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1 Introduction

Set order relations were firstly introduced by Kuroiwa et al. in [1] and then
they were generalized in [2]. These concepts gave a new way, so-called set approach,
to formulate the optimal of set-valued optimization problems [3]. In this approach,
all images of the set-valued objective mapping were compared by set order relations
[4,5], and hence it is a truely natural and practical approach. Therefore, this field
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has attracted a great deal of attention of researchers although it is a young direction
in optimization. Many interesting and important results have been obtained in
different topics in this area [6–11].

Well-posedness was originally proposed by Tikhonov in [12]. This concept
requires two conditions, namely the uniqueness of solution and the convergence
of each minimizing sequence to the unique solution. In other words, whenever
we are able to compute approximately the optimal value then we automatically
do approximate the optimal solution. So, well-posedness plays an important role
in both theory results and numerical methods, and hence many mathematicians
have paid much attention on this topic (see e.g., [13–15] and the reference therein).
Later on, generalizations of Tikhonov well-posedness were introduced and studied
widely. One of these extensions is the so-called B-well-posedness proposed by
Bednarczuck for vector optimization problems in [16]. After that, this notion has
been intensively considered for various problems related to optimization [17–21]

Studying on well-posedness for set optimization problems was initialed by
Zhang et al. in [22]. The authors obtained sufficient, necessary conditions and
characterizations for set optimization problems involving the lower set less rela-
tion to be well-posed by the scalarization method. After that, some different types
of well-posedness for these problems introduced and investigated [23–26]. In 2013,
as the first authors concerned B-well-posedness for set optimization problems,
Long and Peng [24] introduced three types of B-well-posedness for set optimiza-
tion problems involving upper set less relations ≤u and established some relations
among these kinds of B-well-posedness. Moreover, the authors also provided nec-
essary and sufficient conditions of these notions for set optimization problems.
To extend the research in [24], Han and Huang [8] studied B-well-posedness for
set optimization problems involving set order relations ≤l and ≤u. They gave
characterizations for the generalized l-B-well-posedness and the generalized u-B-
well-posedness and provided the semicontinuity of solution mapping.

As mentioned in [2,27] that among three kinds of set order relations introduced
in [1], the set less relation ≤s is generalized and more appropriate in practical
problems than both the lower and upper set less relations; and it also occupies an
important role in relationships with other new order relations for sets proposed
in [2] which are more useful in real world. Moreover, to the best of our knowledge,
there is no paper devoted to well-posedness for set optimization problems involving
the set less relation, and hence well-posedness properties for such problems are
deserved to study more. Consequently, we aim to investigate both pointwise and
global B-well-posedness as well as pointwise L-well-posedness for set optimization
problems involving three kinds of set order relations.

The outline of this paper is as follows. In Sect. 2, some concepts and re-
sults used in what follows are recalled. Sect. 3 studies global B-well-posedness
for set optimization problems, including B-well-posedness and generalized B-well-
posedness. Relationships between them are discussed. Moreover, sufficient con-
ditions of B-well-posedness for such problems are provided. In Sect. 4, we focus
to pointwise B-well-posedness. Characterizations as well as relationships between
pointwise B-well-posedness and global B-well-posedness are studied. In the last
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section, Sect. 5, pointwise L-well-posedness is investigated. Then, relationships
between it and pointwise B-well-posedness are researched.

2 Preliminaries

Let X and Y be normed spaces. We denote the closed unit ball of Y by BY .
Let K be a closed convex pointed cone in Y with intK ̸= ∅, where intK denotes
the interior of K. Orderings induced by cone K in the space Y are defined as the
following

x ≤K y ⇔ y − x ∈ K,

x <K y ⇔ y − x ∈ intK.

To compare two subsets of Y , we use set order relations introduced in [2,5,28].
We list here three kinds of set order relations used in this paper. Let P(Y ) be
the family of all nonempty subsets of Y . For A,B ∈ P(Y ), lower set less relation,
upper set less relation and set less relation, respectively, are defined by

A ≤l B if and only ifB ⊂ A+K,

A ≤u B if and only ifA ⊂ B −K,

A ≤s B if and only ifA ⊂ B −K and B ⊂ A+K.

