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1 Introduction

Let E be a uniformly convex Banach space, C be a nonempty closed convex
set and C ⊆ E. A self-mapping T in C is called nonexpansive if ∥Tx − Ty∥ ≤
∥x − y∥ ∀x, y ∈ C. In this article, N denotes the set of all positive integers and
F (T ) := {x : Tx = x}.

The iteration process for approximating fixed points were studied by many
authors as follows.

In this kind of iteration, we choose x1 ∈ X arbitrarily and {xn}∞n=1 was intro-
duced iteratively by the following successive iteration method:

xn+1 = Txn, ∀n ≥ 1. (1.1)

We called the iteration method (1.1) as Picard iteration.
The iterative scheme of {xn}∞n=1 was given by

xn+1 = (1− λ)xn + λTxn, ∀n ≥ 1, (1.2)

where λ ∈ (0, 1). We called the iteration method (1.2) as Krasnoselskij iteration.
In 1953, Mann introduced the well-known iteration process, called Mann iter-

ation, which start from x1 ∈ E and defined the sequence {xn}∞n=1 defined by

xn+1 = (1− αn)xn + αnTxn, ∀n ≥ 1, (1.3)

where the sequence {αn} is in [0, 1].
In 1974, Ishikawa introduced the iteration as follows: the sequences {xn}∞n=1

defined by 
x1 ∈ C,

xn+1 = (1− αn)xn + αnT (yn)

yn = (1− βn)xn + βnT (xn), ∀n ≥ 1,

(1.4)

where the sequences {αn} and {βn} are in [0, 1]. This iteration can reduce to the
iteration (1.3) when βn = 0, ∀n ≥ 1.

In 2000, Noor introduced the following iteration process, by x1 ∈ C and
xn+1 = (1− αn)xn + αnT (yn)

yn = (1− βn)xn + βnT (zn)

zn = (1− γn)xn + γnT (xn), ∀n ≥ 1,

(1.5)

where x1 ∈ C is arbitrary and the real sequences {αn}, {βn} and {γn} are in [0, 1].
In 2007, Agarwal et al. [1] defined the iteration process, namely S-iteration in

a Banach space as follows:
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
x1 ∈ C,

xn+1 = (1− αn)Txn + αnT (yn)

yn = (1− βn)xn + βnT (xn), ∀n ≥ 1,

(1.6)

where the sequences {αn} and {βn} are in [0, 1]. They proved that this iteration
process converges to a fixed point of contractive mapping T and showed rate of
convergence faster than iteration (1.3) and (1.4) respectively.

In 2014, Abbas et al. [2] defined the following iteration, where {xn}∞n=1 was
constructed from arbitrary x1 ∈ C by

xn+1 = (1− αn)Tyn + αnTzn

yn = (1− βn)Txn + βnTzn

zn = (1− γn)xn + γnTxn, ∀n ≥ 1,

(1.7)

where the real sequences {αn}, {βn}, and {γn}, are in [0, 1].

Very recently, Thakur et al. [3] modified iteration for finding fixed points of
nonexpansive mappings, the sequence {xn} is generated by x1 ∈ C and

xn+1 = (1− αn)Tzn + αnTyn,

yn = (1− βn)zn + βnTzn,

zn = (1− γn)xn + γnTxn, ∀n ≥ 1,

(1.8)

where the real sequences {αn}, {βn} and {γn}, are in [0, 1].

Moreover, the initials of CAT are in honor for three mathematicians include
E. Cartan, A. D. Alexanderov and V. A. Toponogov, who have made important
contributions to the understanding of curvature via inequalities for the distance
function. A metric space X is a CAT(0) space if it is geodesically connected and
if every geodesic triangle in X is at least as thin as its comparison triangle in the
Euclidean plane. It is well known that any complete, simply connected Rieman-
nian manifold having non-positive sectional curvature is a CAT(0) space. Kirk [4]
first studied the theory of fixed point in CAT(κ) spaces. Later on, many authors
generalized the notion of CAT(κ) given in [4, 5, 6], mainly focusing on CAT(0)
spaces (see e.g., [7, 8, 9]). Various results for solving a fixed point problem of
some nonlinear mappings in the CAT(0) spaces can also be found for examples, in
[10, 11, 12].

