∈ graA, (xλ, b

∗
λ) ∈ graBλ and (xλ, w

∗
λ) ∈ gra J such that

x∗ = x∗
λ + b∗λ + w∗

λ. (3.7)

Let (y0, y
∗
0) ∈ graA. By monotonicity of A, we have

⟨y0 − xλ, y
∗
0 − x∗

λ⟩ ≥ 0.

By (3.7),

⟨y0 − xλ, y
∗
0 − x∗ + b∗λ + w∗

λ⟩ ≥ 0

⇒ ⟨y0 − xλ, y
∗
0 − x∗⟩ ≥ ⟨xλ − y0, b

∗
λ + w∗

λ⟩
≥ ⟨xλ − y0, b

∗
λ⟩+ ⟨xλ.w

∗
λ⟩ − ⟨y0, w∗

λ⟩

= ⟨xλ − y0, b
∗
λ⟩+

1

2
∥xλ∥2 +

1

2
∥w∗

λ∥2 − ⟨y0, w∗
λ⟩. (3.8)

Note that,

(∥y0∥ − ∥w∗
λ∥)2 ≥ 0

⇒∥y0∥2 + ∥w∗
λ∥2 − 2∥y0∥∥w∗

λ∥ ≥ 0

⇒1

2
∥y0∥2 +

1

2
∥w∗

λ∥2 ≥ ∥y0∥∥w∗
λ∥ ≥ ⟨y0, w∗

λ⟩.

Equation (3.8) implies that

⟨y0 − xλ, y
∗
0 − x∗⟩ ≥ ⟨xλ − y0, b

∗
λ⟩+

1

2
∥xλ∥2 −

1

2
∥y0∥2.

Thus,
∥xλ∥2 ≤ 2⟨y0 − xλ, y

∗
0 − x∗⟩+ 2⟨y0 − xλ, b

∗
λ⟩+ ∥y0∥2. (3.9)

Now, we show that ∥b∗λ∥ is bounded as λ → 0. Using (xλ, b
∗
λ) ∈ graBλ and

domA ⊆ domB we have xλ ∈ domB. Then by Lemma 3.2, ∥b∗λ∥ ≤ |B(xλ)|. By
hypothesis, ∥b∗λ∥ is bounded and thus, Equation (3.9) shows that ∥xλ∥ is bounded
as λ → 0. Also, ∥w∗

λ∥ is bounded. Therefore, ∥x∗
λ∥ = ∥x∗ − b∗λ − w∗

λ∥ is bounded.
Since X satisfies both Grothendieck and weakly compactly generated property.
Thence, by [21, Theorem 4.9 (iii)] and Amir-Lindenstrauss Theorem [21, Theorem
4.8], let (xλn

), (x∗
λn

), (b∗λn
) and (w∗

λn
) subsequences of (xλ), (x

∗
λ), (b

∗
λ) and (w∗

λ)
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such that xλn → x0 in the weak topology of X and x∗
λn

→ x∗
0, b

∗
λn

→ b∗0, w
∗
λn

→ w∗
0

in the weak∗ topology of X∗ as λn → 0. By (3.7), for λ = λn, λm,

⟨xλm
− xλn

, x∗
λm

+ b∗λm
+ w∗

λm
− (x∗

λn
+ b∗λn

+ w∗
λn

)⟩ = 0. (3.10)

Thus,

⟨xλm
− xλn

,x∗
λm

− x∗
λn

⟩
= −⟨xλm

− xλn
, b∗λm

− b∗λn
⟩ − ⟨xλm

− xλn
, w∗

λm
− w∗

λn
⟩. (3.11)