Definition 2.1. [2] We say that the binary relation ≤ is

(i) compatible with the addition if and only if A ≤ B and D ≤ E imply
A+D ≤ B + E for all A,B,D,E ∈ P(Y ).

(ii) compatible with the multiplication with a nonnegative real number if and
only if A ≤ B implies λA ≤ λB for all scalars λ ≥ 0 and all A,B ∈ P(Y ).

(iii) compatible with the conlinear structure of P(Y ) if and only if it is compat-
ible with both the addition and the multiplication with a nonnegative real
number.

Proposition 2.1. [2]

(i) The set order relations ≤l, ≤u and ≤s are pre-order (i.e., these relations are
reflexive and transitive).

(ii) The set order relations ≤l, ≤u and ≤s are compatible with the conlinear
structure of P(Y ).

(iii) In general, the set order relations ≤l, ≤u and ≤s are not antisymmetric;
more precisely, for arbitrary sets A,B ∈ P(Y ) we have

(A ≤l B andB ≤l A) ⇔ (A+K = B +K),

(A ≤u B andB ≤u A) ⇔ (A−K = B −K),

(A ≤s B andB ≤s A) ⇔ (A+K = B +K andA−K = B −K).
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For α ∈ {u, l, s}, we say that

A ∼α B if and only ifA ≤α B andB ≤α A.

Let F : X ⇒ Y be a set-valued mapping with nonempty values on X, we
denote F (M) = ∪x∈MF (x). For each α ∈ {u, l, s}, we consider the following set
optimization problem

(Pα) α -MinF(x)

subject to x ∈ M,

where M is a nonempty subset of X. A point x̄ ∈ M is said to be an α-minimal
solution of (Pα) if for any x ∈ M such that F (x) ≤α F (x̄), then F (x̄) ≤α F (x).
The set of all α-minimal solutions of (Pα) is called the solution set of (Pα) and
denoted by Sα -MinF .

Remark 2.2. It can be seen that if x̄ ∈ Sα -MinF and F (x̄) ∼α F (x) for some
x ∈ M , then x ∈ Sα -MinF .

Next, we recall definitions of semicontinuity for a set-valued mapping and their
properties used in the sequel.

Definition 2.2. [29] A set-valued mapping F : X ⇒ Y is said to be

(i) upper semicontinuous at x0 ∈ DomF if and only if for any open subset V
of Y with F (x0) ⊂ V there is a neighborhood U of x0 such that F (x) ⊂ V
for all x ∈ U ;

(ii) lower semicontinuous at x0 ∈ DomF if and only if for any open subset V of
Y with F (x0)∩V ̸= ∅ there is a neighborhood U of x0 such that F (x)∩V ̸= ∅
for all x ∈ U ;

(iii) lower (upper) semicontinuous on a subset D of X if it is lower (upper)
semicontinuous at every x ∈ D;

where DomF = {x ∈ X | F (x) ̸= ∅}.

Lemma 2.3. [30] Let F : X ⇒ Y be a set-valued mapping.

(i) F is lower semicontinuous at x0 ∈ DomF if for every {xn} converging to x0

and for every y ∈ F (x0) there exists {yn} with yn ∈ F (xn) such that {yn}
converges to y.

(ii) If F (x0) is compact and F is upper semicontinuous at x0 ∈ DomF , then for
every {xn} converging to x0 and yn ∈ F (xn) there exist y0 ∈ F (x0) and a
subsequence {ynk

} of {yn} such that {ynk
} converges to y0.

Definition 2.3. [30] A set-valued mapping F : X ⇒ Y is said to be
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(i) Hausdorff upper semicontinuous at x0 ∈ DomF if and only if for each neigh-
borhood V of the origin in Y , there exists a neighborhood U of x0 such that
F (x) ⊂ F (x0) + V for all x ∈ U.

(ii) Hausdorff lower semicontinuous at x0 ∈ DomF if and only if for any neigh-
borhood V of the origin in Y , there exists a neighborhood U of x0 such that
F (x0) ⊂ F (x) + V for all x ∈ U.

(iii) Hausdorff lower (upper) semicontinuous on a subset D of X if and only if
F is Hausdorff lower (upper) semicontinuous at every point of D.

