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1 Introduction

The usual way to define the integrals using Riemann approach, is through the
Riemann sums

S(f,D) = (D)
∑

f(ξ)|I|,

where D = {(ξ, I)} is the division of domain [a, b], with some control condition
on D. The well-known integrals using Riemann approach are the Riemann inte-
gral, the McShane integral and the Henstock integral, see, for example, [1]. The
Henstock integral, also known as the Kurzweil-Henstock integral, is non-absolute
integral, while the McShane integral, equivalent to the Lebesgue integral, is an
absolute integral.

The point-interval pairs (ξ, I) in the division D are chosen by taking the tag
point ξ first. After that we always use some control condition to choose an associ-

Copyright c© 2017 by the Mathematical Association of Thailand.

All rights reserved.



808 Thai J. Math. 15 (2017)/ V. Boonpogkrong

ated interval I. For example, for the Henstock case, for each point ξ, an associate
interval I must satisfy the condition

ξ ∈ I ⊆ (ξ − δ(ξ), ξ + δ(ξ)),

where δ(ξ) is a positive number depend on the tag point ξ. For the Riemann
integral, δ(ξ) is the positive constant, i.e., δ(ξ) = δ for all ξ ∈ [a, b]. The McShane
integral relaxes the condition of the Henstock such that ξ may or may not be
contained in I.

In this paper, we change the way to define the division D of [a, b]. We shall
choose an interval I first, then choose tag point ξ under some condition. We shall
use the interval-point pair (I, ξ) instead of point-interval pair (ξ, I).

2 Riemann B-integral on [a, b]

In this note, let R denote the set of all real numbers and |I| denote the length
of interval I ⊆ R.

A set-valued function v defined on the set of all non-degenerate closed subin-
tervals of [a, b] is called a tag function on [a, b] if v(I) ⊆ [a, b] for all I ⊆ [a, b].
An interval-point pair (I, ξ), where I ⊆ [a, b] and ξ ∈ [a, b], is said to be v-fine if
ξ ∈ v(I) 6= ∅.

A finite collection of interval-point pair, D = {(I, ξ)}, is called to be v-fine

partial division of [a, b] if {I} is a partial partition of [a, b], that is, their union
is a subset of [a, b], and each (I, ξ) is v-fine. In addition, if {I} is a partition of
[a, b], then D is said to be a v-fine division of [a, b].

A tag function v is said to have the division property if for every subinterval
[c, d] of [a, b], there exists a v-fine division of [c, d].

Let B be a collection of tag functions on [a, b], with the division property. Let
v1, v2 ∈ B, we say that v2 is finer than v1, denoted by v1 ≤ v2, if v2(I) ⊆ v1(I) for
all non-degenerate closed subintervals I of [a, b]. Clearly, the collection B together
with the relation ≤ on B, (B,≤), is a partially ordered set. B is said to be a
filtered set on [a, b] if the partially ordered set (B,≤) is directed, i.e., for any
v1, v2 ∈ B, there exists v ∈ B such that v1 ≤ v and v2 ≤ v. We note that the
division and filtering properties play very important role in the proofs.

Definition 2.1 (Riemann B-integral). Let B be a filtered set on [a, b]. A real
valued function f defined on [a, b] is said to be Riemann B-integrable to A on
[a, b] if for every ǫ > 0, there exists a tag function v ∈ B such that for every v-fine
division D = {(I, ξ)} of [a, b], we have

|S(f, v,D)−A| < ǫ,

where S(f, v,D) = (D)
∑

f(ξ)|I|. We denote A by (B)
∫ b

a
f .

Note that, ideas of Riemann B-integrals are given in [2,3]. We can prove easily,
by using Cauchy’s Criterion, that the Definition 2.1 and the definition using Upper
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and Lower Riemann sums in [2, 3] are equivalent. The Definition 2.1 we use here
is the usual way to define the integral using Riemann approach. The proof of all
basic properties such as uniqueness, linearity, etc., are straightforward.

