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1 Introduction

Set order relations were firstly introduced by Kuroiwa et al. in [{] and then
they were generalized in [2]. These concepts gave a new way, so-called set approach,
to formulate the optimal of set-valued optimization problems [B]. In this approach,
all images of the set-valued objective mapping were compared by set order relations

[@,5], and hence it is a truely natural and practical approach. Therefore, this field
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has attracted a great deal of attention of researchers although it is a young direction
in optimization. Many interesting and important results have been obtained in
different topics in this area [B-T].

Well-posedness was originally proposed by Tikhonov in [2]. This concept
requires two conditions, namely the uniqueness of solution and the convergence
of each minimizing sequence to the unique solution. In other words, whenever
we are able to compute approximately the optimal value then we automatically
do approximate the optimal solution. So, well-posedness plays an important role
in both theory results and numerical methods, and hence many mathematicians
have paid much attention on this topic (see e.g., [[3-I5] and the reference therein).
Later on, generalizations of Tikhonov well-posedness were introduced and studied
widely. One of these extensions is the so-called B-well-posedness proposed by
Bednarczuck for vector optimization problems in [T6]. After that, this notion has
been intensively considered for various problems related to optimization [I"7-21])

Studying on well-posedness for set optimization problems was initialed by
Zhang et al. in [2Z]. The authors obtained sufficient, necessary conditions and
characterizations for set optimization problems involving the lower set less rela-
tion to be well-posed by the scalarization method. After that, some different types
of well-posedness for these problems introduced and investigated [23-26]. In 2013,
as the first authors concerned B-well-posedness for set optimization problems,
Long and Peng [74] introduced three types of B-well-posedness for set optimiza-
tion problems involving upper set less relations <" and established some relations
among these kinds of B-well-posedness. Moreover, the authors also provided nec-
essary and sufficient conditions of these notions for set optimization problems.
To extend the research in [24], Han and Huang [R] studied B-well-posedness for
set optimization problems involving set order relations <! and <*. They gave
characterizations for the generalized [- B-well-posedness and the generalized u-B-
well-posedness and provided the semicontinuity of solution mapping.

As mentioned in [7,27] that among three kinds of set order relations introduced
in [@], the set less relation <* is generalized and more appropriate in practical
problems than both the lower and upper set less relations; and it also occupies an
important role in relationships with other new order relations for sets proposed
in [2] which are more useful in real world. Moreover, to the best of our knowledge,
there is no paper devoted to well-posedness for set optimization problems involving
the set less relation, and hence well-posedness properties for such problems are
deserved to study more. Consequently, we aim to investigate both pointwise and
global B-well-posedness as well as pointwise L-well-posedness for set optimization
problems involving three kinds of set order relations.

The outline of this paper is as follows. In Sect. B, some concepts and re-
sults used in what follows are recalled. Sect. B studies global B-well-posedness
for set optimization problems, including B-well-posedness and generalized B-well-
posedness. Relationships between them are discussed. Moreover, sufficient con-
ditions of B-well-posedness for such problems are provided. In Sect. B, we focus
to pointwise B-well-posedness. Characterizations as well as relationships between
pointwise B-well-posedness and global B-well-posedness are studied. In the last
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section, Sect. B, pointwise L-well-posedness is investigated. Then, relationships
between it and pointwise B-well-posedness are researched.

2 Preliminaries

Let X and Y be normed spaces. We denote the closed unit ball of Y by By.
Let K be a closed convex pointed cone in Y with int K # ), where int K denotes
the interior of K. Orderings induced by cone K in the space Y are defined as the
following

r<gyey-—zek,

T<gysSy—xcintk.

To compare two subsets of Y, we use set order relations introduced in [2,5,P8].
We list here three kinds of set order relations used in this paper. Let P(Y) be
the family of all nonempty subsets of Y. For A, B € P(Y), lower set less relation,
upper set less relation and set less relation, respectively, are defined by

A <! Bif and only if B C A + K,
A <" Bifand only if A C B — K,
A<’ Bifand only if AC B— K and BC A+ K.

Definition 2.1. [2] We say that the binary relation < is

(i) compatible with the addition if and only if A < B and D < E imply
A+ D< B+ Eforal A, B,D,E € P(Y).

