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1 Introduction

Let X1, Xs,..., X,, be independent and not necessarily identically dis-
tributed random varibles with zero mean and finite variance. Define

Wo,=X1+Xo+..+X,

and VarW,, = 1. Let F,, be the distribution function of W,, and ® the standard
normal distribution function. The central limit theorem in probability theory and
statistics states that

F,(x) = ®(x) as n — 0.

The Berry-Esseen theorem, also known as the Berry-Esseen inequality, attempts
to quantify the rate of this convergence. Statements of the theorem vary, as it
was independently discovered by two mathematicians, Andrew C.Berry (1941,[2])
and Carl-Gustav Esseen (1945,[5]), who then, along with other authors, refined it
repeatly over subsequent decades.

Suppose that E|X;|®> < oo for i = 1,2,...,n, then we have uniform Berry-
Esseen theorem

sup |F,(z) — ®(z)| < Co ¥ E|X,[° (1.1)
z€R i—1
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and the non-uniform version
o ~ 3
F, - ® < — F|X; 1.2
|[Fn(z) — ®(2)] < aEE ;:1 | X (1.2)

where both Cy ans Cp are absolute constants.

In case of uniform bound, Berry [2] and Esseen [5] are the first two persons
who obtained (1.1) in case of X/s are identically distributed. Later, Siganov [11]
improved the constant down to 0.7655 in 1986 and 0.7164 by Chen [4] in 2002.
Without assuming the identically distributed of X/s, Beek [14] sharpened the
constant to 0.7975 in 1972 and improved the constant down to 0.7915 by Siganov
[11] in 1986.

For non-uniform bound, Nagaev [7] is the first one who obtained (1.2) in case
of X/s are identically distributed random variables and Bikelis [1] generalized
Nagaev’s result to the case that X/s are not necessarily identically distributed.
Paditz [9] calculated C; to be 114.7 in 1977 and improved his bound to be 31.395
in 1989.

Michel [6] reduced the constant to 30.84 for the independent and identically
distributed case.

In 2001, Chen and Shao [3] give the new versions of (1.1) and (1.2) without
assuming the existence of third moments. Their results stated as follows.

iléE'F”(x) — ()] <41 Z{EIXz'I?I(IXi\ > 1)+ BIXiPI( X < 1)} (13)

and

n 2 . x 3 . T

Pt (1 + [2)? (1 + J2[)?
(1.4)
where C5 is a positive constant and I(A) is the indicator random variable that is
I(A4) = 1 if A i?, true,
0 otherwise.
Neammanee [8] combined the concentration inequality in [3] with coupling ap-
proach to calculate the constant in (1.4). Here is his result.

Theoreml1.1 Let X, X5, ..., X,, be independent ramdom variables with zero
n
means and X:EXZ2 = 1. Let W, = X1 + X5 + ... + X,, and F,, the distribu-

i=1
tion function of W,,. Then

n CEXZI(X] = 1417])  BIXGPIX] < 1+]3)
[Fae) — (@) < G5 3] i+ )
i1 (1+‘Z|) (1+|Z|)

(1.5)
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where

21.44 if |z| <3 or |z| > 14,
32 if 3 < |a| <3.99,

60 if 3.99 < |z| < 7.98,
32 if 7.98 < |a| < 14.

Cs =

We observe that the bounds in (1.5) are given in term of truncated moments
and the constant obtained is 21.44 for most values. In this paper, the authors
improve the concentration inequality which is used in [8] and get better constants,
i.e., 9.7. for almost x. Our main result is Theorem 1.2

Theorem 1.2 Under the assumptions of Theorem 1.1, we have

X X
EXZI(|Xi| 21+|Z|) E|X;[PI(1X;)| <1+|Z|)
Jr

Fo(x)—®(x)| <C T T
) el =02 (+ 1502 (a+15)°

where

2144 if |z| <3,

32 it 3 < |z] <3.99,
C=1{49.18 if 3.99 < |z] < 7.9,

1460 if 7.98 < |z| < 14,

9.7 if |z| > 14.

Observe that the constants in Theorem 1.2 are sharper than that in Theorem
1.1.