Theorem 2.2 (Cauchy’s Criterion). Let B be a filtered set on [a, b]. A function f

is Riemann B-integrable on [a, b] if and only if for every ǫ > 0, there exists a tag

function v ∈ B such that for every v-fine two divisions D and D′ of [a, b], we have

|S(f, v,D)− S(f, v,D′)| < ǫ.

Proof. The proof is standard (see [1]).

Theorem 2.1 (Henstock’s Lemma). Let B be a filtered set on [a, b]. If f is

Riemann B-integrable to F on [a, b], for every ǫ > 0, there exists a tag function

v ∈ B such that for any v-fine partial division D of [a, b], we have

(D)
∑

|f(ξ)|I| − F (I)| < ǫ.

Proof. The proof is standard (see [1]).

Let η be a positive constant. Let v be a tag function on [a, b] defined by
vη(I) = I if |I| < η; and vη(I) = ∅ otherwise. Let β be a positive real values
function defined on [a, b]. Let vβ(I) = {ξ ∈ [a, b] : I ⊆ (ξ − β(ξ), ξ + β(ξ))}. Let
δ be a positive real-value function defined on [a, b]. Let vδ(I) = {ξ ∈ [a, b] : ξ ∈
I ⊆ (ξ − δ(ξ), ξ + δ(ξ))}. By Heine-Borel theorem, vη, vβ and vδ have the division
property. Let BR = {vη : η > 0}, BM = {vβ : β(ξ) > 0} and BH = {vδ : δ(ξ) > 0}.
Clearly that, BR, BM and BH are filtered sets on [a, b].

Example 2.3. Let f : [0, 1] → R be defined by f(x) = 1 if x is rational; and
f(x) = 0 otherwise, i.e., f(x) = χQ, where Q is the set of all rational number.

Let 0 < ǫ < 1. Let vη ∈ BR. Let D = {(I, ξ)} and D′ = {(ξ′, I ′)} be two vη-
fine divisions of [0, 1]. Note that, if we take an interval I from interval-point pair
(I, ξ) ∈ D, vη(I) 6= ∅, whenever D is a vη-fine division, that is, by definition of vη,
we have vη(I) = I for such I. Thus vη(I) is an non-degenerate closed subintervals
of [0, 1]. Since Q is dense in R, we may assume that ξ ∈ Q for all (I, ξ) ∈ D and
ξ′ ∈ Qc for all (ξ′, I ′) ∈ D′. Hence

|S(f, v,D)− S(f, v,D′)| =
∣

∣

∣
(D)

∑

|I| − (D′)
∑

0|I ′|
∣

∣

∣
= |1− 0| = 1 > ǫ.

Hence, by Cauchy’s Criterion, f is not BR-integrable on [0, 1].

Now we shall consider the collection BM . Write Q∩ [0, 1] = {r1, r2, . . .}. Let β
be a positive function defined on [0, 1] defined by β(rj) =

ǫ
2j for all rj ∈ Q ∩ [0, 1]

and β(ξ) = 1 for all x ∈ Qc∩[0, 1]. Let vβ(I) = {ξ ∈ [0, 1] : I ⊆ (ξ−β(ξ), ξ+β(ξ))}.
Clearly, vβ ∈ BM .
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Notice that for any I ⊆ [0, 1],

vη(I) ={ξ ∈ [0, 1] : I ⊆ (ξ − β(ξ), ξ + β(ξ))}

={ξ∈ Q ∩ [0, 1] : I ⊆ (ξ−β(ξ), ξ+β(ξ))} ∪ {ξ∈Qc ∩ [0, 1] : I ⊆ (ξ−1, ξ+1)}

=
{

rj : I ⊆
(

ξ −
ǫ

2j
, ξ +

ǫ

2j

)}

∪ (Qc ∩ [0, 1]).