Remark 2.4. [31] If F is upper semicontinuous at x0 ∈ DomF , then F is Haus-
dorff upper semicontinuous at x0; the converse implication is true when F (x0) is
compact.

Next, we recall concepts of Hausdorff distance and Hausdorff convergence of
sequence of sets. Let S be a nonempty subset of X and x ∈ X. The distance d
between x and S is defined as

d(x, S) = infu∈Sd(x, u).

Let S1 and S2 be two nonempty subsets of X. The Hausdorff distance between
S1 and S2, denoted by H(S1, S2), is defined as

H(S1, S2) = max{H∗(S1, S2),H
∗(S2, S1)},

where H∗(S1, S2) = supx∈S1
d(x, S2).

Definition 2.4. [32] Let {An} be a sequence of subsets of X. We say that

(i) An converge to A ⊂ X in the sense of the upper Hausdorff set-convergence,
denoted by An ⇀ A, if and only if H∗(An, A) → 0.

(ii) An converge to A ⊂ X in the sense of the lower Hausdorff set-convergence,
denoted by An ⇁ A, if and only if H∗(A,An) → 0.

(iii) An converge to A ⊂ X in the sense of the Hausdorff set-convergence, denoted
by An → A, if and only if H(An, A) → 0.

3 B-well-posedness for set optimization problems

In this section, two kinds of global B-well-posedness for the problem (Pα) are
considered and their relationships are discussed. Moreover, we also provide char-
acterizations and sufficient conditions of B-well-posedness for such problems.

We observe from the definitions of set order relations that ≤s is a combination
of ≤l and ≤u. For relationships between ≤l and ≤u, they were given in Remark
2.6.10 of [4] as the following

A ≤l B ⇔ −B ≤u −A.

Some properties about these set order relations are demonstrated in next re-
sults.
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Proposition 3.1. The following statements are true:

(i) If A ≤α B, then λA ≤α λB, ∀λ > 0;

(ii) A ≤l B ⇔ λA ≥u λB, ∀λ < 0;

(iii) A ≤s B ⇔ λA ≥s λB, ∀λ < 0.

Proof. (i) We give the proof of the assertion (i) for the case α = s, proofs of this
assertion for other cases α = l and α = u are similar. Since A ≤s B, B ⊂ A+K
and A ⊂ B −K. Clearly, for any λ > 0, we get λB ⊂ λA+K and λA ⊂ λB −K.
Hence, λA ≤s λB.

(ii) We have B ⊂ A+K as A ≤l B. For any λ < 0, this yields λB ⊂ λA−K,
i.e., λB ≤u λA.

(iii) Since A ≤s B, B ⊂ A +K and A ⊂ B −K. For any λ < 0, this implies
that λB ⊂ λA−K and λA ⊂ λB +K. So, λA ≥s λB.

We define a set-valued mapping Q : K ⇒ M as follows

Q(k) =
∪

y∈Sα−MinF

{x ∈ M | F (x) ≤α F (y) + k}. (3.1)

The following results provide some properties of this mapping.

Proposition 3.2. The following assertions hold:

(i) If k1 ≤K k2, then Q(k1) ⊂ Q(k2);

(ii) Sα-MinF ⊂ Q(0);

(iii) Q(0) = ∩k∈KQ(k).

Proof. (i) We only demonstrate the proof of the above assertion for the case α = s,
proofs of this assertion for other cases are proved similarly. Let x ∈ Q(k1) be
given, then there exists y ∈ Sα-MinF such that F (x) ≤s F (y)+k1, i.e., F (y)+k1 ⊂
F (x) + K and F (x) ⊂ F (y) + k1 − K. Combining this with k1 ≤K k2, we get
F (y) + k2 = F (y) + k1 + (k2 − k1) ⊂ F (x) + K and F (x) ⊂ F (y) + k1 − K =
F (y) + k2 + (k1 − k2)−K ⊂ F (y) + k2 −K. This means that F (x) ≤l F (y) + k2
and F (x) ≤u F (y) + k2. Hence, x ∈ Q(k2).