2 Auxiliary results

In order to improve Theorem 1.1, we needs the auxiliary results, namely the
improved concentration inequality and Proposition 2.3. Let

Yie=XI(X;| <142),8%=> Yia,
=1

n n
ap =Y EXZI(X;| >1+a), B =Y EIX;PI(X;| <1+a),
i=1 i=1
6112 ax ﬁw

. 5 an (1+9:)2+(1+x)3 or x >




4 Thai J. Math. 5(2007)/ P. Thongtha and K. Neammanee

Proposition 2.1 Let A be a nonempty subset of {1,2,....,n} and Sp 5 = Z Yie.
i€EA
Then

afL'
1+z

Ay

ESY < (1 1y Qeb 2 2 )4,
Shes (ko) b1e S g (Om gy (2

Proof Note that

- " BIXGPI(|X| > 14 x) o
EY; .| < B\ X I(|X;] >1 < — = .
DICHIPD SIS RN SLL el B
ISHN i=1 i=1
From this inequalities and the fact that |Y; ;| <1+ z and Z EY?, <1, we have
i€EA

ED YA+ D YAYE +D > YiYie

i€EA ASHN jSﬁA €A j;/}
J7FT VEa
DN VY Ve D DY Y YiaYaYeaYia]

1€EA JEA kEA €A JEN KEA lEA
A1 kF#i,g j#i k#i4,5 1#4,5,k

N Bl Yol + 1Y EYZ( S EYE,

1EA 1EN JEA

+ > EWYiLl|D EYl|+ D EYZIDY BVl Y EYil
i€EA JEA i€EA JEA kEA
J#i J#i k#i,j
+Y EYiL|Y EYlll Y EYiall > EYi
€A JEA keEA LleA
i#j ki, 11,5,k

< (1+$)6x+1+?:_ﬂ; 12 4 (

ES!

IN

Qg

1+

Qg

1+

+

).

Proposition 2.2 (Concentration Inequality)
Letie {1,2,....n}, W = W,—X;, and S o = Sp.q where A = {1,2,...,n}—{i}.

1
Thenfor1§a<b<ooand(1+a)2aa+(1+a)ﬁa<%

, we have

(2) (b_a+2'7a) (1 +7a)3 3(1 “F’Ya)Q 3(1 +7a)
Pe<W <0< S (mnp e * am )
1.465 x 10773, L Oa
(0.5 — (8a)F — 20 — CJA(1 4+ a)3 (1 +a)?

+1)ESL,

for any positive constant C' such that C' < 0.5 — (ﬂa)% — 2a. Furthermore,
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7.417
(1+a)3

» 5.264
2. Pla < W <b) <
(a < <b) < (1+a)?

3.522
(14 a)?

1. Pla< W <b) < (b—a)+8.1255, for a>2,

(b—a)+ 70185, for a>3,

3. P(a < WY <b)

IN

(b—a)+3.9166, for a>6.
1
Proof. Since (1 + a)?a, + (1 +a)B, < 300 Ve note that
a—7 >0 and 0.5— (6(1)% — 2, > 0.
Let f: R — R be defined by

0 for t<a—n,,
f&) =S (1 +t+7)%(t—a+) for  a— v, <t <b+ 7,
(14t +7)3(b—a+ 27,) for  t>b+7,.

From equations (2.19) and (2.23) in Neammanee [8] p.1958-1959, for every positive
constant C'.

. 1 . «
Pla<WW <p) < ——— ES; . f(S;a) + P(UL < e 2.1
(a’—Wn = )—C(l_i_a)g S,f(S,)+ (UA,a—C)+(1+a)23 ( )
where U} , = > [Vj 2| min(va, |¥j.2]).
JEA
i

To bound the right hand side of (2.1), we divide the proof into two steps.
Step 1. We will prove that

(1+7)° | 3(14+7)° | 3(1+7a)
(a— '7a>3 * (a —%a)? * (a— 'Va)

ESiaf(Sia) < (b—a+27)( +1)ESt,.

(2.2)
First, we will show that
ESi,af(Si,a) § ESi7aI(Si,a Z a — '7a>(1 + Si,a + 7a)3(b —a+ Q’Va)' (23)

It is obvious that (2.3) holds in case of S; , < a — 7y, and S; 4 > b+ 7.
Assume that a — v, < Si 4 < b+ 7,. Then

ESiaf(Sia) = ESia(l1+ Sia+7)%(Sia—a+7a)
ES; oI(Sia>a—7) 14 Sia+7)*(Sia — a+7)
ESial(Sia > a—7a) (14 Sia+7)*((b+7a) — a+7a)
ESial(Sia > a= 7)1+ Sia +7a) (b — a+ 27a).