Thus, there are two kinds of points in vη(I). The rational point rj such that
I ⊆

(

ξ − ǫ
2j , ξ +

ǫ
2j

)

and the irrational points. However, for the irrational points
the function f vanishes there.

Let D = {(I, ξ)} be a vβ-fine division of [0, 1]. Hence,

∣

∣

∣
(D)

∑

f(ξ)|I|
∣

∣

∣
≤

∣

∣

∣

∣

∣

∣

(D)
∑

ξ∈Q∩[0,1]

f(ξ)|I|

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

(D)
∑

ξ∈Qc∩[0,1]

f(ξ)|I|

∣

∣

∣

∣

∣

∣

<

∞
∑

j=1

ǫ

2j−1
= 2ǫ.

Therefore, f is BM -integrable on [0, 1].

From the above example, we can see that the Riemann B-integrability of f
does not only depend on the function f itself but also depend on the choice of the
collection of tag functions B.

Notice that for every two filtered sets B and B′ on [a, b] if B ⊆ B′, then every
tag function v in B is again a tag function in B′. Therefore we get the following
theorem.

Theorem 2.4. Let B and B′ be two filtered sets on [a, b] such that B ⊆ B′ and

f : [a, b] → R. If f is Riemann B′-integrable on [a, b], then f is Riemann B-
integrable on [a, b] and

(B)

∫ b

a

f = (B′)

∫ b

a

f.

It is easy to see that division induced by the tag functions vη, vβ and vδ above
are equivalent to divisions induced by Riemann, McShane and Henstock integrals,
respectively. Hence, we have the following theorems.

Theorem 2.5. A real valued function f define on [a, b] is a Riemann integrable

on [a, b] if and only if f is Riemann BR-integrable on [a, b].

Theorem 2.6. A real valued function f define on [a, b] is a McShane integrable

on [a, b] if and only if f is Riemann BM -integrable on [a, b].

Theorem 2.7. A real valued function f define on [a, b] is a Henstock integrable

on [a, b] if and only if f is Riemann BH-integrable on [a, b].

For the definitions of Riemann, McShane and Henstock integral, see [1].
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3 Fundamental Theorem of Calculus

A collection B of tag functions on [a, b] is said to has a local character if for
each ξ ∈ [a, b], a tag function vξ ∈ B is given, then there exists a common v ∈ B
such that v(I) ⊆ vξ(I) whenever ξ ∈ v(I).

We remark here that the filtered set BM and BH have a local character, but
BR does not. For example, for each ξ ∈ [0, 1], let vξ(I) = I if |I| < ξ and vξ(I) = ∅
otherwise. Clearly that vξ ∈ BR for all ξ ∈ [0, 1]. We shall point out that BR does
not have local character. Suppose that BR has a local character, i.e., there exist
a positive constant η such that v(I) = I if |I| < η and v(I) = ∅ otherwise, and
v(I) ⊆ vξ(I) whenever ξ ∈ v(I). Choose x = η

4 and I = [0, η
2 ]. So, |I| = η

2 > x,
that is, vx(I) = ∅. Hence x ∈ v(I) but v(I) * vx(I). Contradict to the assumption
that v is a local character. Therefor BR does not have a local character.

A local character plays very important role in the proofs of the Fundamental
Theorem of Calculus.

Example 3.1. Let BH = {vδ : δ(ξ) > 0} be a filtered set on [a, b] defined as
above. For each ξ ∈ [a, b], choose vδξ ∈ BH . Let δ : [a, b] → (0,∞) be defined by
δ(ξ) = δξ(ξ). Clearly,

vδ(I) = {ξ ∈ [a, b] : ξ ∈ I ⊆ (ξ − δ(ξ), ξ + δ(ξ))}

= {ξ ∈ [a, b] : ξ ∈ I ⊆ (ξ − δξ(ξ), ξ + δξ(ξ))}

= vδξ (I)

for all I ∈ I. Thus vδ(I) ⊆ vδξ(I) whenever ξ ∈ vδ(I). Hence BH has a local
character.