(ii) Clearly, for every x ∈ Sα-MinF, we have F (x) ≤α F (x), and hence x ∈ Q(0).
Therefore, Sα-MinF ⊂ Q(0).

(iii) It is obvious that Q(0) ⊂ Q(k) for all k ∈ K, and thus Q(0) ⊂ ∩k∈KQ(k).
Conversely, suppose that there exists x ∈ ∩k∈KQ(k) but x ̸∈ Q(0), i.e., x ̸∈
∪y∈Sα-MinF{z ∈ M |F (z) ≤α F (y)}. Then, F (x) ̸≤α F (y) for any y ∈ Sα-MinF.
On the other hand, since x ∈ ∩k∈KQ(k), x ∈ Q(k) for all k ∈ K. So, there is
y ∈ Sα-MinF such that F (x) ≤α F (y) + k for all k ∈ K. Particularly, for k = 0,
there exists y ∈ Sα-MinF such that F (x) ≤α F (y) which is a contradiction.

Next, we give two concepts related to global B-well-posedness for (Pα).
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Definition 3.1. Problem (Pα) is said to be

(i) B-well-posed if and only if Sα-MinF ̸= ∅ and Q is upper semicontinuous at
k = 0.

(ii) generalized B-well-posed if and only if Sα-MinF ̸= ∅ and Q is Hausdorff upper
semicontinuous at k = 0.

Remark 3.3. Clearly, if the problem (Pα) is B-well-posedness, then it is gener-
alized B-well-posedness. It follows from Proposition 3.2(ii) and Remark 2.4 that
the converse holds if Sα-MinF is compact. In the sequel, we focus on generalized
B-well-posedness.

Definition 3.2. A sequence {xn} ⊂ M is said to be a generalized B-minimizing
sequence of (Pα) if and only if there exist {kn} ⊂ K converging to 0 and {yn} ⊂
Sα-MinF such that F (xn) ≤α F (yn) + kn.

Equivalently, {xn} is a generalized B-minimizing sequence of (Pα) if and only if
there exist {kn} ⊂ K converging to 0 and {yn} ⊂ Sα-MinF such that xn ∈ Q(kn).

Remark 3.4. When α = u, concepts in Definitions 3.1 and 3.2 reduce to ones in
Definitions 3.1-3.3 in [24], respectively.

Characterizations of B-well-posedness for (Pα) are provided in the next result
through the B-minimizing sequence.

Theorem 3.5. Problem (Pα) is generalized B-well-posed if and only if these fol-
lowing conditions are satisfied

(a) Sα-MinF ̸= ∅;
(b) for every generalized B-minimizing sequence {xn} ⊂ M and for every neigh-
borhood U of the origin in X, there exists n0 ∈ N such that xn ∈ Q(0) + U for all
n ≥ n0.

Proof. Suppose that (Pα) is generalized B-well-posed. Let {xn} ⊂ M be a gener-
alized B-minimizing sequence of (Pα), then there exist {kn} ⊂ K converging to 0
and {yn} ⊂ Sα-MinF such that xn ∈ Q(kn). Since (Pα) is generalized B-well-posed,
Q is Hausdorff upper semicontinuous at 0. Let U be a neighborhood of the origin
in X, there exists n0 ∈ N such that Q(kn) ⊂ Q(0) + U for all n ≥ n0. Therefore,
we get xn ∈ Q(0) + U for all n ≥ n0.

Conversely, suppose on the contrary that (Pα) is not generalized B-well-posed.
Thus, Q is not Hausdorff upper semicontinuous at 0. Then, there exists a neigh-
borhood U of the origin in X such that Q(k) ̸⊂ Q(0) + U for some k belongs
to a neighborhood of 0. So, we can build a sequence {kn} ⊂ K converging to 0
such that Q(kn) ̸⊂ Q(0) + U . It leads to the existence of a sequence {xn} with
xn ∈ Q(kn) satisfying xn ̸∈ Q(0) + U which contradicts the assumption (b). This
completes the proof.