On the other hand, let (X, d) be a geodesic metric space and f be a proper and
convex function from the set X to (−∞,∞]. Some major problems in optimization
is to find x ∈ X such that

f(x) = min
y∈X

f(y).
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The set of minimizers of f was denoted by argminy∈X f(y). In 1970, Martinet
[13] first introduced the effective tool for solving this problem which is the proximal
point algorithm (for short term, the PPA). Later in 1976, Rockafellar [14] found
that the PPA converges to the solution of the convex minimization problem in
Hilbert space.

Let f be a proper, convex, and lower semi-continuous function on a Hilbert
space H which attains its minimum. The PPA is defined by x1 ∈ H and

xn+1 = argmin
y∈H

[f(y) +
1

2λn
∥ y − xn ∥2]

for each n ∈ N, where λn > 0 for all n ∈ N. It was proved that the sequence {xn}
converges weakly to a minimizer of f provided

∑∞
n=1 λn = ∞. However, as shown

by Guler [15], the PPA does not necessarily converges strongly in general. In 2000,
Kamimura and Takahashi [16] combined the PPA with Halpern algorithm [17] so
that the strong convergence is guaranteed (see also [18, 19]).

In 2013, Bačák [20] introduced the PPA in a CAT(0) space (X, d) as follows:
let x1 ∈ X and

xn+1 = argmin
y∈X

[f(y) +
1

2λn
d2(y, xn)]

for each n ∈ N, where λn > 0 for all n ∈ N. Based on the concept of the Fejér
monotonicity, it was shown that, if f has a minimizer and

∑∞
n=1 λn = ∞, then

the sequence {xn} ∆-converges to its minimizer (see also [20]). Recently, in 2014,
Bačák [21] employed a split version of the PPA for minimizing a sum of convex
functions in complete CAT(0) spaces. Other interesting results can also be found
in [20, 22].

Recently, many convergence results by the PPA for solving optimization prob-
lems have been extended from the classical linear spaces such as Euclidean spaces,
Hilbert spaces and Banach spaces to the setting of manifolds [22]. The minimizers
of the objective convex functionals in the spaces with nonlinearity play a crucial
role in the branch of analysis and geometry. Numerous applications in computer
vision, machine learning, electronic structure computation, system balancing and
robot manipulation can be considered as solving optimization problems on mani-
folds (see in, [23, 24]).

Very recently, Cholamjiak et al [25] introduced a modified PPA combining
with S-iteration for two nonexpansive mappings in CAT(0) spaces as follows:

zn = argmin
y∈X

[f(y) + 1
2λn

d2(y, xn)]

yn = (1− βn)xn ⊕ βnT1zn

xn+1 = (1− αn)T1xn ⊕ αnT2yn

(1.9)

for all n ≥ 1, where {αn} and {βn} are real sequences in [0, 1].
Motivated and inspired by (1.8) and (1.9), we introduce a new iterative scheme

by modified PPA combining with iteration (1.8) which is defined by the following
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manner: 

zn = argmin
y∈X

[f(y) +
1

2λn
d2(y, xn)],

wn = (1− αn)xn ⊕ αnSzn,

yn = (1− βn)wn ⊕ βnTwn,

xn+1 = (1− γn)Swn ⊕ γnTyn

(1.10)

for all n ≥ 1, where {αn}, {βn} and {γn} are real sequences in [0, 1].
The propose in this paper, we introduce new iterative scheme combining

with PPA for two nonexpansive mapping in non-positive curvature metric spaces,
namely CAT(0) spaces and under suitable conditions, we also prove that the se-
quence generated by (1.10) converges to a minimizer of a convex function and
common fixed point of such mappings.

2 Preliminaries

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X is a
mapping γ from [0, l] ⊂ R to X such that γ(0) = x, γ(l) = y, and d(γ(t), γ(t′)) =
|t− t′| for all t, t′ ∈ [0, l]. Especially, γ is an isometry and d(x, y) = l. The image
γ([0, l]) of γ is called a geodesic segment joining x and y.