Let I be the collection of all subinterval of [a, b]. An interval function F : I →
R is said to be additive if F (I ∪J) = F (I)+F (J) for all I, J ∈ I with I ∩J = ∅.

Definition 3.2. Let B be a filtered set on [a, b]. An interval function F defined
on I is said to be B-differentiable at ξ ∈ [a, b] with B-derivative f(ξ) if for
every ǫ > 0, there exists a tag function v ∈ B, such that for every non-degenerate
closed subinterval I of [a, b] with ξ ∈ v(I), we have

|F (I)− f(ξ)|I|| < ǫ|I|.

We write F ′
B[I] = f(ξ).

Theorem 3.3. Let B be a filtered set on [a, b] and F an additive B-differentiable on
[a, b]. Suppose B has local character. Then f(ξ) = F ′

B[I] is Riemann B-integrable
on [a, b] and

(B)

∫ b

a

f = F ([a, b]).

Proof. Let ǫ > 0 be given. For each ξ ∈ [a, b], there exists vξ ∈ B, such that for
every non-degenerate closed subinterval I of [a, b] with ξ ∈ vξ(I), we have

|F (I)− f(ξ)|I|| < ǫ|I|.



812 Thai J. Math. 15 (2017)/ V. Boonpogkrong

Since B has local character, there exists v ∈ B such that v(I) ⊆ vξ(I) whenever
ξ ∈ v(I). Let D = {(I, ξ)} be a v-fine division of [a, b]. Then, for every (I, ξ) ∈ D,
we have ξ ∈ v(I) ⊆ vξ(I). Hence,

∣

∣

∣
(D)

∑

f(ξ)|I| − F ([a, b])
∣

∣

∣
≤ (D)

∑

|f(ξ)|I| − F (I)| < (D)
∑

ǫ|I| = ǫ(b− a).

Therefore, f(ξ) = F ′
B[I] is Riemann B-integrable to F ([a, b]) on [a, b].

Example 3.4. Let f : R → R with antiderivative F : R → R, that is F ′(ξ) = f(ξ)
for all ξ ∈ R. Let F([x, y]) = F (y)− F (x) for all subinterval [x, y] in R.

Let ξ ∈ R. Since F ′(ξ) = f(ξ), then for each ǫ > 0, there exists δξ > 0 such
that for any I = [x, y] ∈ (ξ − δξ, ξ + δξ) with ξ ∈ I, we have

|F(I)− f(ξ)|I|| = |F (y)− F (x)− f(ξ)|y − x|| < ǫ|y − x| = ǫ|I|.

Let [a, b] ⊆ R. Let δ : [a, b] → R defined by δ(ξ) = δξ. Let vδ(I) = {ξ ∈ [a, b] : ξ ∈
I ⊆ (ξ − δ(ξ), ξ + δ(ξ))}. Then vδ ∈ BH and for any subinterval I of [a, b] with
ξ ∈ vδ(I), we have

|F(I)− f(ξ)|I|| < ǫ|I|.

Thus, for each ξ ∈ [a, b], F is B-differentiable at ξ with B-derivative f(ξ). Example
3.1 shows that BH has a local character. Hence, by Theorem 3.3, f is Riemann
BH -integrable on [a, b] and

(BH)

∫ b

a

f = F([a, b]) = F (b)− F (a).

By Example 2.3, f is Henstock integrable on [a, b] and

(H)

∫ b

a

f = F (b)− F (a).

The property discussed in this example is also known as Fundamental Theorem of
Calculus for the Henstock integral, see [1].

Given a pair of functions f and F on [a, b] and ǫ > 0, define

Γǫ = {(I, ξ) : |F (I)− f(ξ)|I|| ≥ ǫ|I|}.