We now give sufficient conditions for (Pα) to be generalized B-well-posed.
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Theorem 3.6. Suppose that Sα-MinF ̸= ∅ and for any ε > 0 there exists δ > 0
such that

(F (M)− F (Sα-MinF)) ∩ (δBY −K) ⊂ εBY . (3.2)

Then,

(i) (Pl) is generalized B-well-posed if each sequence of sets {An} ⊂ M with
F (An) ⇁ F (Sl-MinF) satisfies An ⇁ Sl-MinF.

(ii) (Pu) is generalized B-well-posed if each sequence of sets {An} ⊂ M with
F (An) ⇀ F (Su-MinF) satisfies An ⇀ Su-MinF.

(iii) (Ps) is generalized B-well-posed if each sequence of sets {An} ⊂ M with
F (An) → F (Ss-MinF) satisfies An → Ss-MinF.

Proof. (i) By contradiction, suppose that (Pl) is not generalized B-well-posed. It
follows from Theorem 3.5 that there exist a generalized B-minimizing sequence
{xn} and a neighborhood U of the origin in X such that for some n0 ∈ N, xn ̸∈
Q(0) + U for all n ≥ n0. Combining this with Proposition 3.2(ii), we get

xn ̸∈ Sl-MinF + U, ∀n ≥ n0. (3.3)

Since {xn} is a generalized B-minimizing sequence, there exist {kn} ⊂ K converg-
ing to 0 and {yn} ⊂ Sl-MinF such that

F (xn) ≤l F (yn) + kn. (3.4)

We consider two following cases:
Case 1 : If F (xn) ⇁ F (Sl-MinF), then choosing An = {xn}. It implies from the
hypothesis that {xn} ⇁ Sl-MinF, and hence H∗(Sl-MinF, {xn}) → 0. Therefore,
d(xn, Sl-MinF) → 0 which contradicts (3.3).
Case 2 : If F (xn) ̸⇁ F (Sl-MinF), then supx∈Sl-MinF

d(x, F (xn)) ̸→ 0. So, there
exists x ∈ Sl-MinF such that d(x, F (xn)) ̸→ 0, i.e., there exist n1 ∈ N and a
neighborhood V of the origin in Y such that

x ̸∈ F (xn) + V, ∀n ≥ n1. (3.5)

Take ε such that εBY ⊂ V . For δ satisfying (3.2), since {kn} ⊂ K converges to 0,
there exists n2 ∈ N such that for n ≥ n2, we have

kn ∈ δBY . (3.6)

By (3.4), we get F (yn) + kn ⊂ F (xn) +K. Therefore, F (yn) ⊂ F (xn)− kn +K ⊂
F (xn) + δBY + K. This implies that for an arbitrary zn ∈ F (yn), there exists
z̄n ∈ F (xn) such that zn ∈ z̄n + δBY + K, and thus zn − z̄n ∈ δBY + K. So,
z̄n − zn ∈ δBY − K. On the other hand, we have z̄n − zn ∈ F (xn) − F (yn) ⊂
F (M) − F (Sl-MinF). It derives from (3.2) that z̄n − zn ∈ εBY ⊂ V . So, now we
get zn ∈ z̄n + V ⊂ F (xn) + V which contradicts (3.5).

For (ii) (iii), the proofs of these assertions are technically similar to that of the
assertion (i).
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4 Pointwise B-well-posedness for set optimiza-
tion problems

In this section, we consider a notion of pointwise B -well-posedness for the problem
(Pα). At a reference point x0 ∈ M , we define a corresponding set-valued mapping
as follows Qx0

: K ⇒ M , Qx0
(k) = {x ∈ M | F (x) ≤α F (x0) + k}.

Definition 4.1. Problem (Pα) is said to be B -well-posed at x0 ∈ Sα-MinF if and
only if Qx0

is upper semicontinuous at k = 0.

We observe that Qx0
(0) = {x ∈ M | F (x) ∼α F (x0)} for each x0 ∈ Sα-MinF.

The next results give some properties of the mapping Qx0
.

Proposition 4.1. The following statements are true:

(i) If k1 ≤K k2, then Qx0
(k1) ⊂ Qx0

(k2);

(ii) Qx0
(0) ⊂ Sα-MinF with x0 ∈ Sα-MinF;

(iii) x0 ∈ Qx0
(0) ⊂ Qx0

(k) for every k ∈ K;

(iv) Q(0) = ∪x0∈Sα-MinF
Qx0

(0).