(ii) compatible with the multiplication with a nonnegative real number if and
only if A < B implies AA < AB for all scalars A > 0 and all A, B € P(Y).

(iii) compatible with the conlinear structure of P(Y") if and only if it is compat-
ible with both the addition and the multiplication with a nonnegative real
number.

Proposition 2.1. []

(i) The set order relations Sl, <" and <* are pre-order (i.e., these relations are
reflexive and transitive).

(ii) The set order relations <! <% and <® are compatible with the conlinear
structure of P(Y).

iii) In general, the set order relations <!, <* and <® are not antisymmetric;
g y
more precisely, for arbitrary sets A, B € P(Y) we have

(A<'BandB<' A) & (A+ K = B+ K),
(A<"BandB <" A) & (A—- K =B - K),
(A<*BandB<*A) < (A+K=B+KandA— K = B - K).
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For a € {u,!, s}, we say that
A ~% Bif and only if A <% Band B <% A.

Let F': X = Y be a set-valued mapping with nonempty values on X, we
denote F(M) = Ugep F(z). For each o € {u,l, s}, we consider the following set
optimization problem

(Pa) a-Min F(z)
subject to e M,

where M is a nonempty subset of X. A point Z € M is said to be an a-minimal
solution of (P,) if for any x € M such that F(z) <* F(z), then F(z) <% F(x).
The set of all a-minimal solutions of (P,) is called the solution set of (P,) and
denoted by Sq -Min F-

Remark 2.2. Tt can be seen that if T € Sy minr and F(Z) ~® F(z) for some
reM, then z € So Min F-

Next, we recall definitions of semicontinuity for a set-valued mapping and their
properties used in the sequel.

Definition 2.2. [29] A set-valued mapping F': X =Y is said to be

(i) upper semicontinuous at g € DomF if and only if for any open subset V
of Y with F(z¢) C V there is a neighborhood U of zg such that F(z) C V
for all x € U,

(ii) lower semicontinuous at xg € DomF if and only if for any open subset V of
Y with F(xo)NV # 0 there is a neighborhood U of zg such that F(x)NV # 0
for all z € U;

(iii) lower (upper) semicontinuous on a subset D of X if it is lower (upper)
semicontinuous at every z € D;

where DomF = {z € X | F(x) # 0}.

Lemma 2.3. [B0] Let F': X = Y be a set-valued mapping.

(i) F is lower semicontinuous at xg € DomF if for every {x,} converging to zg
and for every y € F(zg) there exists {y,} with y,, € F(x,) such that {y,}
converges to y.

(ii) If F(x) is compact and F is upper semicontinuous at xg € DomF, then for
every {z,} converging to z¢ and y, € F(z,) there exist yo € F(zp) and a
subsequence {yn, } of {y,} such that {y,,} converges to yo.

Definition 2.3. [30] A set-valued mapping F': X =Y is said to be
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(i) Hausdorff upper semicontinuous at zo € DomF' if and only if for each neigh-
borhood V of the origin in Y, there exists a neighborhood U of xg such that
F(z) C F(xg)+V for all z € U.

(ii) Hausdorff lower semicontinuous at z¢g € DomF if and only if for any neigh-
borhood V of the origin in Y, there exists a neighborhood U of z( such that
F(xg) C F(z)+V for all z € U.

(iii) Hausdorff lower (upper) semicontinuous on a subset D of X if and only if
F is Hausdorff lower (upper) semicontinuous at every point of D.

Remark 2.4. [B1] If F is upper semicontinuous at zo € DomF, then F is Haus-
dorff upper semicontinuous at zp; the converse implication is true when F(xg) is
compact.

Next, we recall concepts of Hausdorff distance and Hausdorff convergence of
sequence of sets. Let S be a nonempty subset of X and z € X. The distance d
between x and S is defined as

d(x,S) = inf,ecsd(x,u).

Let S; and S; be two nonempty subsets of X. The Hausdorff distance between
S; and Sy, denoted by H(S1,52), is defined as

H(S1,52) = max{H" (51, 52), H" (52, 51)},
where H*(S1,52) = sup,cg, d(z, S2).
Definition 2.4. [32] Let {A,,} be a sequence of subsets of X. We say that

(i) A, converge to A C X in the sense of the upper Hausdorff set-convergence,
denoted by A4,, — A, if and only if H*(A4,,,A) — 0.