A geodesic triangle ∆(x1, x2, x3) in a geodesic space (X, d) consists of three
points x1, x2, x3 in X and a geodesic segment between each pair of vertices. A
comparison triangle for the geodesic triangle ∆(x1, x2, x3) in (X, d) is a trian-
gle ∆̄(x1, x2, x3) := ∆(x̄1, x̄2, x̄3) is Euclidean space R2 such that dR2(x̄i, x̄j) =
d(xi, xj) for each i, j ∈ {1, 2, 3}. A geodesic space is called a CAT(0) space if, for
each geodesic triangle ∆(x1, x2, x3) inX and its comparison triangle ∆̄(x1, x2, x3) :=
∆(x̄1, x̄2, x̄3) in R2, the CAT(0) inequality

d(x, y) ≤ dR2(x̄, ȳ)

is satisfied for all x, y ∈ ∆ and comparison points x̄, ȳ ∈ ∆̄. A subset C of a
CAT(0) space is called convex if [x, y] ⊂ C for all x, y ∈ C. For more details, the
readers may consult [26]. A geodesic space X is a CAT(0) space if and only if

d2((1− α))x⊕ αy, z) ≤ (1− α)d2(x, z) + αd2(y, z)− t(1− α)d2(x, y) (2.1)

for all x, y, z ∈ X and α ∈ [0, 1] (see in, [27]). In particular, if x, y, z are points in
X and α ∈ [0, 1], then we have

d((1− α)x⊕ αy, z) ≤ (1− α)d(x, z) + αd(y, z). (2.2)

The examples of CAT(0) spaces via Euclidean spaces Rn, Hilbert spaces, simply
connected Riemannian manifolds of nonpositive sectional curvature, Hyperbolic
spaces and trees.
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Let C be a nonempty closed and convex subset of a complete CAT(0) space.
For each point x ∈ X, there exists a unique point of C denoted by PCx, such that

d(x, PCx) = inf
y∈C

d(x, y).

A mapping PC is said to be the metric projection from X onto C.
Let {xn} be a bounded sequence in the set C. For any x ∈ X, we set

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X}

and the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r({xn}) = r(x, {xn})}.

In a complete CAT(0) space, A({xn}) consists of exactly one point (see [28]).

Definition 2.1. A sequence {xn} in a CAT(0) space X is called ∆-converge to
a point x ∈ X if x is the unique asymptotic center of {un} for every subsequence
{un} of {xn}.

We can write ∆− limn→∞ xn = x and call x the ∆− limit of {xn}. We denote
w∆(xn) := ∪{A({un})}, where the union is taken over all subsequences {un} of
{xn}.

Recall that a bounded sequence {xn} in X is called regular if r({un}) =
r({un}) for every subsequence {un} of {xn}. Every bounded sequence in X has a
∆-convergent subsequence [7].

Lemma 2.2. [12] Let C be a closed and convex subset of a complete CAT(0) space
X and T : C → C be a nonexpansive mapping. Let {xn} be a bounded sequence in
C such that limn→∞ d(xn, Txn) = 0 and ∆− limn→∞ xn = x. Then x = Tx.

Lemma 2.3. [12] If {xn} is a bounded sequence in a complete CAT(0) space with
A({xn}) = {x}, {un} is a sequence of {xn} with A({un}) = {u} and the sequence
{d(xn, u)} converges, then x = u.

Recall that a function f : C → (−∞,∞] define on the set C is convex. For
any geodesic γ : [a, b] → C, the function f ◦ γ is convex. We say that a function f
defined on C is lower semi-continuous at a point x ∈ C if

f(x) ≤ lim inf
n→∞

f(xn)

for each sequence xn → x. A function f is called lower semi-continuous on C if it
is lower semi-continuous at any point in C.
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For any λ > 0, define the Moreau-Yosida resolvent of f in CAT(0) spaces as
follows:

Jλ(x) = argmin
y∈X

[f(y) +
1

2λ
d2(y, x)] (2.3)

for all x ∈ X. The mapping Jλ is well define (see in [29]).
Let f : X → (−∞,∞] be a proper convex and lower semi-continuous function.

It was shown in [21] that the set F (Jλ) of fixed points of the resolvent associated
with f coincides with the set argminy∈X f(y) of minimizers of f .

