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1 Introduction

LetH be a real Hilbert space with inner product ⟨·⟩ and norm ∥·∥ , respectively.
Let K be a nonempty closed convex subset of H. Let F be a bifunction from C×C
into R, where R denotes the set of real numbers.

An equilibrium problem in the sense of Blum and Oettli [1] is stated as follows:

Find x∗ ∈ C such that f(x∗, y) ≥ 0 for all y ∈ C. (1.1)

Problem of the form (1.1) on one hand covers many important problems in opti-
mization as well as in nonlinear analysis such as (generalized) variational inequal-
ity, nonlinear complementary problem, nonlinear optimization problem, just to
name a few. Convex minimization problems have a great impact and influence in
the development of almost all branches of pure and applied sciences.

Recall that a mapping S : K → K is said to be nonexpansive if

∥Sx− Sy∥ ≤ ∥x− y∥, ∀x, y ∈ K.

A subset K ⊂ H is called proximal if for each x ∈ H, there exists an element
y ∈ K such that

dist(x,K) := ∥x− y∥ = inf{∥x− z∥ : z ∈ K}.

We denote byB(K), C(K), and P (K) the collection of all nonempty closed bounded
subsets, nonempty compact subsets and nonempty proximal bounded subsets of
K, respectively. The Hausdorff metric H on B(H) is defined by

H(K1,K2) := max
{

sup
x∈K1

dist(x,K2), sup
y∈K2

dist(y,K1)
}
, ∀K1,K2 ∈ B(H).

Let S : H → 2H be a multivalued mapping, of which the set of fixed points
is denoted by Fix(S), i.e., Fix(S) := {x ∈ Sx : x ∈ K}. A multivalued mapping
S : K → B(K) is said to be nonexpansive if

H(Sx, Sy) ≤ ∥x− y∥, ∀x, y ∈ K. (1.2)

Existence theorem for fixed point of multivalued contractions and nonexpan-
sive mappings using the Hausdorff metric have been proved by several authors;
see,e.g., [2, 3]. Later, an interesting and rich fixed point theory for such maps and
more general maps was developed which has applications incontrol theory, convex
optimization, differential inclusion, and economics.

Lately, the problem of finding a common element of the set of solutions of
equilibrium problems and the set of fixed points of nonlinear mappings has become
an attractive subject, and various methods have been extensively examined by
many authors; see,e.g., [4, 5, 6, 7, 8, 9, 10]. It is noteworthy to mention that almost
all the existing algorithms for this problem are based on the proximal point method
applied to the equilibrium problem combining with a Mann iteration to fixed point
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problems of nonexpansive mappings, of which the convergence analysis has been
considered if the bifunction F is monotone. The reason is that the proximal
point method is not valid when the underlying operator F is pseudomonotone.
Another basic idea for solving equilibrium problems is the projection method; see,
e.g., [11, 12]. Nevertheless, Facchinei and Pang [13] present that the projection
method, in general, is not convergent for monotone variational inequality, which
is a special case of monotone equilibrium problems.

In 2008, Tran etal. [14] introduced an extragradient method for pseudomono-
tone equilibrium problems, which is computationally expensive because of the two
projections defined onto the constrained set. Efforts for deducing the computa-
tional costs in computing the projection have been made by using penalty function
methods or relaxing the constrained convex set by polyhedral convex ones; see,
e.g., [15, 16, 17, 18, 19].

In 2011, Santos and Scheimberg [19] further proposed an inexact subgradi-
ent algorithm for solving a wide class of equilibrium problems that requires only
one projection rather than two as in the extragradient method, and of which
computational results show the efficiency of this algorithm in finite dimensional
Euclidean spaces. On the other hand, iterative schemes for multivalued nonexpan-
sive mappings are far less developed than those for nonexpansive mappings though
they have more powerful applications in solving optimization problems; see. e.g.,
[20, 21, 22] and the references therein.

In 2014, Wen [23] introduce a hybrid subgradient method for finding a common
element of the set of solutions of a class of pseudomonotone equilibrium problems
and the set of fixed points of a finite family of multivalued nonexpansive mappings
in Hilbert space. He proposed the following iterative method:

wn ∈ ∂ϵnF (xn, ·)xn,

un = PK(xn − γnwn), γn = βn

max{σn,∥wn∥} ,

xn+1 = αnxn + (1− αn)zn, n ≥ 0,

(1.3)

where ∂εF (x, ·)(x) stands for ε- subdifferential of the convex function F (x, ·) at
x, Tn = Tn(modN), zn ∈ Tnun such that Ti is a finite family of multivalued non-
expansive mappings for i = 1, 2, . . . N, and {αn}, {βn}, and {ϵn} are nonegative
sequences satisfying the suitable conditions. Moreover, he futher proved the weak
and strong convergence theorems of the iterative sequences under the condition of
pseudomonotone definded on a bifunction F .