(if) A, converge to A C X in the sense of the lower Hausdorff set-convergence,
denoted by A4,, — A, if and only if H*(A4, 4,,) — 0.

(iii) A, converge to A C X in the sense of the Hausdorff set-convergence, denoted
by A, — A, if and only if H(A,,A) — 0.

3 B-well-posedness for set optimization problems

In this section, two kinds of global B-well-posedness for the problem (P,) are
considered and their relationships are discussed. Moreover, we also provide char-
acterizations and sufficient conditions of B-well-posedness for such problems.

We observe from the definitions of set order relations that <° is a combination
of <! and <*. For relationships between <! and <%, they were given in Remark
2.6.10 of [@] as the following

A<!Be —B <" —A.

Some properties about these set order relations are demonstrated in next re-
sults.
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Proposition 3.1. The following statements are true:
(i) If A <® B, then AA <* AB, VA > 0;
(i) A<! B& M >"\B, VA < 0;
(iii) A<®* B A >° AB, VA <O0.

Proof. (i) We give the proof of the assertion (i) for the case o = s, proofs of this
assertion for other cases « = [ and o« = u are similar. Since A <* B, BC A+ K
and A C B— K. Clearly, for any A > 0, we get AB C AMA+ K and AMA C AB — K.
Hence, AA <*° AB.

(ii) We have B C A+ K as A <! B. For any \ < 0, this yields A\B C M — K,
ie., AB <" )\A.

(iii) Since A <* B, BC A+ K and A C B — K. For any A < 0, this implies
that AB C M — K and AA C AB + K. So, AA >* \B. O

We define a set-valued mapping @ : K = M as follows

Qk)= |J {zeM|F(@)<*F(y) +k}. (3.1)

YESa—MinF
The following results provide some properties of this mapping.

Proposition 3.2. The following assertions hold:
(1) If k1 <k ka, then Q(k1) C Q(k2);
(ii) Sa-minr C Q(0);
(iii) Q(0) = NkexQ(k).

Proof. (i) We only demonstrate the proof of the above assertion for the case o = s,
proofs of this assertion for other cases are proved similarly. Let x € Q(k1) be
given, then there exists y € S,.minr such that F(z) <® F(y)+ky, i.e., F(y)+k C
F(z) 4+ K and F(z) C F(y) + k1 — K. Combining this with k1 <g k2, we get
F(y)+k2 = F(y)—l—k‘l-i-(k‘g—k'l) C F(l‘)—f—K and F(Z‘) C F(y)—Fkl—K =
F(y) 4 kg + (k1 — ko) — K C F(y) + ky — K. This means that F(z) <! F(y) + ks
and F(x) <" F(y) + kz. Hence, z € Q(k2).

(ii) Clearly, for every © € Sy minF, we have F(z) <% F(x), and hence x € Q(0).
Therefore, S Minr C Q(0).

(i) It is obvious that Q(0) C Q(k) for all k € K, and thus Q(0) C NkexQ(k).
Conversely, suppose that there exists z € Npex@(k) but = ¢ Q(0), ie., z &
UyeSammmr iz € M|F(z) <* F(y)}. Then, F(z) £~ F(y) for any y € Sa-MinF-
On the other hand, since x € Ngex@(k), z € Q(k) for all k € K. So, there is
Yy € Sa-minr such that F(x) <* F(y) + k for all k € K. Particularly, for & = 0,
there exists y € Sy minr such that F(x) <* F(y) which is a contradiction. O

Next, we give two concepts related to global B-well-posedness for (P,,).
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Definition 3.1. Problem (P,) is said to be

(i) B-well-posed if and only if Sy.minr # @ and @Q is upper semicontinuous at
k=0.

(ii) generalized B-well-posed if and only if S, pinr # 0 and Q is Hausdorff upper
semicontinuous at k = 0.

Remark 3.3. Clearly, if the problem (P,) is B-well-posedness, then it is gener-
alized B-well-posedness. It follows from Proposition B2(ii) and Remark P4 that
the converse holds if S, minr is compact. In the sequel, we focus on generalized
B-well-posedness.