Lemma 2.4. [29] Let (X, d) be a complete CAT(0) space and f : X → (−∞,∞]
be proper convex and lower semi-continuous. For any λ > 0, the resolvent Jλ of f
is nonexpansive.

Lemma 2.5. [30] Let (X, d) be a complete CAT(0) space and f : X → (−∞,∞]
be proper convex and lower semi-continuous. Then, for all x, y ∈ X and λ > 0,
we have

1

2λ
d2(Jλx, y)−

1

2λ
d2(x, y) +

1

2λ
d2(x, Jλx) + f(Jλx) ≤ f(y).

Proposition 2.6. [29] (The resolvent identity) Let (X, d) be a complete CAT(0)
space and f : X → (−∞,∞] be proper convex and lower semi-continuous. Then
the following identity holds:

Jλx = Jµ(
λ− µ

λ
Jλx⊕ µ

λ
x)

for all x ∈ X and λ > µ > 0.

3 Main Results

We now construct and prove useful lemma to prove our main results.

Lemma 3.1. Let (X, d) be a complete CAT(0) space and f : X → (∞,∞]
be a proper convex and lower semi-continuous function. Let S and T are two
nonexpansive mappings on X such that ω = F (S) ∩ F (T ) ∩ argminy∈X f(y)
is nonempty. Suppose that {αn}, {βn} and {γn} are real sequences such that
0 < a ≤ αn, βn, γn ≤ b < 1 ∀n ∈ N and for some a, b and {λn} is a sequence such
that λn ≥ λ > 0 ∀n ∈ N and for some λ. Let the sequence {xn} is defined by

zn = argmin
y∈X

[f(y) +
1

2λn
d2(y, xn)]

wn = (1− αn)xn ⊕ αnSzn

yn = (1− βn)wn ⊕ βnTwn

xn+1 = (1− γn)Swn ⊕ γnTyn,

(3.1)

for all n ≥ 1. Then we have the statements hold:
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(1) limn→∞ d(xn, q̃) exists for all q̃ ∈ ω,

(2) limn→∞ d(xn, zn) = 0,

(3) limn→∞ d(xn, Sxn) = limn→∞ d(xn, Txn) = 0.

Proof. Let q̃ ∈ ω. Then q̃ = Sq̃ = T q̃ and f(q̃) ≤ f(y) for all y ∈ X. It follows
that

f(q̃) +
1

2λn
d2(q̃, q̃) ≤ f(y) +

1

2λn
d2(y, q̃)

for all y ∈ X and hence q̃ = Jλn
q̃ for all n ∈ N.

(1) To prove that limn→∞ d(xn, q̃) exists. Noting that zn = Jλn
xn for all n ∈ N.

By Lemma 2.4, we have

d(zn, q̃) = d(Jλn
xn, Jλn

q̃) ≤ d(xn, q̃). (3.2)

Also, we have, by (2.2) and (3.1)

d(wn, q̃) = d((1− αn)xn ⊕ αnSzn, q̃)

≤ (1− αn)d(xn, q̃) + αnd(Szn, q̃)

≤ (1− αn)d(xn, q̃) + αnd(zn, q̃)

≤ d(xn, q̃), (3.3)

and

d(yn, q̃) = d((1− βn)wn ⊕ βnTwn, q̃)

≤ (1− βn)d(wn, q̃) + βnd(Twn, q̃)

≤ (1− βn)d(wn, q̃) + βnd(wn, q̃)

= d(wn, q̃)

≤ d(xn, q̃). (3.4)

So, it follows from (3.2), (3.3) and (3.4), we obtain

d(xn+1, q̃) = d((1− γn)Swn ⊕ γnTyn, q̃)

≤ (1− γn)d(Swn, q̃) + γnd(Tyn, q̃)

≤ (1− γn)d(wn, q̃) + γnd(yn, q̃)

≤ (1− γn)d(xn, q̃) + γnd(xn, q̃)

= d(xn, q̃). (3.5)

This shows that limn→∞ d(xn, q̃) exists. Hence limn→∞ d(xn, q̃) = k for
some k.
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(2) To show that limn→∞ d(xn, zn) = 0. By Lemma 2.5, we see that

1

2λn
d2(zn, q̃)−

1

2λn
d2(xn, q̃) +

1

2λn
d2(xn, zn) ≤ f(q̃)− f(zn).