Since b∗λm
∈ Bλm(xλm) and b∗λn

∈ Bλn(xλn), then there exists z∗∗λm
, z∗∗λn

∈ X∗∗ such

that (z∗∗λm
, b∗λm

) ∈ gra B̃, (z∗∗λn
, b∗λn

) ∈ gra B̃ and 0 ∈ λmb∗λm
+ J̃(z∗∗λm

− xλm
) and

0 ∈ λnb
∗
λn

+ J̃(z∗∗λn
− xλn

). By monotonicity of B̃,

⟨z∗∗λm
− z∗∗λn

, b∗λm
− b∗λn

⟩ ≥ 0 (3.12)

and by duality mapping of J̃ , ∥z∗∗λm
− xλm

∥ = λm∥b∗λm
∥. Thus, limm→∞ ∥z∗∗λm

−
xλm∥ = 0 ( ∥bλm∥ is bounded as λm → 0). Similarly, limn→∞ ∥z∗∗λn

− xλn∥ = 0.
Therefore,

⟨xλm
− xλn

,b∗λm
− b∗λn

⟩
= ⟨xλm

− z∗∗λm
+ z∗∗λn

− xλn
, b∗λm

− b∗λn
⟩+ ⟨z∗∗λm

− z∗∗λn
, b∗λm

− b∗λn
⟩

≥ ⟨xλm − z∗∗λm
, b∗λm

− b∗λn
⟩+ ⟨z∗∗λn

− xλn , b
∗
λm

− b∗λn
⟩(by (3.12))

≥ −∥xλm
− z∗∗λm

∥(∥b∗λm
+ ∥b∗λn

∥)− ∥z∗∗λn
− xλn

∥(∥b∗λm
∥+ ∥b∗λn

∥).
(3.13)

Since ⟨xλm
− xλn

, w∗
λm

− w∗
λn

⟩ ≥ 0. Then by appealing (3.13) in (3.11), we get

⟨xλm
−xλn

, x∗
λm

−x∗
λn

⟩ ≤ ∥xλm
−z∗∗λm

∥(∥b∗λm
+∥b∗λn

∥)+∥z∗∗λn
−xλn

∥(∥b∗λm
∥+∥b∗λn

∥).

Therefore,
lim

m,n→∞
⟨xλm − xλn , x

∗
λm

− x∗
λn

⟩ ≤ 0. (3.14)

If we replace xλn → x0 in the weak topology of X instead of the weak star
topology, then the Lemma 3.1 holds. Thus, by Lemma 3.1, ⟨xλn

, x∗
λn

⟩ → ⟨x0, x
∗
0⟩.

By monotonicity of A, we get

⟨xλ − y0, x
∗
λ − y∗0⟩ ≥ 0, ∀(y0, y∗0) ∈ graA.

By passing limit along the subsequence,

⟨x0 − y0, x
∗
0 − y∗0⟩ ≥ 0, ∀(y0, y∗0) ∈ graA.

By maximal monotonicity of A, we have x∗
0 ∈ A(x0). Again by the same argument

and from the monotonicity of A, we obtain

⟨xλm
− xλn

, w∗
λm

− w∗
λn

⟩ ≤ −⟨xλm
− xλn

, b∗λm
− b∗λn

⟩.
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Thus,
lim

m,n→∞
⟨xλm

− xλn
, w∗

λm
− w∗

λn
⟩ ≤ 0.

Hence, by Lemma 3.1, ⟨xλn , wλn⟩ → ⟨x0, w
∗
0⟩. Since ∥.∥ is lower semi-continuous

in weak and weak∗ topology, lim inf ∥xλn∥ ≥ ∥x0∥ and lim inf ∥w∗
λn

∥ ≥ ∥w∗
0∥.

1

2
∥x0∥2 +

1

2
∥w∗

0∥2 ≤ 1

2
lim inf ∥w∗

λn
∥2 + 1

2
lim inf ∥xλn

∥2

≤ lim inf⟨xλn
, w∗

λn
⟩ = ⟨x0, w

∗
0⟩.

Note that,
1

2
∥x0∥2 +

1

2
∥w∗

0∥2 ≥ ⟨x0, w
∗
0⟩.