Motivated by the work of D-J Wen [23], in this paper, we first introduce an
iterative algorithm for finding a common element of the set of solutions of a class
of pseudomonotone equilibrium problems and the set of fixed points of two finite
families of multivalued nonexpansive mappings in Hilbert space. Moreover, we
prove that the proposed iterative algorithm converges weakly and strongly to a
common element of the set of solutions of a class of pseudomonotone equilibrium
problems and the set of fixed points of two finite families of multivalued nonex-
pansive mappings under some suitable conditions.
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2 Preliminaries

Let H be a real Hilbert space with the norm ∥ · ∥ and the inner product ⟨·, ·⟩
and let K be a closed convex subset of H. For every point x ∈ H, there exists a
unique nearest point in K, denoted by PK(x), such that

∥x− PK(x)∥ ≤ ∥x− y∥, ∀y ∈ K.

PK is called the metric projection of H onto K. In addition, PK(x) is characterized
by the following properties: PK(x) ∈ K and

⟨x− PK(x), y − PK(x)⟩ ≥ 0, (2.1)

∥x− y∥2 ≥ ∥x− PK(x)∥2 + ∥y − PK(x)∥2, ∀x ∈ H, y ∈ K. (2.2)

Recall that a bifunction F : K ×K → R is said to be

(i) monotone on K if

F (x, y) + F (y, x) ≤ 0, ∀x, y ∈ K;

(ii) pseudomonotone on K with respect to x ∈ K if

F (x, y) ≥ 0 ⇒ F (y, x) ≤ 0, ∀y ∈ K. (2.3)

It is clear that (i)⇒(ii), for every x ∈ K. Moreover, F is said to be pseudomonotone
on K with respect to A ⊆ K, if it is pseudomonotone on K with respect to every
x ∈ A. When A ≡ K,F is called pseudomonotone on K.

To study the equilibrium problem (1.1), we may assume that ∆ is an open
convex set containing K and the bifunction F : ∆ ×∆ → R satisfy the following
assumptions:

(C1) F (x, x) = 0 for each x ∈ K and F (x, ·) is convex and lower semicontinuous
on K;

(C2) F (·, y) weakly upper semicontinuous for each y ∈ K on the open set ∆;

(C3) F pseudomonotone on K with respect to EP(F,K) and satises the strict
paramonotonicity property,i.e., F (y, x) = 0 for x ∈ EP(F,K) and y ∈ K
implies y ∈ EP(F,K);

(C4) if {xn} ⊆ K is bounded and ϵn → 0 as n → ∞, then the sequence
{wn} with wn ∈ ∂ϵnF (xn, ·) is bounded, where ∂ϵF (x, ·)x stands for the
ϵ-subdifferential of the convex function F (x, ·) at x.

The following lemmas will be useful for proving the convergence result of this
paper.

Lemma 2.1. ([27]) Let H be a real Hilbert space. Then, for all x, y ∈ H and
λ ∈ R, we have

∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2.
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Lemma 2.2. ([26]) Let H be a real Hilbert space. Then for all x, y ∈ H,

∥x− y∥2 = ∥x∥2 − ∥y∥2 − 2⟨x− y, y⟩.

Lemma 2.3. ([27]Opial’s condition) Let H be a real Hilbert space. If for each
sequence {xn} in H which converges weakly to a point x ∈ H, then

lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − y∥, ∀y ∈ H, y ̸= x.

Lemma 2.4. ([28]) Let {an} and {bn} be two sequences of nonnegative real num-
bers such that

an+1 ≤ an + bn, n ≥ 0,

where
∑∞

n=0 bn < ∞. Then the sequence {an} is convergent.

Lemma 2.5. ([21]) Let K be a nonempty closed convex subset of a real Hilbert
space H. Let T : K → C(K) be a multivalued nonexpansive mapping. If xn ⇀ q
and limn→∞dist(xn, Txn) = 0, then q ∈ Tq.

3 Main Results

In this section, we first introduce the following iterative algorithm.