Proof. (i) The statement is proved by a similar argument in Proposition 3.2(i).
(ii) By the similarity, we prove the assertion for the case α = s. Let x ∈ Qx0

(0)
and y ∈ M such that

F (y) ≤s F (x), (4.1)

we need to show that F (x) ≤s F (y). Since x ∈ Qx0
(0),

F (x) ≤s F (x0). (4.2)

Combining (4.1) and (4.2), we get F (y) ≤s F (x0). Because x0 ∈ Sα-MinF,
F (x0) ≤s F (y). Therefore, F (x) ≤s F (y).

For (iii) and (iv), these assertions are implied by definitions of mappings Q
and Qx0

.

Now we discuss the converse of (ii) of the above proposition. Because the proof
of this assertion is elementary, we would like to omit it.

Lemma 4.2. If x0 ∈ Sα-MinF, then Sα-MinF ⊂ Qx0
(0) if and only if F (x) ∼α F (y)

for all x, y ∈ Sα-MinF.

Definition 4.3. A sequence {xn} ⊂ M is said to be an x0-minimizing sequence
of (Pα) where x0 ∈ Sα-MinF if and only if there exists {kn} ⊂ K converging to 0
such that

F (xn) ≤α F (x0) + kn.
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Definition 4.3 reduces to Definition 3.3 in [25] when α = u.
Clearly, for each x0 ∈ Sα-MinF, {xn} ⊂ M is an x0-minimizing sequence if and

only if there exists {kn} ⊂ K converging to 0 such that xn ∈ Qx0
(kn).

The next result illustrates the relationship between the pointwise B -well-
posedness and B -well-posedness for (Pα).

Theorem 4.2. If Sα-MinF is a finite set and (Pα) is pointwise B-well-posed at
every x ∈ Sα-MinF, then it is B-well-posed.

Proof. Let Sα-MinF = {x1, . . . , xn} and V be an open set in X such that Q(0) ⊂ V .
By Proposition 4.1(iv), Qxi

(0) ⊂ V for all i = 1, . . . , n. Since (Pα) is pointwise
B -well-posed at every xi, Qxi

is upper semicontinuous at k = 0, and hence for each
i ∈ {1, . . . , n}, there exists a neighborhood Uxi

of 0 such that Qxi
(Uxi

) ⊂ V . Let
U = ∩n

i=1Uxi , this finite intersection of neighborhoods Uxi is also a neighborhood
of 0. Obviously, we have Qxi(U) ⊂ V for all i = 1, . . . , n. By definitions of
mappings Qxi

and Q, we also get Q(U) ⊂ V . It leads to the upper semicontinuity
at k = 0 of Q. We conclude that (Pα) is B -well-posed.

We next investigate characterizations of pointwise B-well-posedness for (Pα).

Theorem 4.3. Problem (Pα) is pointwise B-well-posed at x0 ∈ Sα-MinF if and
only if for a given e ∈ intK, the set-valued mapping Q+

x0
: R+ ⇒ M defined as

Q+
x0
(t) = {x ∈ M | F (x) ≤α F (x0) + te}

is upper semicontinuous at t = 0.

Proof. Assume that (Pα) is pointwise B -well-posed at x0 ∈ Sα-MinF, then Qx0 is
upper semicontinuous at k = 0. Let V be an open set in X such that Q+

x0
(0) ⊂ V ,

we get Qx0
(0) ⊂ V . By the upper semicontinuity of Qx0

, there is a positive number
r such that Qx0

(k) ⊂ V for all k ∈ B(0, r) ∩ K, where B(0, r) is the open ball
centered at the origin in Y with radius r. Then, there exists a positive number
β such that [0, βe) ⊂ B(0, r), where [0, βe) = {te | t ∈ [0, β)}. For t ∈ [0, β) and
x ∈ Q+

x0
(t), we have F (x) ≤α F (x0) + te, which implies that x ∈ Qx0(te). This

fact, together with te ∈ B(0, r), yields x ∈ V , and so Q+
x0
(t) ⊂ V . We conclude