Lemma 3.5. Let B be a filtered set on [a, b] and f be B-integrable on [a, b] with
primitive F , i.e., F (I) = (B)

∫

I
f for all subinterval I of [a, b]. If B has local

character, then for every ǫ > 0, there exists a tag function v ∈ B, such that for

every v-fine partial division D = {(I, ξ)} ⊆ Γǫ of [a, b], we have

(D)
∑

|f(ξ)|I|| < ǫ and (D)
∑

|F (I)| < ǫ. (3.1)
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Proof. Let 0 < ǫ < 1 be given. By Henstock’s Lemma, for every n ∈ N, there
exists a tag function vn ∈ B such that for any vn-fine partial division D of [a, b],
we have

(D)
∑

|F (I)− f(ξ)|I|| <
ǫ2

n2n+1
.

For each n ∈ N, let

Xn = {x ∈ [a, b] : n− 1 ≤ |f(x)| < n}.

For each ξ ∈ Xn, let vξ = vn. Since B has a local character, there exists v ∈ B such
that v(I) ⊆ vξ(I) whenever ξ ∈ vξ(I). Let D = {(I, ξ)} be a v-fine partial division
of [a, b] such that D ⊆ Γǫ. Note that for every (I, ξ) ∈ D, ξ ∈ v(I) ⊆ vξ(I) = vn(I)
for some n ∈ N. For each n, let Dn = {(I, ξ) ∈ D : ξ ∈ Xn}. Hence,

(D)
∑

|f(ξ)|I|| ≤
∞
∑

n=1

(Dn)
∑

|f(ξ)||I| <
∞
∑

n=1

n · (Dn)
∑

|I|.

Since Dn ⊆ D ⊆ Γǫ, we have

(Dn)
∑

|I| < (Dn)
∑ |F (I)− f(ξ)|I||

ǫ
<

ǫ

n2n+1
.

Thus,

(D)
∑

|f(ξ)|I|| <
∞
∑

n=1

n · (Dn)
∑

|I| <
∞
∑

n=1

n ·
ǫ

n2n+1
=

ǫ

2
.

Notice that

(D)
∑

|F (I)| ≤ (D)
∑

|F (I)− f(ξ)|I||+ (D)
∑

|f(ξ)|I|| .

Consider the first sum on the right hand side, we have

(D)
∑

|F (I)− f(ξ)|I|| <
∞
∑

n=1

(Dn)
∑

|F (I)− f(ξ)|I|| <
∞
∑

n=1

ǫ2

n2n+1
<

ǫ

2
.

Hence
(D)

∑

|F (I)| <
ǫ

2
+

ǫ

2
= ǫ.

The inequalities (3.1) are also known as the double Lusin condition, see [4].

Lemma 3.6. Let B be a filtered set on [a, b]. If for every ǫ > 0, there exists a tag

function v ∈ B, such that

(D)
∑

|f(ξ)|I|| < ǫ and (D)
∑

|F (I)| < ǫ

whenever v-fine partial division D = {(I, ξ)} ⊆ Γǫ of [a, b], then f is B-integrable
on [a, b] with primitive F .
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Proof. Let ǫ > 0 and v ∈ B satisfying the double Lusin condition above. Let
D = {(I, ξ)} be a v-fine division of [a, b]. Let DΓǫ

= {(I, ξ) ∈ D ∩ Γǫ} ⊆ Γǫ and
Dc

Γǫ
= D \DΓǫ

. Hence

∣

∣

∣
(D)

∑

f(ξ)|I| − F ([a, b])
∣

∣

∣
≤ (D)

∑

|f(ξ)|I| − F (I)|

≤ (DΓǫ
)
∑

|f(ξ)|I||+ (DΓǫ
)
∑

|F (I)|

+ (Dc
Γǫ
)
∑

|f(ξ)|I| − F (I)|

< ǫ+ ǫ+ (Dc
Γǫ
)
∑

ǫ|I| = (2 + |b− a|)ǫ.