Algorithm 3.1. Let K be a nonempty closed convex subset of a Hilbert space H.
Let F be a bifunction from K ×K into R. Let {Si}Ni=1 and {Ti}Ni=1 be two finite
families of multivalued nonexpansive mappings from K into C(K). For a given
x0 ∈ K, arbitrarily, suppose the sequence {xn}, {yn}, {un} and {wn} are generated
iteratively by 

wn ∈ ∂ϵnF (xn, ·)xn;

un = PK(xn − γnwn), γn = βn

max{σn;∥wn∥} ;

yn = λnxn + (1− λn)vn;

xn+1 = αnyn + (1− αn)zn, n ≥ 0,

(3.1)

where Sn = Sn(modN), vn ∈ Snun,, Tn = Tn(modN), zn ∈ Tnun {αn}, {βn}, {λn}
and {ϵn} are nonnegative sequences.

Next, we prove the weak convergence of Algorithm 3.1 is investigated under
certain assumptions.

Theorem 3.2. Let K be a nonempty closed convex subset of a Hilbert space H
and F : K×K → R be a bifunction satisfying (C1)-(C4). Let {Si}Ni=1 and {Ti}Ni=1

be two finite families of multivalued nonexpansive mappings from K into C(K)

such that Ω =
∩N

i=1

(
Fix(Si) ∩ Fix(Ti)

)
∩ EP(F,K) ̸= ϕ and Si(q) = Ti(q) = {q}

for i = 1, 2, ..., N and q ∈ Ω. Assume that 0 < c < σn < σ, {αn}, {βn}, {λn} and
{ϵn} are nonnegative sequences satisfying the following conditions:
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(i) αn ∈ [a, b] ⊂ (0, 1) ;

(ii)
∑∞

n=0 βn = ∞,
∑∞

n=0 β
2
n < ∞ and

∑∞
n=0 βnϵn < ∞.

Then the sequence {xn} generated by (3.1) converges weakly to x̄ ∈ Ω.

Proof. We divide the proof into four steps as follows.
Step 1. For every p ∈ Ω and every n, we show that

∥xn+1 − p∥2 ≤ ∥xn − p∥2 + 2(1− αn)γnϵn + 2(1− αn)β
2
n,

and there exists the limit

c := lim
n→∞

∥xn − p∥.

Let p ∈ Ω. Then by (3.1) and Lemma 2.1, we have

∥yn − p∥2 = ∥λnxn + (1− λn)vn − p∥2

= ∥λn(xn − p) + (1− λn)(vn − p)∥2

= λn∥xn − p∥2 + (1− λn)∥vn − p∥2 − λn(1− λn)∥xn − vn∥2

= λn∥xn − p∥2 + (1− λn)dist(vn, Snp)
2 − λn(1− λn)∥xn − vn∥2

≤ λn∥xn − p∥2 + (1− λn)H(Snun, Snp)
2 − λn(1− λn)∥xn − vn∥2

≤ λn∥xn − p∥2 + (1− λn)∥un − p∥2 − λn(1− λn)∥xn − vn∥2. (3.2)

Using (3.2) and Lemma 2.2, we obtain

∥xn+1 − p∥2 = ∥αn(yn − p) + (1− αn)(zn − p)∥2

= αn∥yn − p∥2 + (1− αn)∥zn − p∥2 − αn(1− αn)∥yn − zn∥2

= αn∥yn − p∥2 + (1− αn)dist(zn, Tnp)
2 − αn(1− αn)∥yn − zn∥2

≤ αn∥yn − p∥2 + (1− αn)H(Tnun, Tnp)
2 − αn(1− αn)∥yn − zn∥2

≤ αn∥yn − p∥2 + (1− αn)∥un − p∥2 − αn(1− αn)∥yn − zn∥2

≤ αn

(
λn∥xn − p∥2 + (1− λn)∥un − p∥2 − λn(1− λn)∥xn − vn∥2

)
+(1− αn)∥un − p∥2 − αn(1− αn)∥yn − zn∥2

= αnλn∥xn − p∥2 + (1− αnλn)∥un − p∥2 − αnλn(1− λn)∥xn − vn∥2

−αn(1− αn)∥yn − zn∥2

= αnλn∥xn − p∥2

+(1− αnλn)
(
∥xn − p∥2 − ∥xn − un∥2 + 2⟨p− un, xn − un⟩

)
−αnλn(1− λn)∥xn − vn∥2 − αn(1− αn)∥yn − zn∥2

= ∥xn − p∥2 + (1− αnλn)
(
2⟨xn − un, p− un⟩ − ∥xn − un∥2

)
−αnλn(1− λn)∥xn − vn∥2 − αn(1− αn)∥yn − zn∥2

≤ ∥xn − p∥2 + 2(1− αnλn)⟨xn − un, p− un⟩
−αnλn(1− λn)∥xn − vn∥2 − αn(1− αn)∥yn − zn∥2. (3.3)
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Using un = PK(xn − γnwn) and (2.1), we have