Definition 3.2. A sequence {x,} C M is said to be a generalized B-minimizing
sequence of (P,) if and only if there exist {k,} C K converging to 0 and {y,} C
Sa-MminF such that F(x,) < F(y,) + kn.

Equivalently, {z,} is a generalized B-minimizing sequence of (P,) if and only if
there exist {k,} C K converging to 0 and {y,} C Syminr such that z,, € Q(k,).

Remark 3.4. When a = u, concepts in Definitions B and B2 reduce to ones in
Definitions 3.1-3.3 in [24], respectively.

Characterizations of B-well-posedness for (P, ) are provided in the next result
through the B-minimizing sequence.

Theorem 3.5. Problem (P,) is generalized B-well-posed if and only if these fol-
lowing conditions are satisfied

(a) Sa-minr # 0;

(b) for every generalized B-minimizing sequence {x,} C M and for every neigh-
borhood U of the origin in X, there exists ng € N such that x,, € Q(0) + U for all
n>ng.

Proof. Suppose that (P,) is generalized B-well-posed. Let {z,} C M be a gener-
alized B-minimizing sequence of (P, ), then there exist {k,} C K converging to 0
and {y,} C Sa-minr such that 2, € Q(k,). Since (P,) is generalized B-well-posed,
Q@ is Hausdorff upper semicontinuous at 0. Let U be a neighborhood of the origin
in X, there exists ng € N such that Q(k,) C Q(0) + U for all n > ng. Therefore,
we get z, € Q(0) + U for all n > ny.

Conversely, suppose on the contrary that (P,) is not generalized B-well-posed.
Thus, @ is not Hausdorff upper semicontinuous at 0. Then, there exists a neigh-
borhood U of the origin in X such that Q(k) ¢ Q(0) + U for some k belongs
to a neighborhood of 0. So, we can build a sequence {k,} C K converging to 0
such that Q(k,) ¢ Q(0) + U. It leads to the existence of a sequence {z,} with
xn € Q(ky) satistying z,, € Q(0) + U which contradicts the assumption (b). This
completes the proof. O

We now give sufficient conditions for (P,) to be generalized B-well-posed.



42 P.T. Vui, L.Q. Anh and R. Wangkeeree

Theorem 3.6. Suppose that So_prnr # O and for any € > 0 there exists § > 0
such that
(F(M) — F(Sa—MinF)) N (6By — K) C EBy. (32)

Then,

(i) (P) is generalized B-well-posed if each sequence of sets {A,} C M with
F(An) — F(Sl_Mmp) satisﬁes An e Sl-MinF'

(ii) (Py) is generalized B-well-posed if each sequence of sets {A,} C M with
F(An) - F(Su-MmF) Satisﬁes An - Su-MinF'

(iii) (Ps) is generalized B-well-posed if each sequence of sets {A,} C M with
F(A,) = F(Ss.minr) satisfies Ay — Ss_pMinp-

Proof. (i) By contradiction, suppose that (P}) is not generalized B-well-posed. Tt
follows from Theorem B3 that there exist a generalized B-minimizing sequence
{z,} and a neighborhood U of the origin in X such that for some ng € N, z,, &
Q(0) 4+ U for all n > ngy. Combining this with Proposition B(ii), we get

Tn & SiminF + U, Vn > ng. (3.3)

Since {z,} is a generalized B-minimizing sequence, there exist {k,} C K converg-
ing to 0 and {y,} C SiminF such that

F(zn) <' F(yn) + kn. (3.4)

We consider two following cases:

Case 1: If F(x,,) — F(Si.Mminr), then choosing A,, = {z,}. It implies from the
hypothesis that {z,} — Siminr, and hence H*(S;minF, {zn}) — 0. Therefore,
d(Zn, Si-mink) — 0 which contradicts (B3).