Since f(q̃) ≤ f(zn) for all n ∈ N, it follows that

d2(xn, zn) ≤ d2(xn, q̃)− d2(zn, q̃).

In order to show that limn→∞ d(xn, zn) = 0, we need to prove show that

lim
n→∞

d(zn, q̃) = k.

In fact, from (3.3) and (3.5), we have

d(xn+1, q̃) ≤ (1− γn)d(wn, q̃) + γnd(yn, q̃)

≤ (1− γn)d(xn, q̃) + γnd(yn, q̃)

which is equivalent to

d(xn, q̃) ≤ 1

γn
(d(xn, q̃)− d(xn+1, q̃)) + d(yn, q̃)

≤ 1

a
(d(xn, q̃)− d(xn+1, q̃)) + d(yn, q̃)

since d(xn+1, q̃) ≤ d(xn, q̃) and γn ≥ a > 0 for all n ∈ N. Hence we have

k = lim inf
n→∞

d(xn, q̃) ≤ lim inf
n→∞

d(yn, q̃).

It follows from (3.4) , we see that

lim sup
n→∞

d(yn, q̃) ≤ lim sup
n→∞

d(xn, q̃) = k.

Hence, we have limn→∞ d(yn, q̃) = k. Since

d(yn, q̃) ≤ (1− βn)d(wn, q̃) + βnd(Twn, q̃)

≤ (1− βn)d(xn, q̃) + βnd(wn, q̃)

simplifying

d(xn, q̃) ≤ 1

βn
(d(xn, q̃)− d(yn, q̃)) + d(wn, q̃)

≤ 1

a
(d(xn, q̃)− d(yn, q̃)) + d(wn, q̃),

which yields
k = lim inf

n→∞
d(xn, q̃) ≤ lim inf

n→∞
d(wn, q̃).
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On the other hand, by (3.3), we observe that

lim sup
n→∞

d(wn, q̃) ≤ lim sup
n→∞

d(xn, q̃) = k.

Hence, we obtain
lim
n→∞

d(wn, q̃) = k.

From (3.3), we have

d(wn, q̃) ≤ (1− αn)d(xn, q̃) + αnd(zn, q̃),

which is equivalent to

d(xn, q̃) ≤ 1

αn
(d(xn, q̃)− d(wn, q̃)) + d(zn, q̃).

In the same way, we get

k = lim inf
n→∞

d(xn, q̃) ≤ lim inf
n→∞

d(zn, q̃),

and by (3.2), we see that

lim sup
n→∞

d(zn, q̃) ≤ lim sup
n→∞

d(xn, q̃) = k.

Therefore, we conclude that

lim
n→∞

d(zn, q̃) = k.

This shows that
lim
n→∞

d(xn, zn) = 0. (3.6)

(3) To show that

lim
n→∞

d(xn, Sxn) = lim
n→∞

d(xn, Txn) = 0.

We observe that

d2(wn, q̃) = d2((1− αn)xn ⊕ αnSzn, q̃)

≤ (1− αn)d
2(xn, q̃) + αnd

2(Szn, q̃)− αn(1− αn)d
2(xn, Szn)

≤ (1− αn)d
2(xn, q̃) + αnd

2(zn, q̃)− αn(1− αn)d
2(xn, Szn)

≤ (1− αn)d
2(xn, q̃) + αnd

2(xn, q̃)− αn(1− αn)d
2(xn, Szn)

≤ d2(xn, q̃)− a(1− b)d2(xn, Szn).

This implies that

d2(xn, Szn) ≤ 1

a(1− b)
(d2(xn, q̃)− d2(wn, q̃))

→ 0



Modified proximal point algorithms for solving fixed point problem ... 11

as n → ∞. Hence we have

lim
n→∞

d(xn, Szn) = 0. (3.7)

It follows from (3.6) and (3.7) that

d(xn, Sxn) ≤ d(xn, Szn) + d(Szn, Sxn)

≤ d(xn, Szn) + d(zn, xn)

→ 0 (3.8)

as n → ∞. Similarly, we obtain

d2(yn, q̃) = d2((1− βn)wn ⊕ βnTwn, q̃)