⟨xn − un, p− un⟩ = ⟨xn − PK(xn − γnwn), p− un⟩
≤ γn⟨wn, p− un⟩. (3.4)

Using un = PK(xn − γnwn) and xn ∈ K, we obtain

∥xn − un∥2 = ⟨xn − un, xn − un⟩
≤ γn⟨wn, xn − un⟩
≤ γn∥wn∥∥xn − un∥

=
βn

max{σn, ∥wn∥}
∥wn∥∥xn − un∥

≤ βn∥xn − un∥, (3.5)

which implies that ∥xn − un∥ ≤ βn. By (3.3), (3.4) and (3.5), we obtain

∥xn+1 − p∥2 ≤ ∥xn − p∥2 + 2(1− αn)γn⟨wn, p− un⟩
−αnλn(1− λn)∥xn − vn∥2

= ∥xn − p∥2 + 2(1− αn)
(
γn⟨wn, p− xn⟩+ γn⟨wn, xn − un⟩

)
−αnλn(1− λn)∥xn − vn∥2

= ∥xn − p∥2 + 2(1− αn)γn⟨wn, p− xn⟩+ 2(1− αn)γn⟨wn, xn − un⟩
−αnλn(1− λn)∥xn − vn∥2

≤ ∥xn − p∥2 + 2(1− αn)γn⟨wn, p− xn⟩+ 2(1− αn)γn∥wn∥∥xn − un∥
−αnλn(1− λn)∥xn − vn∥2

≤ ∥xn − p∥2 + 2(1− αn)γn⟨wn, p− xn⟩+ 2(1− αn)β
2
n

−αnλn(1− λn)∥xn − vn∥2 (3.6)

Since wn ∈ ∂ϵnF (xn, ·)(xn) and F (x, x) = 0 for all x ∈ K, so we have

⟨wn, p− xn⟩ ≤ F (xn, p)− F (xn, xn) + ϵn

≤ F (xn, p) + ϵn. (3.7)

On the other hand, since p ∈ EP(F,K), i.e., F (p, x) ≥ 0 for all x ∈ K, by the
pseudomonotonicity of F with respect to p, we have F (x, p) ≤ 0 for all x ∈ K.
Replacing x by xn ∈ K, we get F (xn, p) ≤ 0. Then from (3.6) and (3.7), it follows
that

∥xn+1 − p∥2 ≤ ∥xn − p∥2 + 2(1− αn)γn⟨wn, p− xn⟩+ 2(1− αn)β
2
n

−αnλn(1− λn)∥xn − vn∥2

≤ ∥xn − p∥2 + 2(1− αn)γn(F (xn, p) + ϵn) + 2(1− αn)β
2
n

−αnλn(1− λn)∥xn − vn∥2

= ∥xn − p∥2 + 2(1− αn)γnF (xn, p) + 2(1− αn)γnϵn + 2(1− αn)β
2
n

−αnλn(1− λn)∥xn − vn∥2

≤ ∥xn − p∥2 + 2(1− αn)γnϵn + 2(1− αn)β
2
n (3.8)
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Appply Lemma 2.4 to (3.8), we get the existence of

c := lim
n→∞

∥xn − p∥.

Step 2. For every p ∈ Ω, we show that lim supn→∞ F (xn, p) = 0.
Let p ∈ Ω. Since F is pseudomonotone on K and F (p, xn) ≥ 0, we have
−F (xn, p) ≥ 0. From (3.8), we have

2(1− αn)γn
[
− F (xn, p)

]
≤ ∥xn − p∥2 − ∥xn+1 − p∥2 + 2(1− αn)γnϵn + 2(1− αn)β

2
n

= ∥xn − p∥2 − ∥xn+1 − p∥2 + (1− αn)
(
2γnϵn + 2β2

n

)
≤ ∥xn − p∥2 − ∥xn+1 − p∥2 + 2γnϵn + 2β2

n. (3.9)

Summing up (3.9) for every n, we obtain

0 ≤ 2

∞∑
n=0

(1− αn)γn
[
− F (xn, p)

]
≤

∞∑
n=0

∥xn − p∥2 −
∞∑

n=0

∥xn+1 − p∥2 + 2

∞∑
n=0

γnϵn + 2

∞∑
n=0

β2
n

= ∥x0 − p∥2 + 2

∞∑
n=0

γnϵn + 2

∞∑
n=0

β2
n < +∞ (3.10)