Therefore, we get the required result.

We may rewrite Lemma 3.5 together with Lemma 3.6 as follows.

Theorem 3.7. Let B be a filtered set on [a, b] with a local character. Then f is

B-integrable on [a, b] with primitive F if and only if for every ǫ > 0, there exists a

tag function v ∈ B, such that

(D)
∑

|f(ξ)|I|| < ǫ and (D)
∑

|F (I)| < ǫ

whenever v-fine partial division D = {(I, ξ)} ⊆ Γǫ of [a, b].

Given a pair of functions f and F on [a, b] and a tag function v ∈ B, for each
n ∈ N, define

IV (f, n, v) = sup
D

{

(D)
∑

|f(ξ)|I|| : D ⊆ Γ1/n is a v-fine partial division of [a, b]
}

and

IV (F, n, v) = sup
D

{

(D)
∑

|F (I)| : D ⊆ Γ1/n is a v-fine partial division of [a, b]
}

.

Define
IV (f, n) = inf

v∈B
IV (f, n, v) and IV (F, n) = inf

v∈B
IV (F, n, v).

The following theorem is a consequence of Lemma 3.5.

Theorem 3.8. Let B be a filtered set on [a, b] and f be B-integrable on [a, b] with
primitive F . Suppose B has a local character. Then for each n ∈ N, we have

IV (f, n) = 0 and IV (F, n) = 0.

An interval function F defined on I is said to be B-differentiable with B-
derivative f(ξ) almost all interval-point pairs (I, ξ) ∈ I × [a, b], abbreviated a.a.
on I × [a, b], if IV (f, n) = 0 and IV (F, n) = 0 for all n ∈ N.

Theorem 3.9. Let B be a filtered set on [a, b] and f be B-integrable on [a, b] with
primitive F . Suppose B has local character. Then F ′

B(I) = f(ξ) a.a. on I × [a, b].
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4 Convergence Theorems

Definition 4.1. Let B be a filtered set on [a, b]. A sequence of function {fn}
defined on [a, b] is said to be Riemann B-equiintegrable to sequence {Fn} on
[a, b] if for every ǫ > 0, there exists a tag function v ∈ B such that for every v-fine
division D = {(I, ξ)} of [a, b], for every n ∈ N, we have

|S(fn, v,D)− Fn| < ǫ,

where S(fn, v,D) = (D)
∑

fn(ξ)|I|.

Example 4.2. Let Q be the set of all rational number. Write Q ∩ [0, 1] =
{r1, r2, . . .}. For each n ∈ N, let fn : [0, 1] → R be defined by fn(x) = 1 if
x ∈ {r1, r2, . . . , rn} and fn(x) = 0 otherwise, i.e., fn(x) = χ{r1,r2,...,rn}(x).

Let ǫ > 0 be given. Let

vǫ(I) =
{

rj : I ⊆
(

ξ −
ǫ

2j
, ξ +

ǫ

2j

)}

∪ (Qc ∩ [0, 1]).

Let B = {vǫ : ǫ > 0}. Note that B ⊆ BM . It is easy to see that the sequence of
function {fn} is Riemann B-equiintegrable to sequence {Fn ≡ 0} on [0, 1], because

∣

∣

∣
(D)

∑

fn(ξ)|I|
∣

∣

∣
≤

∣

∣

∣

∣

∣

∣

(D)
∑

ξ∈Q∩[0,1]

fn(ξ)|I|

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

(D)
∑

ξ∈Qc∩[0,1]

fn(ξ)|I|

∣

∣

∣

∣

∣

∣

<

∞
∑

j=1

ǫ

2j−1
= 2ǫ

whenever D is a v-fine division of [0, 1]. We also note that fn → χQ on [0, 1]. The
next theorem shall guarantee that the χQ is Riemann B-integrable on [0, 1] and

(B)

∫ 1

0

χQ = lim
n→∞

(B)

∫ 1

0

fn = 0.