≤ (1− βn)d
2(wn, q̃) + βnd

2(Twn, q̃)− βn(1− βn)d
2(wn, Twn)

≤ (1− βn)d
2(wn, q̃) + βnd

2(wn, q̃)− βn(1− βn)d
2(wn, Twn)

≤ d2(wn, q̃)− a(1− b)d2(wn, Twn),

which implies that

d2(wn, Twn) ≤ 1

a(1− b)
(d2(wn, q̃)− d2(yn, q̃))

→ 0

as n → ∞. Hence we have

lim
n→∞

d(wn, Twn) = 0. (3.9)

And also, we see that

d2(xn+1, q̃) = d2((1− γn)Swn ⊕ γnTyn, q̃)

≤ (1− γn)d
2(Swn, q̃) + γnd

2(Tyn, q̃)− γn(1− γn)d
2(Swn, T yn)

≤ (1− γn)d
2(wn, q̃) + γnd

2(yn, q̃)− γn(1− γn)d
2(Swn, T yn)

≤ (1− γn)d
2(xn, q̃) + γnd

2(xn, q̃)− γn(1− γn)d
2(Swn, T yn)

≤ d2(xn, q̃)− γn(1− γn)d
2(Swn, T yn)

≤ d2(xn, q̃)− a(1− b)d2(Swn, T yn).

This implies that

d2(Swn, T yn) ≤ 1

a(1− b)
(d2(xn, q̃)− d2(xn+1, q̃))

→ 0 (3.10)

as n → ∞. From (3.7) we have

d(wn, xn) = d((1− αn)xn ⊕ αnSzn, xn)

≤ (1− αn)d(xn, xn) + αnd(Szn, xn)

= αnd(Szn, xn)

→ 0 (3.11)
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as n → ∞. It follows from (3.9) and (3.11) that

d(yn, xn) = d((1− βn)wn ⊕ βnTwn, xn)

≤ (1− βn)d(wn, xn) + βnd(Twn, xn)

≤ (1− βn)d(wn, xn) + βn(d(Twn, wn) + d(wn, xn))

= d(wn, xn) + βnd(Twn, wn)

→ 0 (3.12)

as n → ∞. From (3.6), (3.7), (3.10), (3.11) and (3.12), we get

d(xn, Txn) ≤ d(xn, Szn) + d(Szn, Sxn) + d(Sxn, Swn) + d(Swn, T yn) + d(Tyn, Txn)

≤ d(xn, Szn) + d(zn, xn) + d(xn, wn) + d(Swn, T yn) + d(yn, xn)

→ 0

as n → ∞. This means that

lim
n→∞

d(xn, Txn) = 0. (3.13)

It follows from (3.8) and (3.13), we can conclude that

lim
n→∞

d(xn, Sxn) = lim
n→∞

d(xn, Txn) = 0. (3.14)

This completes the proof.

Next, we prove ∆-convergence theorem of the proposed algorithm.

Theorem 3.2. Let (X, d) be a complete CAT(0) space and f : X → (∞,∞]
be a proper convex and lower semi-continuous function. Let S and T are two
nonexpansive mappings on X such that ω = F (S) ∩ F (T ) ∩ argminy∈X f(y) is
nonempty. Suppose that {αn}, {βn} and {γn} are sequences such that 0 < a ≤
αn, βn, γn ≤ b < 1 ∀n ∈ N and for some a, b and {λn} is a sequence such that
λn ≥ λ > 0 ∀n ∈ N and for some λ. Let the sequence {xn} is generated by (3.1).
Then the sequence {xn} ∆-converges to a common element of ω.