By the assumption (C4), we can find a real number w such that ∥wn∥ ≤ w for
every n. Setting L := max{σ,w}, where σ is a real number such that 0 < σn < σ
for every n, it follows from (i) that

0 ≤ 2

∞∑
n=0

(1− αn)γn
[
− F (xn, p)

]
≤ 2(1− b)

βn

max{σ,w}

∞∑
n=0

[
− F (xn, p)

]
=

2(1− b)

L

∞∑
n=0

βn

[
− F (xn, p)

]
≤ 2

∞∑
n=0

(1− αn)γn
[
− F (xn, p)

]
< +∞,

which implies that

∞∑
n=0

βn

[
− F (xn, p)

]
< +∞. (3.11)

Combining with −F (xn, p) ≥ 0 and
∑∞

n=0 βn = ∞, we can deduced that

lim sup
n→∞

F (xn, p) = 0.
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Step 3. We show that any weak subsequential limit of the sequence of {xn} is
an element of Ω. To do this, suppose that {xni

} is a subsequence of {xn}. For
simplicity of notation, without loss of generality, we may assume that xni

⇀ x̄ as
i → ∞. By convexity, K is weakly closed and hence x̄ ∈ K. Since F (·, p) is weakly
upper semicontinuous for p ∈ Ω, we have

F (x̄, p) ≥ lim
i→∞

supF (xni
, p) = lim

i→∞
F (xni

, p)

lim
n→∞

supF (xn, p) = 0. (3.12)

By the pseudomonotonicity of F with respect to p and F (p, x̄) ≥ 0, we obtain
F (x̄, p) ≤ 0. Thus F (x̄, p) = 0 Moreover, by assumption (C3), we can deduce that
x̄ is a solution of EP(F,K). On the other hand, it follows from (3.5) and condition
(ii) that

lim
n→∞

∥xn − un∥ = 0. (3.13)

From (3.8) and conditions (i)-(ii), we have

αnλn(1− λn)∥xn − vn∥2 ≤ ∥xn − p∥2 − ∥xn+1 − p∥2 + 2(1− αn)γnϵn + 2(1− αn)β
2
n,

taking the limit as n → ∞ yields

lim
n→∞

∥xn − vn∥ = 0, (3.14)

and thus

lim
n→∞

dist(xn, Snun) ≤ lim
n→∞

∥xn − vn∥ = 0. (3.15)

Again from (3.3), (3.4), (3.5) and conditions (i)-(ii), we have

αn(1− λn)∥yn − zn∥2 ≤ ∥xn − p∥2 − ∥xn+1 − p∥2 + 2(1− αn)γnϵn + 2(1− αn)β
2
n,

taking the limit as n → ∞ yields

lim
n→∞

∥yn − zn∥ = 0, (3.16)

and thus

lim
n→∞

dist(yn, Snun) ≤ lim
n→∞

∥yn − zn∥ = 0. (3.17)

It follows that

lim
n→∞

∥yn − xn∥ = lim
n→∞

(1− λn)∥vn − xn)∥ = 0. (3.18)

Notice that
∥zn − xn∥ ≤ ∥zn − yn∥+ ∥yn − xn∥. (3.19)
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Combining and (3.18), we obtain

lim
n→∞

∥zn − xn∥ = 0. (3.20)

Using (3.1) again, we obtain

∥xn+1 − xn∥ = ∥αnyn + (1− αn)zn − xn∥
= ∥αn(yn − zn) + (zn − xn)∥
≤ αn∥yn − zn∥+ ∥xn − zn∥
≤ αn∥yn − zn∥+ ∥xn − yn∥+ ∥yn − zn∥. (3.21)

From (3.21), we have

∥xn+1 − xn∥ ≤ αn∥yn − zn∥+ ∥xn − yn∥+ ∥yn − zn∥, (3.22)

taking the limit as n → ∞ yields

lim
n→∞

∥xn+1 − xn∥ = 0. (3.23)

It follows that

lim
n→∞

∥xn+i − xn∥ = 0, i = 1, 2, . . . , N. (3.24)

Notice that

∥un+1 − un∥ ≤ ∥un+1 − xn+1∥+ ∥xn+1 − xn∥+ ∥xn − un∥.

Combining (3.13) and (3.23) we obtain

lim
n→∞

∥un+1 − un∥ = 0. (3.25)

This implies that

lim
n→∞

∥un+i − un∥ = 0, i = 1, 2, . . . , N. (3.26)

Notice that

dist(un, Sn+iun) ≤ ∥un − xn∥+ ∥xn − xn+i∥+ dist(xn+i, Sn+iun+i)

+H(Sn+iun+i, Sn+iun)

≤ ∥un − xn∥+ ∥xn − xn+i∥+ dist(xn+i, Sn+iun+i)

+∥un+i − un∥.