Theorem 4.3. Let B be a filtered set on [a, b]. If {fn} is Riemann B-equiintegrable
to {Fn} on [a, b] and fn → f on [a, b], then f is Riemann B-integrable on [a, b]
and

(B)

∫ b

a

f = lim
n→∞

(B)

∫ b

a

fn.

Proof. Let ǫ > 0 be given. There exists a tag function v ∈ B such that for every
v-fine division D = {(I, ξ)} of [a, b], for every n ∈ N, we have

|S(fn, v,D)− Fn| < ǫ.

Let D = {(I, ξ)} be a v-fine division of [a, b]. Note that the division D = {(I, ξ)}
is fixed. So, the set of tax point {ξ : (I, ξ) ∈ D} is finite. Since the sequence of
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function {fn} is pointwise convergent and {ξ : (I, ξ) ∈ D} is finite, there exists
N(D) ∈ N such that for every m,n > N(D),

|S(fm, v,D)− S(fn, v,D)| =
∣

∣

∣
(D)

∑

(fm(ξ)− fn(ξ))|I|
∣

∣

∣
< ǫ.

Thus, for every m,n > N(D), we have

|Fm − Fn| ≤ |S(fm, v,D)− Fm|+ |S(fm, v,D)− S(fn, v,D)|+ |S(fn, v,D)− Fn|

< ǫ+ |S(fm, v,D)− S(fn, v,D)|+ ǫ < 3ǫ.

Note that N(D) depend on D. However, |Fm − Fn| does not depend on D. We
use D to find N . Hence the sequence {Fn} is a Cauchy sequence in R. There
exists a real number F such that Fn → F as n → ∞.

Again, let D = {(I, ξ)} be a v-fine division of [a, b]. There exists N̄ ∈ N such
that for every n > N̄ ,

|S(fm, v,D)− S(f, v,D)| < ǫ and |Fn − F | < ǫ.

Hence,

|S(f, v,D)− F | ≤ |S(f, v,D)− S(fn, v,D)|+ |S(fn, v,D)− Fn|+ |Fn − F | < 3ǫ,

that is, f is Riemann B-integrable to F on [a, b] and

(B)

∫ b

a

f = F = lim
n→∞

Fn = lim
n→∞

(B)

∫ b

a

fn.

Given a sequences of functions {fn} and {Fn} on [a, b], define

Γǫ,n = {(I, ξ) : |Fn(I)− fn(ξ)|I|| ≥ ǫ|I|}.

Definition 4.4. Let B be a filtered set on [a, b]. Sequences of function {fn}
and {Fn} on [a, b] are said to satisfy the uniform double Lusin condition,
introduced in [4], if for every ǫ > 0, there exists a tag function v ∈ B, such that
for every v-fine partial division D = {(I, ξ)} ⊆ Γǫ,n of [a, b], we have

(D)
∑

|fn(ξ)|I|| < ǫ and (D)
∑

|Fn(I)| < ǫ.

Example 4.5. Let Q ∩ [0, 1] = {r1, r2, . . .}. For each n ∈ N, let gn : [0, 1] → R
be defined by gn(rn) = 1 and gn(x) = 0 otherwise, i.e., gn(x) = χ{rn}(x). Let
Gn : I → R be defined by Gn(I) = 0 for all I ⊆ [0, 1]. Then

Γǫ,n = {(I, ξ) : |Gn(I)− gn(ξ)|I|| ≥ ǫ|I|} = {(I, ξ) : |gn(ξ)|I|| ≥ ǫ|I|} = {(I, rn)}.

if 0 < ǫ < 1 and Γǫ,n is empty set if ǫ > 1.
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Let B be a filtered set on [0, 1] defined in Example 4.2, that is, B is the collection
of all function vǫ(I) =

{

rj : I ⊆
(

ξ − ǫ
2j , ξ +

ǫ
2j

)}

∪ (Qc ∩ I).
Let ǫ > 0. We only consider the case when ǫ < 1, because if ǫ > 1, then

Γǫ,n = ∅. Let D = {(I, ξ)} be a partial division of [0, 1] such that D ⊆ Γǫ,n. Thus

(D)
∑

|gn(ξ)|I|| = |gn(rn)|I|| = |I| <
ǫ

2n−1
≤ ǫ

and

(D)
∑

|Gn(I)| = 0 < ǫ.