that Q+
x0

is upper semicontinuous at t = 0.
Conversely, suppose that Q+

x0
is upper semicontinuous at t = 0. Let V be an

open set in X such that Qx0
(0) ⊂ V , then Q+

x0
(0) ⊂ V . It follows from the upper

semicontinuity of Q+
x0

that there exists a positive number β such that Q+
x0
(t) ⊂ V

for every t ∈ [0, β). For convenience in writing, we only prove the assertion for
case α = s because proofs of this assertion for other cases α = l and α = u are
similar. Let γ ∈ [0, β), there exists a positive number r such that B(0, r) ⊂ γe−K
and B(0, r) ⊂ −γe +K. Let k ∈ B(0, r) ∩K and x ∈ Qx0

(k), it follows from the
definition of Qx0

that
F (x) ≤u F (x0) + k, (4.3)

and
F (x) ≤l F (x0) + k. (4.4)
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It yields from (4.3) that F (x) ⊂ F (x0) + k−K ⊂ F (x0) + γe−K as k ∈ γe−K.
On other hand, by (4.4), we get F (x0) + k ⊂ F (x) + K, and hence F (x0) ⊂
F (x)− k +K. Since −k ∈ B(0, r) ⊂ −γe+K, we have F (x0) ⊂ F (x)− γe+K,
i.e., F (x0) + γe ⊂ F (x) +K. So, we now get F (x) ≤s F (x0) + γe. It implies that
x ∈ Q+

x0
(γ), and thus x ∈ V and Qx0

(k) ⊂ V . The proof is complete.

Theorem 4.4. If Sα-MinF is closed and (Pα) is pointwise B-well-posed at x0 ∈
Sα-MinF, then for every x0-minimizing sequence {xn} ⊂ M\Sα-MinF, one can ex-
tract a subsequence {xnk

} of {xn} such that {xnk
} converges to some x̄ ∈ Sα-MinF.

Proof. Assume that (Pα) is pointwise B -well-posed at x0 ∈ Sα-MinF, then Qx0
is

upper semicontinuous at k = 0. By contradiction, suppose that there exists an
x0-minimizing sequence {xn} ⊂ M\Sα-MinF which admits no subsequence {xnk

}
converging to some x̄ ∈ Sα-MinF. By the closedness of Sα-MinF, we may find an
open set V ⊂ X such that Sα-MinF ⊂ V and xn ̸∈ V . We have Qx0(0) ⊂ V
due to Qx0(0) ⊂ Sα-MinF and Proposition 4.1(ii). Since {xn} is an x0-minimizing
sequence, there exists {kn} ⊂ K converging to 0 such that xn ∈ Qx0

(kn). It
follows from the upper semicontinuity of Qx0

at k = 0 that Qx0
(kn) ⊂ V . Hence,

xn ∈ V which is a contradiction. So, we get the desired result.

Remark 4.5. Our results extend the corresponding results of Long and Peng [24].
More precisely,

(i) When α = l or α = s, our results here are new. To the best of our knowl-
edge, there is no paper devoted to this type of well-posedness for set optimization
problem involving the set less relation ≤s.

(ii) When α = u, the corresponding set optimization problem (Pu) was studied
in [24].

5 Pointwise L-well-posedness and relationship with
pointwise B-well-posedness

Motivated by the studies in [22,25], we introduce the concept of pointwise L-well-
posedness for the problem (Pα).

Definition 5.1. Problem (Pα) is said to be L-well-posed at x0 ∈ Sα-MinF if and
only if every x0-minimizing sequence of (Pα) has a subsequence converging to some
element x̄ ∈ Sα-MinF.

Remark 5.1. When α = l, Definition 5.1 reduces to Definition 2.1 in [22].

We are going to study sufficient and necessary conditions of pointwise L-well-
posedness for (Pα).

Theorem 5.2. Let x0 ∈ Sα-MinF be given.
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(i) If (Pα) is L-well-posed at x0 and Qx0(0) = Sα -MinF , then Qx0 is upper
semicontinuous and compact-valued at 0.

(ii) If Qx0
is upper semicontinuous and compact-valued at 0, then (Pα) is L-

well-posed at x0.