Case 2: If F(x,) # F(SiMminr), then sup,cg, . d(z, F(x,)) # 0. So, there
exists © € Siainr such that d(x, F(xz,)) # 0, ie., there exist n; € N and a
neighborhood V' of the origin in Y such that

x & F(z,) +V, Yn > ny. (3.5)

Take € such that eBy C V. For § satisfying (832), since {k,} C K converges to 0,
there exists ny € N such that for n > ny, we have

kn € 6By. (3.6)

By (B3), we get F(y,)+ k, C F(x,)+ K. Therefore, F(y,) C F(z,) —k, + K C
F(z,) + 6By + K. This implies that for an arbitrary z, € F(y,), there exists
Z, € F(x,) such that z, € z, + By + K, and thus z, — Z, € By + K. So,
Zn — zn, € 0By — K. On the other hand, we have z, — z, € F(z,) — F(yn) C
F(M) — F(Si.minF). It derives from (B3) that z, — 2z, € eBy C V. So, now we
get z, € Z, + V C F(z,) + V which contradicts (B3).

For (ii) (iii), the proofs of these assertions are technically similar to that of the
assertion (i). O
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4  Pointwise B-well-posedness for set optimiza-
tion problems
In this section, we consider a notion of pointwise B-well-posedness for the problem

(Py). At a reference point zo € M, we define a corresponding set-valued mapping
as follows Qu, : K = M, Qu,(k) ={z € M | F(z) <* F(x¢) + k}.

Definition 4.1. Problem (P,) is said to be B-well-posed at xg € S minr if and
only if @5, is upper semicontinuous at k£ = 0.

We observe that Q,,(0) = {x € M | F(z) ~* F(x0)} for each 29 € Sy MinF-
The next results give some properties of the mapping @,.

Proposition 4.1. The following statements are true:
(i) If k1 <k ko, then Q.o (k1) C Quy(k2);
(il) Quo(0) C Sa-MinF with Ty € Sa-MinF;
(iil) o € Quy(0) C Qq, (k) for every k € K
) Q0) = Uspe S, 11inrQuo (0).-

(iv
Proof. (i) The statement is proved by a similar argument in Proposition B2(i).
(i) By the similarity, we prove the assertion for the case a = s. Let € Q4,(0)
and y € M such that

F(y) <° F(z), (4.1)
we need to show that F(x) <® F(y). Since = € Q,,(0),

F(z) <* F(o). (4.2)

Combining (E0) and (B4), we get F(y) <® F(xg). Because zy € Su-MinF,
F(zg) <* F(y). Therefore, F(z) <*® F(y).

For (iii) and (iv), these assertions are implied by definitions of mappings @
and Q- O

Now we discuss the converse of (ii) of the above proposition. Because the proof
of this assertion is elementary, we would like to omit it.

Lemma 4.2. Ifxg € Sa-minF, then So-minr C Qz,(0) if and only if F(x) ~* F(y)
for all z,y € So-pinF.

Definition 4.3. A sequence {z,} C M is said to be an xo-minimizing sequence
of (P,) where xg € So.Mminr if and only if there exists {k,} C K converging to 0
such that

F(JU.,L) <@ F(Io) + k.
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Definition B3 reduces to Definition 3.3 in [25] when a = w.

Clearly, for each 29 € S MinF, {Tn} C M is an zp-minimizing sequence if and
only if there exists {k,} C K converging to 0 such that =, € Q, (k).

The next result illustrates the relationship between the pointwise B-well-
posedness and B-well-posedness for (P,).

Theorem 4.2. If Sy arinr s a finite set and (P,) is pointwise B-well-posed at
every & € So-MinF, then it is B-well-posed.

Proof. Let Sqmink = {21,...,2,} and V be an open set in X such that Q(0) C V.
By Proposition B(iv), Q,,(0) C V for all 4 = 1,...,n. Since (P,) is pointwise
B-well-posed at every z;, Q,, is upper semicontinuous at k = 0, and hence for each
i € {1,...,n}, there exists a neighborhood Uy, of 0 such that Q,,(U,,) C V. Let
U =N} ,U,,, this finite intersection of neighborhoods U,, is also a neighborhood
of 0. Obviously, we have Q,,(U) C V for all i = 1,...,n. By definitions of
mappings @, and Q, we also get Q(U) C V. It leads to the upper semicontinuity
at k =0 of Q. We conclude that (P,) is B-well-posed. O

We next investigate characterizations of pointwise B-well-posedness for (P,,).