Together with (3.13), (3.15), (3.24) and (3.26), we have

lim
n→∞

dist(un, Sn+iun) = 0, i = 1, 2, . . . , N, (3.27)
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which implies that the sequence

N∪
i=0

{dist(un, Sn+iun)}n≥0 → 0 as n → ∞. (3.28)

For i = 1, 2, . . . , N , we note that

{dist(un, Siun)}n≥0 = {dist(un, Sn+(i−n)un)}n≥0

= {dist(un, Sn+inun)}n≥0

⊂
N∪
i=0

{dist(un, Sn+iun)}n≥0,

where i− n = in(modN) and in ∈ {1, 2, . . . , N}. Thus, we have

lim
n→∞

dist(un, Siun) = 0, i = 1, 2, . . . , N. (3.29)

Similarly, for i = 1, 2, . . . , N , we obtain

dist(xn, Sixn) ≤ ∥xn − un∥+ dist(un, Siun) +H(Siun, Sixn)

≤ 2∥xn − un∥+ dist(un, Siun).

It follows from (3.13) and (3.29) that

lim
n→∞

dist(xn, Sixn) = 0, i = 1, 2, . . . , N. (3.30)

Applying Lemma 2.5 to (3.30), we can deduce that x̄ ∈ Fix(Si) for i = 1, 2, . . . , N .
In a Similar way, we can show that x̄ ∈ Fix(Ti) for i = 1, 2, . . . , N . So, we get
x̄ ∈ Ω.
Step 4. Finally, we prove that {xn} converges weakly to an element of Ω. Indeed
to verify that the claim is valid it is sufficient to show that ωw(xn) is a single point
set, where ωw(xn) = {x ∈ H : xni ⇀ x} for some subsequence {xni} of {xn}.
Indeed since {xn} is bounded and H is reflexive, ωw(xn) is nonempty. Taking
p1, p2 ∈ ωw(xn) arbitrarily, let {xnk

} and {xnj
} be subsequences of {xn} such

that xnk
⇀ p1 and xnj

⇀ p2 respectively. Since limn→∞ ∥xn − p∥ exists for all
p ∈ Ω and p1, p2 ∈ Ω, so we get limn→∞ ∥xn − p1∥ and limn→∞ ∥xn − p2∥ exist.
Now let p1 ≠ p2, then by Opial’s condition this yields

lim
n→∞

∥xn − p1∥ = lim
k→∞

∥xnk
− p1∥

< lim
k→∞

∥xnk
− p2∥

= lim
n→∞

∥xn − p2∥

= lim
j→∞

∥xnj
− p2∥

< lim
n→∞

∥xn−j − p1∥

= lim
n→∞

∥xn − p1∥
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which is a contradiction. Thus, p1 = p2. This shows that ωw(xn) is a single point
set, i.e., xn ⇀ x̄. This completes the proof.

Putting λn = 1 for all n ∈ N and Si = I which is the identity operator in
Theorem 3.2 for i = 1, 2, . . . , N , we obtain the following results.

Corollary 3.3. (Dao-Jun, Wen [23, Theorem 3.1]) Let K be a nonempty closed
convex subset of a Hilbert space H and F : K ×K → R be a bifunction satisfying
(C1)-(C4). Let {Ti}Ni=1 be a finite family of multivalued nonexpansive mappings

from K into C(K) such that Ω =
∩N

i=1 Fix(Ti) ∩ EP(F,K) ̸= ϕ and Ti(q) = {q}
for i = 1, 2, . . . , N and q ∈ Ω. For a given point x0 ∈ K, 0 < c < σn < σ, let {xn}
be defined by 

wn ∈ ∂ϵnF (xn, ·)xn,

un = PK(xn − γnwn), γn = βn

max{σn,∥wn∥} ,

xn+1 = αnxn + (1− αn)zn, n ≥ 0,

(3.31)

where Tn = Tn(modN), zn ∈ Tnun, {αn}, {βn}, and {ϵn} are nonegative sequences
satisfying the following conditions:

(1) αn ∈ [a, b] ⊂ (0, 1) ;

(2)
∑∞

n=0 βn = ∞,
∑∞

n=0 β
2
n < ∞ and

∑∞
n=0 βnϵn < ∞.

Then the sequence {xn} generated by (3.31) converges weakly to x̄ ∈ Ω.