Proof. (i) Assume that (Pα) is L-well-posed at x0. First of all, we show that Qx0

is upper semicontinuous at 0. By contradiction, suppose that Qx0
is not upper

semicontinuous at 0. Then, there exist a neighborhood U of Qx0
(0) and {kn} ⊂ K

converging to 0 such that for each n ∈ N, there exists xn ∈ Qx0
(0) \ U , i.e.,

xn ̸∈ U (5.1)

and
F (xn) ≤α F (x0) + kn. (5.2)

It follows from (5.2) that {xn} is an x0-minimizing sequence of (Pα). Because
(Pα) is L-well-posed at x0, there exists a subsequence of {xn}, denoted by {xnk

},
converging to some element x̄ ∈ Sα-MinF, and thus we get x̄ ∈ Qx0

(0). Therefore,
x̄ ∈ U which contradicts (5.1). So, Qx0

is upper semicontinuous at 0.
Next, we prove that Qx0

(0) is compact. Indeed, for every sequence {xn} ⊂
Qx0

(0), we have F (xn) ≤α F (x0) + kn where {kn} ⊂ K converges to 0. This
means that {xn} is an x0-minimizing sequence of (Pα). By the L-well-posedness
of (Pα) at x0, there exists a subsequence {xnk

} of {xn} such that {xnk
} converges

to an element x̄ ∈ Sα -MinF . Therefore, x̄ ∈ Qx0
(0). This leads to the compactness

of Qx0
(0).

(ii) Let {xn} ⊂ M be an x0-minimizing sequence of (Pα), there exists {kn} ⊂
K converging to 0 such that F (xn) ≤α F (x0) + kn. Hence, xn ∈ Qx0

(kn). Since
Qx0

is upper semicontinuous and compact-valued at 0, there exists a subsequence
of {xn}, denoted by {xnk

}, converging to some x̄ ∈ Qx0
(0). Combining this with

Proposition 4.1(ii), we get x̄ ∈ Sα -MinF . So, (Pα) is L-well-posed at x0.

The next results illustrate relationships between the pointwise L-well-posedness
and pointwise B-well-posedness for the problem (Pα).

Theorem 5.3. Let x0 ∈ Sα-MinF be given.

(i) If (Pα) is L-well-posed at x0 and Qx0(0) = Sα-MinF, then it is B-well-posed
at x0.

(ii) If (Pα) is B-well-posed at x0 and Sα-MinF is compact, then it is L-well-posed
at x0.

Proof. (i) By contradiction, suppose that (Pα) is not B-well-posed at x0. We get
that Qx0

is not upper semicontinuous at k = 0. Hence, there exist a neighborhood
V of Qx0

(0) and {kn} ⊂ K converging to 0 such that for each n ∈ N, there exists
xn ∈ Qx0

(kn) \ V . By definition of Qx0
, we have F (xn) ≤α F (x0) + kn, i.e., {xn}

is an x0-minimizing sequence of (Pα). It follows from the L-well-posedness at x0
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of (Pα) that there exists a subsequence {xnk
} of {xn} such that {xnk

} converges
to an element x̄ ∈ Sα-MinF. Therefore, x̄ ∈ Qx0

(0), and hence we now get

x̄ ∈ Qx0
(0) ⊂ V. (5.3)

On the other hand, since xn ̸∈ V , xn ∈ X \ V . By the closedness of X \ V , we
have x̄ ∈ X \ V which contradicts (5.3). So, (Pα) is B-well-posed at x0.

(ii) Suppose that (Pα) is B-well-posed at x0. Let {xn} be an x0-minimizing
sequence of (Pα), we consider two cases as follows:

Case 1 : {xn} has infinite elements which belong to Sα-MinF. Since Sα-MinF is
compact, there exists a subsequence {xnk

} of {xn} such that {xnk
} converges to

some x̄ ∈ Sα-MinF. Hence, (Pα) is L-well-posed at x0.
Case 2 : {xn} has infinite elements which do not belong to Sα-MinF. Without

lost of generality, we can assume that {xn} ⊂ M\Sα-MinF. By Theorem 4.4, {xn}
has a subsequence {xnk

} converging to some x̄ ∈ Sα-MinF. Therefore, (Pα) is
L-well-posed at x0.
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