Theorem 4.3. Problem (P,) is pointwise B-well-posed al xo € So-_pminF if and
only if for a given e € intK, the set-valued mapping QF Ry = M defined as
F@t)={zeM]|F(z) <* F(zo) + te}

o
s upper semicontinuous at t = 0.

Proof. Assume that (P,,) is pointwise B-well-posed at xg € Sa-Minr, then Qg is
upper semicontinuous at k = 0. Let V be an open set in X such that @} (0) C V,
we get Qz,(0) C V. By the upper semicontinuity of @, , there is a positive number
r such that Qg (k) C V for all k € B(0,r) N K, where B(0,r) is the open ball
centered at the origin in Y with radius . Then, there exists a positive number
B such that [0, fe) C B(0,r), where [0,8¢e) = {te | t € [0,8)}. For ¢ € [0,) and
x € Qf (t), we have F(z) <* F(xo) + te, which implies that 2 € Q,(te). This
fact, together with te € B(0,r), yields 2 € V, and so Q (t) C V. We conclude
that Q;fo is upper semicontinuous at ¢ = 0.

Conversely, suppose that Q;“O is upper semicontinuous at t = 0. Let V be an
open set in X such that Q,(0) C V, then Q (0) C V. It follows from the upper
semicontinuity of @ that there exists a positive number § such that Qf (t) C V
for every t € [0,8). For convenience in writing, we only prove the assertion for
case o = s because proofs of this assertion for other cases o = [ and a = u are
similar. Let « € [0, 8), there exists a positive number r such that B(0,r) C ye— K
and B(0,7) C —ye+ K. Let k € B(0,r) N K and = € Q,(k), it follows from the
definition of @, that

F(x) <" F(xp) + k, (4.3)

and
F(z) <! F(xo) + k. (4.4)
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It yields from (E=3) that F(z) C F(xo) +k— K C F(z9)+ve— K as k € ye — K.
On other hand, by (B3), we get F(z¢) + k C F(z) + K, and hence F(xg) C
F(z) —k+ K. Since —k € B(0,r) C —ye + K, we have F(z) C F(x) —ve + K,
ie., F(xg)+ve C F(z)+ K. So, we now get F(x) <°® F(xo) + ve. It implies that
z € QF (v), and thus x € V and Qu, (k) C V. The proof is complete. O

Theorem 4.4. If S, pinr is closed and (P,) is pointwise B-well-posed at z¢ €
So-MinF, then for every xg-minimizing sequence {x,} C M\Sq._pinF, one can ex-
tract a subsequence {xn, } of {x,} such that {x,,} converges to some T € Sq-MinF-

Proof. Assume that (P,) is pointwise B-well-posed at zy € Sa-MinF, then Qg is
upper semicontinuous at k = 0. By contradiction, suppose that there exists an
xo-minimizing sequence {x,,} C M\Sq-Minr Which admits no subsequence {x,, }
converging to some T € Sy minr. By the closedness of S, minp, Wwe may find an
open set V. C X such that Soming € V and x, ¢ V. We have Q,,(0) C V
due to Qy,(0) C Sa-minr and Proposition BTH(ii). Since {x,} is an zo-minimizing
sequence, there exists {k,} C K converging to 0 such that z, € Qu,(kn). It
follows from the upper semicontinuity of Q,, at k = 0 that Q.,(k,) C V. Hence,
T, € V which is a contradiction. So, we get the desired result. O

Remark 4.5. Our results extend the corresponding results of Long and Peng [24].
More precisely,

(i) When a =1 or o = s, our results here are new. To the best of our knowl-
edge, there is no paper devoted to this type of well-posedness for set optimization
problem involving the set less relation <°.

(i) When a = wu, the corresponding set optimization problem (P,) was studied
in [24)].

5 Pointwise L-well-posedness and relationship with
pointwise B-well-posedness

Motivated by the studies in [22,25], we introduce the concept of pointwise L-well-
posedness for the problem (P,).

Definition 5.1. Problem (P,) is said to be L-well-posed at xg € S -Mminr if and
only if every xg-minimizing sequence of (P,) has a subsequence converging to some
element T € S, MinF-

Remark 5.1. When a = [, Definition B reduces to Definition 2.1 in [27].