Hence, w∗
0 ∈ J(x0). Now it remains to show that b∗0 ∈ B(x0). Since xλn

→ x0 in
weak topology of X and lim ∥z∗∗λn

− xλn
∥ = 0, then z∗∗λn

→ x∗∗
0 in the weak star

topology of X∗. Let (y, y∗) ∈ graB. By definition of B̃,

⟨z∗∗λn
− y, b∗λn

− y∗⟩ ≥ 0. (3.15)

It is known that ⟨z∗∗λn
, y∗⟩ → ⟨x0, y

∗⟩, ⟨y, b∗λn
⟩ → ⟨y, b∗0⟩. Therefore, it is enough to

show that
⟨z∗∗λn

, b∗λn
⟩ → ⟨x0, b

∗
0⟩.

Note that

∥⟨z∗∗λn
, b∗λn

⟩ − ⟨x∗∗
0 , b∗0⟩∥

= ∥⟨z∗∗λn
, b∗λn

⟩ − ⟨xλn , b
∗
λn

⟩+ ⟨xλn , b
∗
λn

⟩ − ⟨x∗∗
0 , b∗0⟩∥

≤ ∥⟨z∗∗λn
− xλn , b

∗
λn

⟩∥+ ∥⟨xλn , b
∗
λn

⟩ − ⟨x∗∗
0 , b∗0⟩∥

≤ ∥z∗∗λn
− xλn∥∥b∗λn

∥+ ∥⟨xλn , b
∗
λn

⟩ − ⟨x∗∗
0 , b∗0⟩∥. (3.16)

To complete the proof, we must show that ∥⟨xλn
, b∗λn

⟩ − ⟨x0, b
∗
0⟩∥ → 0. By (3.7),

we get that

⟨xλn
, b∗λn

⟩ = ⟨xλn
, x∗ − x∗

λn
− w∗

λn
⟩

= ⟨xλn
, x∗⟩ − ⟨xλn

, x∗
λn

⟩ − ⟨xλn
, w∗

λn
⟩.

As (xλn
) → x0 with respect to weak topology of X and ⟨xλn

, x∗
λn

⟩ → ⟨x0, x
∗
0⟩ and

⟨xλn , w
∗
λn

⟩ → ⟨x0, w
∗
0⟩, we have

⟨xλn
, b∗λn

⟩ → ⟨x0, x
∗ − x∗

0 − w∗
0⟩.

By Passing of the limit along the subsequence of (3.7), we get x∗ = x∗
0 + b∗0 + w∗

0 .
Thus, ⟨xλn

, b∗λn
⟩ → ⟨x0, b

∗
0⟩ and hence, by passing the limit in (3.16), we obtain

⟨z∗∗λn
, b∗λn

⟩ → ⟨x0, b
∗
0⟩.

Therefore, for λn → 0, (3.15) implies ⟨x0 − y, b∗0 − y∗⟩ ≥ 0. Since (y, y∗) ∈ graB
is arbitrary, then by maximal monotonicity of B, we have b∗0 ∈ B(x0). Hence,
x∗ ∈ (A+B + J)(x0).
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Now we will prove the main result.

Theorem 3.4. Let A : X ⇒ X∗ be an ultramaximal monotone operator, B : X ⇒
X∗ be a maximal monotone operator of type (D) and

1. domA ⊂ domB,

2. |B(x)| ≤ K(∥x∥)|A(x)|+ C(∥x∥)
where K(r) and C(r) are non-decreasing functions of r. Assume K(r) < 1 for
every r. Then A+B is a maximal monotone operator of type (D). Moreover, if
A+B is a closed monotone operator, then A+B is a maximal monotone operator
of type (D).

Proof. We can suppose that (0, 0) ∈ graA and (0, 0) ∈ graB. Since B is a maximal
monotone operator of type (D), for any λ > 0, Fact 2.6 implies that Bλ is a
maximal monotone operator of type (D). Then by Fact 2.4 and Fact 2.6, A+ Bλ

is an ultramaximal monotone. Thus, by Fact 2.5,

ran(A+Bλ + J) = X∗. (3.17)

To prove A+B is maximal monotone, by Fact 2.1 and 2.2, it is enough to prove
that for any ϵ > 0,

ran(A+B + Jϵ) = X∗.