Corollary 3.4. Let K be a nonempty closed convex subset of a Hilbert space H
and F : K × K → R be a bifunction satisfying (C1)-(C4). Let S and T be two
multivalued nonexpansive mappings from K into C(K) such that Ω = Fix(S) ∩
Fix(T ) ∩ EP(F,K) ̸= ϕ and S(q) = T (q) = {q} for all q ∈ Ω. Assume that
0 < c < σn < σ, {αn}, {βn}, {λn} and {ϵn} are nonnegative sequences satisfying
the following conditions:

(i) αn ∈ [a, b] ⊂ (0, 1) ;

(ii)
∑∞

n=0 βn = ∞,
∑∞

n=0 β
2
n < ∞ and

∑∞
n=0 βnϵn < ∞.

Then the sequence {xn} generated by (3.1) converges weakly to x̄ ∈ Ω.

Proof. Putting N = 1 in Theorem 3.2.

Next, we prove the strong convergence of proposed algorithms is investigated
under certain assumptions.

Theorem 3.5. Let K be a nonempty closed convex subset of a Hilbert space H
and F : K×K → R be a bifunction satisfying (C1)-(C4). Let {Si}Ni=1 and {Ti}Ni=1

be two finite families of multivalued nonexpansive mappings from K into C(K)

such that Ω =
∩N

i=1

(
Fix(Si) ∩ Fix(Ti)

)
∩ EP(F,K) ̸= ϕ and Si(q) = Ti(q) = {q}

for i = 1, 2, . . . , N and q ∈ Ω. Assume that 0 < c < σn < σ, {αn}, {βn}, {λn} and
{ϵn} are nonnegative sequences satisfying the following conditions:
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(i) αn ∈ [a, b] ⊂ (0, 1) ;

(ii)
∑∞

n=0 βn = ∞,
∑∞

n=0 β
2
n < ∞ and

∑∞
n=0 βnϵn < ∞.

Then the sequence {xn} generated by (3.1) converges strongly to x̄ ∈ Ω.

Proof. By a similar argument to the proof of Theorem 3.2 and (2.2), we have

∥yn − PΩ(xn)∥2 ≤ ∥yn − xn∥2 − ∥xn − PΩ(xn)∥2

≤ ∥yn − xn∥2 (3.32)

and

∥zn − PΩ(xn)∥2 ≤ ∥zn − xn∥2 − ∥xn − PΩ(xn)∥2. (3.33)

It follows from (3.32) and (3.33) that

∥xn+1 − PΩ(xn+1)∥2 = ∥αnyn + (1− αn)zn − PΩ(xn))∥2

≤ ∥αn(yn − PΩ(xn)) + (1− αn)(zn − PΩ(xn))∥2

≤ αn∥yn − PΩ(xn)∥2 + (1− αn)∥zn − PΩ(xn)∥2

≤ αn∥yn − xn∥2

+(1− αn)
(
∥zn − xn∥2 − ∥xn − PΩ(xn)∥2

)
≤ αn∥yn − xn∥2 + (1− αn)∥zn − xn∥2

−(1− αn)∥xn − PΩ(xn)∥2. (3.34)

Combining (3.18), (3.20) and the boundedness of the sequence {xn − PΩ(xn)} ,
we obtain

lim
n→∞

∥xn+1 − PΩ(xn+1)∥ = 0. (3.35)

By the assumptions (C1) and (C2), the set Ω is convex. For the simplicity of
notation, let sn := PΩ(xn) for each n ≥ 1. Then, for all m > n we have

1

2
(sm + sn) ∈ Ω,

and thus

∥sm − sn∥2 = 2∥xm − sm∥2 + 2∥xm − sn∥2 − 4
∥∥xm − 1

2
(sm + sn)

∥∥2
≤ 2∥xm − sm∥2 + 2∥xm − sn∥2 − 4∥xm − sm∥2

= 2∥xm − sn∥2 − 2∥xm − sm∥2. (3.36)

Using (3.8) with p = sn, we have

∥xm − sn∥2 ≤ ∥xm−1 − sn∥2 + 2(1− αm−1)γm−1ϵm−1 + 2(1− αm−1)β
2
m−1

≤ ∥xm−2 − sn∥2 + ξm−1 + ξm−2

≤ · · ·

≤ ∥xn − sn∥2 +
m−1∑
j=m

ξj , (3.37)
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where ξj = 2(1− αj)γjϵj + 2(1− αj)β
2
j . It follows from (3.36) and (3.36) that

∥sm − sn∥2 ≤ 2∥xn − sn∥2 + 2

m−1∑
j=n

ξj − 2∥xm − sm∥2. (3.38)

Together with (3.35) and
∑m−1

j=n ξj < ∞ this implies that {sn} is a Cauchy se-
quence. Hence {sn} strongly converges to some point x∗ ∈ Ω. However, since
sni

:= PΩ(xni
), letting i → ∞, we obtain in the limit that

x∗ = lim
i→∞

PΩ(xni
) = PΩ(x̄) = x̄, (3.39)

which implies that PΩ(xn) → x∗ = x̄ ∈ Ω. Then, from (3.30), (3.35) and (3.39)
we can conclude that xn → x∗. This completes the proof.