So, the sequences of function {gn} and {Gn} satisfy the uniform double Lusin
condition.

Lemma 4.6. Let B be a filtered set on [a, b]. If sequences of function {fn} and

{Fn} satisfy the uniform double Lusin condition on [a, b], then {fn} is Riemann

B-equiintegrable to {Fn} on [a, b].

Proof. Follow the proof of Lemma 3.6, replace f and F by fn and Fn, respectively.

The following convergence theorem is a consequence of Theorem 4.3 and
Lemma 4.6.

Theorem 4.7. Let B be a filtered set on [a, b]. If sequences {fn} and {Fn} satisfy

the uniform double Lusin condition on [a, b], then f is Riemann B-integrable on

[a, b] and

(B)

∫ b

a

f = lim
n→∞

(B)

∫ b

a

fn.

Lemma 4.8. Let B be a filtered set on [a, b]. If sequence of Riemann B-integrable
function {fn} to {Fn} on [a, b] converge to f uniformly on [a, b], then {fn} is

Riemann B-equiintegrable to {Fn} on [a, b].

Proof. Let {fn} be a sequence of Riemann B-integrable to {Fn} on [a, b] and
fn → f uniformly on [a, b]. Let ǫ > 0. There exists N ∈ N, such that for every
n ≥ N , we have

‖fN − fn‖∞ < ǫ.

So, for any division D of [a, b], we have

∣

∣

∣
(D)

∑

f(ξ)|I| − fN(ξ)|I|
∣

∣

∣
≤ ‖fN − fn‖∞ · (D)

∑

|I| < ǫ · |b− a|.

For n ≥ N , we also have

|FN − Fn| =

∣

∣

∣

∣

∣

(B)

∫ b

a

fN − (B)

∫ b

a

fn

∣

∣

∣

∣

∣

≤ (B)

∫ b

a

‖fN − fn‖∞ < ǫ · |b− a|.
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For each n ∈ N, fn is Riemann B-integrable to Fn on [a, b], then there exists
a tag function vn ∈ B such that for every vn-fine two divisions D of [a, b], we have

|S(fn, vn, D)− Fn| < ǫ.

Let v ∈ B such that v finer than v and vn, for all n ≤ N . Let D be v-fine
division of [a, b]. Thus, for n ≤ N , we have

|S(fn, v,D)− Fn| < ǫ

and, for n > N , we have

|S(fn, v,D)− Fn| ≤ |S(fn, v,D)− S(fN , v,D)|+ |S(fN , v,D)− FN |+ |FN − Fn|

=
∣

∣

∣
(D)

∑

f(ξ)|I| − fN (ξ)|I|
∣

∣

∣
+ ǫ+ ǫ · |b− a|

< ǫ · |b− a|+ ǫ+ ǫ · |b− a| = ǫ(2|b− a|+ 1).

Hence, the sequence {fn} is Riemann B-equiintegrable to sequence {Fn} on [a, b].

The following convergence theorem is a consequence of Theorem 4.3 and
Lemma 4.8.

Theorem 4.9. Let B be a filtered set on [a, b]. If a sequence of Riemann B-
integrable function {fn} on [a, b] converges to f uniformly on [a, b], then f is

Riemann B-integrable on [a, b] and

(B)

∫ b

a

f = lim
n→∞

(B)

∫ b

a

fn.
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