If Fact 2.2 is valid for µ = 1, then it is valid for any µ > 0 [19, Lemma 3.3]. For
any x∗ ∈ X∗, there exists xλ, x

∗
λ, b

∗
λ and w∗

λ such that

x∗ = x∗
λ + b∗λ + w∗

λ (3.18)

where (xλ, x
∗
λ) ∈ graA, (xλ, b

∗
λ) ∈ graBλ and (xλ, w

∗
λ) ∈ gra J. By Proposition

3.3, it remains to show that |B(xλ)| is bounded as λ → 0. Since (0, 0) ∈ gra B̃ and
(0, 0) ∈ gra J̃ , then (0, 0) ∈ graBλ. By monotonicity of A, we get ⟨xλ, x

∗
λ⟩ ≥ 0.

Using (3.18), we get ⟨xλ, x
∗ − b∗λ − w∗

λ⟩ ≥ 0. By monotonicity of Bλ, ⟨xλ, b
∗
λ⟩ ≥ 0

and definition J, we have ⟨xλ, x
∗⟩ ≥ ∥xλ∥2 which shows that ∥xλ∥ is bounded.

Thus,

∥xλ∥2 ≤ ∥xλ∥∥x∗∥ ≤ 2∥xλ∥∥x∗∥
⇒∥xλ∥2 − ∥xλ∥∥x∗∥+ ∥x∗∥2 ≤ ∥x∗∥
⇒(∥xλ∥ − ∥x∗∥)2 ≤ ∥x∗∥2

⇒∥xλ∥ ≤ 2∥x∗∥. (3.19)

Therefore, ∥w∗
λ∥ ≤ 2∥x∗∥. Since xλ ∈ domA ⊆ domB , then by (3.18) and Lemma

3.2, we get

|A(xλ)| ≤ ∥x∗
λ∥

≤ ∥x∗∥+ ∥b∗λ∥+ ∥w∗
λ∥.

≤ ∥x∗∥+ |B(xλ)|+ ∥w∗
λ∥

≤ ∥x∗∥+K(∥xλ∥)|A(xλ)|+ C(∥xλ∥) + ∥w∗
λ∥

≤ ∥x∗∥+K(2∥x∗∥)|A(xλ)|+ C(2∥x∗∥) + 2∥x∗∥. by (3.19). (3.20)
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By assuming r = 2∥x∗∥ in (3.20), we get

|A(xλ)| ≤ 3∥x∗∥+K(r)|A(xλ)|+ C(r)

⇒(1−K(r))|A(aλ)| ≤ 3∥x∗∥+ C(r)

⇒|A(xλ)| ≤
3∥x∗∥

1−K(r)
+

C(r)

1−K(r)
(∵ K(r) < 1) (3.21)

Therefore, using hypothesis (2), (3.21) and (3.19), we get

|B(xλ)| ≤ K(∥xλ∥)|A(xλ)|+ C(∥xλ∥)

≤ K(r)
3∥x∗∥

1−K(r)
+

C(r)

1−K(r)
+ C(r).

Hence, |B(xλ)| is bounded. This complete the proof.

4 Conclusion

We prove that the sum of an ultra maximal monotone operator and an opera-
tor of type (D) is a maximal monotone operator in Banach spaces which satisfy
Grothendieck and weakly compactly generated properties. We extend the results
to nonreflexive spaces assuming certain conditions those are automatically satisfied
in reflexive spaces. This approach shows a new way of handling the nonreflexive
scenario without assuming reflexivity directly. Therefore, for extending the re-
sults to general Banach spaces, we only require to relax above two conditions, i.e.,
Grothendieck and weakly compactly generated conditions.
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[9] Brézis, H., Monotone operators, nonlinear semigroups, and applications, in
Proceedings of the International Congress Mathematicians, Vancouver, 249-
255 (1974).
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