Putting λn = 1 and Si = I which is the identity operator for i = 1, 2, . . . , N

and limn→∞ αn =
1

2
in Theorem 3.5, we obtain the following results.

Corollary 3.6. (Dao-Jun, Wen [23, Theorem 4.1]) Let K be a nonempty closed
convex subset of a Hilbert space H and F : K ×K → R be a bifunction satisfying
(C1)-(C4). Let {Ti}Ni=1 be a finite family of multivalued nonexpansive mappings

from K into C(K) such that Ω =
∩N

i=1 Fix(Ti) ∩ EP(F,K) ̸= ϕ and Ti(q) = {q}
for i = 1, 2, . . . , N and q ∈ Ω. For a given point x0 ∈ K, 0 < c < σn < σ, let {xn}
be defined by 

wn ∈ ∂ϵnF (xn, ·)xn,

un = PK(xn − γnwn), γn = βn

max{σn,∥wn∥} ,

xn+1 = αnxn + (1− αn)zn, n ≥ 0,

(3.40)

where Tn = Tn(modN), zn ∈ Tnun, {αn}, {βn}, and {ϵn} are nonegative real se-
quences satisfying the following conditions:

(1) αn ∈ [a, b] ⊂ (0, 1) and limn→∞ αn =
1

2
;

(2)
∑∞

n=0 βn = ∞,
∑∞

n=0 β
2
n < ∞ and

∑∞
n=0 βnϵn < ∞.

Then the sequence {xn} generated by (3.40) converges strongly to x∗ ∈ Ω.

Theorem 3.7. Let K be a nonempty closed convex subset of a Hilbert space H and
F : K ×K → R be a bifunction satisfying (C1)-(C4). Let {Si}Ni=1 and {Ti}Ni=1 be
two finite families of multivalued nonexpansive mappings from K into C(K) such
that PSi

:= {y ∈ Six : dist(x, Six) = ∥x − y∥}, PTi
:= {y ∈ Tix : dist(x, Tix) =

∥x − y∥} and Ω =
∩N

i=1

(
Fix(Si) ∩ Fix(Ti)

)
∩ EP(F,K) ̸= ϕ. Assume that 0 <

c < σn < σ, {αn}, {βn}, {λn} and {ϵn} are nonnegative sequences satisfying the
following conditions:
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(i) αn ∈ [a, b] ⊂ (0, 1) ;

(ii)
∑∞

n=0 βn = ∞,
∑∞

n=0 β
2
n < ∞ and

∑∞
n=0 βnϵn < ∞.

Then the sequence {xn} generated by (3.1) converges strongly to x̄ ∈ Ω.

Proof. Taking p ∈ Ω, then PSn
(p) = PTn

(p) = {p}. By substituting PS instead of
S and similar argument as (3.30) in the proof of Theorem 3.2 we obtain

lim
n→∞

dist(xn, Si(xn)) ≤ lim
n→∞

dist(xn, PSi(xn)) = 0. (3.41)

By compactness ofK there exists a subsequence {xnk
} of {xn} such that limk→∞ xnk

=
x∗ for some x∗ ∈ K. Since PSi is nonexpansive for i = 1, 2, ..., N , we have

dist(x∗, Si(x
∗)) ≤ dist(x∗, PSi

(x∗))

≤ ∥x∗ − xnk
∥+ dist(xnk

, PSi
(xnk

)) +H(PSi
(xnk

), PSi
(x∗))

≤ 2∥x∗ − xnk
∥+ dist(xnk

, PSi
(xnk

)). (3.42)

It follows from (3.41) and (3.42) that

lim
k→∞

dist(x∗, Si(x
∗)) = 0, (3.43)

which implies that x∗ ∈
∩N

i=1 Fix(Si). In a similar way, we can show that x∗ ∈∩N
i=1 Fix(Ti). Since {xnk

} converges strongly to x∗ and limn→∞ ∥xn − x∗∥ exists
(as in the proof of Theorem 3.2), we find that {xn} converges strongly to x∗. This
completes the proof.
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