Proof. Since λn ≥ λ > 0, by Proposition 2.6 and Lemma 3.1 (2),

d(Jλxn, Jλnxn) = d(Jλxn, Jλ(
λn − λ

λn
Jλnxn ⊕ λ

λn
xn))

≤ d(xn, (1−
λ

λn
)Jλn

xn ⊕ λ

λn
xn)

= (1− λ

λn
)d(xn, zn)

→ 0
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as n → ∞. So, we obtain

d(xn, Jλxn) ≤ d(xn, zn) + d(zn, Jλxn)

→ 0

as n → ∞. Lemma 3.1 (1) shows that limn→∞ d(xn, q̃) exists for all q̃ ∈ ω and
Lemma 3.1 (3) that is limn→∞ d(xn, Sxn) = limn→∞ d(xn, Txn) = 0

Next, we show that w△(xn) ⊂ ω. Let u ∈ w△(xn). Then there exists a
subsequence {un} of {xn} such that A({un}) = {u}. From Lemma 2.2, there
exists a subsequence {vn} of {un} such that ∆− limn→∞ vn = v for some v ∈ ω.
So, u = v by Lemma 2.3. This shows that w△(xn) ⊂ ω.

Finally, we show that the sequence {xn} ∆-converges to a point in ω. To finish
proving, it suffices to show that w△(xn) consists of exactly one point. Let {un}
be a subsequence of {xn} with A({un}) = {u} and let A({xn}) = {x}. Since
u ∈ w△(xn) ⊂ ω and {d(xn, u)} converges, by Lemma 2.3, we have x = u. Hence
w△(xn) = {x}. This completes the proof.

If S = T in Theorem 3.2 we obtain the following result.

Corollary 3.3. Let (X, d) be a complete CAT(0) space and f : X → (∞,∞] be
a proper convex and lower semi-continuous function. Let T be a nonexpansive
mapping on X such that ω = F (T ) ∩ argminy∈Xf(y) is nonempty. Suppose that
{αn}, {βn} and {γn} are sequences such that 0 < a ≤ αn, βn, γn ≤ b < 1 ∀n ∈ N
and for some a, b and {λn} is a sequence such that λn ≥ λ > 0 ∀n ∈ N and for
some λ. Let the sequence {xn} is generated by (3.1). Then the sequence {xn}
∆-converges to a common element of ω.

Since every Hilbert space is a complete CAT(0) space, we obtain following
result immediately.

Corollary 3.4. Let H be a Hilbert space and f : H → (∞,∞] be a proper, convex
and lower semi-continuous function. Let S and T are two nonexpansive mappings
on X such that ω = F (S) ∩ F (T ) ∩ argminy∈Hf(y) is nonempty. Suppose that
{αn}, {βn} and {γn} are sequences such that 0 < a ≤ αn, βn, γn ≤ b < 1 ∀n ∈ N
and for some a, b and {λn} is a sequence such that λn ≥ λ > 0 ∀n ∈ N and for
some λ. Let the sequence {xn} is generated by

zn = argmin
y∈H

[f(y) +
1

2λn
∥ y − xn ∥2]

wn = (1− αn)xn + αnSzn

yn = (1− βn)wn + βnTwn

xn+1 = (1− γn)Swn + γnTyn,

for all n ≥ 1. Then the sequence {xn} weakly converges to common element of ω.
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Next, we establish strong convergence theorem under mild conditions.

A self mapping T is said to be semi-compact if any sequence {xn} satisfying
d(xn, Txn) → 0 as n → ∞ has a convergent subsequence.

Theorem 3.5. Let (X, d) be a complete CAT(0) space and f : X → (∞,∞]
be a proper convex and lower semi-continuous function. Let S and T are two
nonexpansive mappings on X such that ω = F (S) ∩ F (T ) ∩ argminy∈X f(y) is
nonempty. Suppose that {αn}, {βn} and {γn} are sequences such that 0 < a ≤
αn, βn, γn ≤ b < 1 ∀n ∈ N and for some a, b and {λn} is a sequence such that
λn ≥ λ > 0 ∀n ∈ N and for some λ. If S or T , or Jλ is semi-compact, then the
sequence {xn} generated by (3.1) strongly converges to a common element of ω.

Proof. Suppose that S is semi-compact. By Lemma 3.1 (3), we have

d(xn, Sxn) → 0

as n → ∞. Hence, there exists a subsequence {xnk
} of {xn} such that xnk

→
x̂ ∈ X. Again by Lemma 3.1 and Theorem 3.2, we have d(x̂, T x̂) = d(x̂, Sx̂) = 0
and d(x̂, Jλx̂) = 0, which shows that x̂ ∈ ω. For other cases, we can also prove
the strong convergence of {xn} to a common element of ω. This completes the
proof.
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