We are going to study sufficient and necessary conditions of pointwise L-well-
posedness for (P,).

Theorem 5.2. Let xy € So_pinr be given.
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(i) If (Py) is L-well-posed at xo and Qqg,(0) = So-MinrF, then Qu, is upper
semicontinuous and compact-valued at 0.

(i) If Qu, is upper semicontinuous and compact-valued at 0, then (Py) is L-
well-posed at xg.

Proof. (i) Assume that (P,) is L-well-posed at xg. First of all, we show that Q,,
is upper semicontinuous at 0. By contradiction, suppose that ), is not upper
semicontinuous at 0. Then, there exist a neighborhood U of Q,(0) and {k,} C K
converging to 0 such that for each n € N, there exists z,, € Q4,(0) \ U, i.e.,

Tn U (5.1)

and
F(xy,) <* F(xg) + k. (5.2)

It follows from (632) that {z,} is an z¢-minimizing sequence of (P,). Because
(P,) is L-well-posed at xq, there exists a subsequence of {z,}, denoted by {z,, },
converging to some element Z € S, Minr, and thus we get T € Q,,(0). Therefore,
Z € U which contradicts (B). So, @, is upper semicontinuous at 0.

Next, we prove that @Q.,(0) is compact. Indeed, for every sequence {z,} C
Q,(0), we have F(x,) <% F(xg) + k, where {k,} C K converges to 0. This
means that {z,} is an z¢-minimizing sequence of (P, ). By the L-well-posedness
of (P,) at xg, there exists a subsequence {xz,, } of {z,} such that {z,, } converges
to an element T € S, \in . Therefore, & € Q,,(0). This leads to the compactness
of Qq, (0).

(ii) Let {zn} C M be an xo-minimizing sequence of (P,), there exists {k,} C
K converging to 0 such that F'(zy,) <% F(xo) + kn. Hence, x,, € Qg,(ky). Since
@z, is upper semicontinuous and compact-valued at 0, there exists a subsequence
of {z,}, denoted by {z,,}, converging to some Z € Q,,(0). Combining this with
Proposition B(ii), we get T € S Min £ S0, (Po) is L-well-posed at xg. O

The next results illustrate relationships between the pointwise L-well-posedness
and pointwise B-well-posedness for the problem (P,).

Theorem 5.3. Let xg € Su_piny be given.

(i) If (Pa) is L-well-posed at xo and Q,(0) = So-minr, then it is B-well-posed
at Tg.

(ii) If (Pa) is B-well-posed at xo and Sy pinr is compact, then it is L-well-posed
at Tg.

Proof. (i) By contradiction, suppose that (P,) is not B-well-posed at zo. We get
that @5, is not upper semicontinuous at k = 0. Hence, there exist a neighborhood
V of Q4,(0) and {k,} C K converging to 0 such that for each n € N, there exists
Zn € Quy(kn) \ V. By definition of Q,,, we have F(x,) <* F(x¢) + kn, i.e., {zn}

is an xo-minimizing sequence of (P,). It follows from the L-well-posedness at xg
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of (P,) that there exists a subsequence {z,, } of {z,} such that {z,, } converges
to an element T € S, MinF. Therefore, T € Q,,(0), and hence we now get

T € Q. (0)C W (5.3)

On the other hand, since x,, € V, x,, € X \ V. By the closedness of X \ V, we
have z € X \ V which contradicts (B3). So, (Ps) is B-well-posed at x.

(ii) Suppose that (P, ) is B-well-posed at xg. Let {x,} be an xo-minimizing
sequence of (P, ), we consider two cases as follows:

Case 1: {x,} has infinite elements which belong to S MinF. Since Sy pMinF IS
compact, there exists a subsequence {z,,} of {z,} such that {z,, } converges to
some T € S, minr. Hence, (P,,) is L-well-posed at zg.

Case 2: {x,} has infinite elements which do not belong to S, Mminr. Without
lost of generality, we can assume that {z,} C M\Sspminr. By Theorem B4, {z,}
has a subsequence {z,,} converging to some T € S, Mminr. Therefore, (P,) is
L-well-posed at xzg. O
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