IN
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Hence, (2.3) holds. Thus

ES;.af(Sia)

< (b—a+27)|ESial(Sia > a—Ya)(1 + Sia +7a)®|

= (b—a+27)|ESial(Sia > a—7a){(1 +7)* + 3(1 + 74)*Sia
+3(147a)S7q + SPo

< (b= a+27){(1+ 72 ESia (Sia > a = 70)|
+3(1+7)2ES2,(Sia > a —7a) + 3(1 +7a)|ES?  I(Sia > a — )|
+ Esgfa}.

A

From this fact and the following results :

ES;{GI(SM >a— ) - ES#

i,a

(@ —7a)? T (a=7a)¥

|ESi.al(Si,a > a—7a)l

ES?QI(SZ'7@Z@—’YQ) ES:'Ia
) > < ) 3
(@ —"a) (a—"a)

IN

|ES1‘2,aI(Si,a >a— )|

ESf’aI(Si’a >a— ") < ESﬁa

ES?GI Sia>a— ", < )
| ’ ( ’ ) (& —%a) (@ —"a)

we have

(1 +7a)3 3(1 +7a)2 3(1+7a)
(a—"a)3 (@ —7a)? (@ —"a)

BSiaf(Sia) < (b—a+2,)( +1) S,

Step 2. We will show that

1.464 x 10773,
[0.5— (84)3 —20q — C]4(1 4 a)3

P(Uy, <0) <

To bound P(U}‘\’a < (), we note that

EU} . > 0.5 — (B.)F — 20,

(see Neammanee [8], p.1959). By the same argument of Proposition 2.1, we can
show that

Ba
(14a)3

) ) 1
E|Uj , — EUR ,|* < (16(g5) + Dyt =1.292 <1.465 x 1077
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Then for C' < 0.5 — (8,)3 — 20,

P(U4, <C) < P(BU}, — Ui, > 05— (8a)3 — 20, — C)
_ B, —EUL,[*
T 05— (8a)F — 200 — O]
< 1.465 x 10773,
T 05— (Ba)? — 200 — CP(1+a)®

By (2.1),(2.2), and (2.4), we finish the proof.
The others results obtained by choosing C' = 0.43,0.46 and 0.46 in case a > 2,a > 3
and a > 6, respectively. O

Proposition 2.3 Let = be a positive real number and g : R — R defined by
g(w) = (wf,(w))" where f, is the unique solution of Stein’s equation

fw) —wf(w) =I(w < z) — ().

1
If 14 2)%a, + (1 +2)B: < —, then for |u] <1+ z, we have

80
; 0.458
1. EgW\" +u) < Ty +0.9038: (1 +2) for o> 14,
1+~
1
9 1.344
2. Eg(Wy"’ +u) < W +2.53402 (1 +z) for 7.98 <z <14,
14+ =
1
; 20.319
3. Bg(Wi! +u) < ——5— +19.8283: (1 +2) for 3.99 <o <798,
1 —
1

Proof. We will prove the proposition in case of x > 14 and for the other cases,
we can use the same argument.
From eq.(2.44) and (2.45) of Proposition 2.4 in [8], we have

; 2.517 ;
EgW® +u) < m+g(x—l)P(m—l< W +u < x)
+ / g (w)P(w < W < z)dw (2.5)
rz—1
and
gl —1) < 20 (2.6)
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Since (z —1) —u> (x —1) = (1 + §) > 8.4 for x > 14,

Pz —1<W¥ +u<uz)

IN

PWY >z —1—u)

P(W) > 8.4)

EW?

70.56

0.0142. (2.7)

IN

IN

IN

So, by (2.5)-(2.7) and Proposition 2.2(3),

2.518
(1+x)3

= % + /:1 9’(w)[%(m —w) + 3.9168, ] dw.
(2.8)

EgW® ) < +/ g (w)P(w < WO 4 u < z)dw
z—1

A

Since ¢, is decreasing in z, g is non-negative and increasing on [0, x), and |g(z)| <
1+ |z|, (2.8) can be bounded by

; 2.518 3.522 r
Eg(W® +u) < / (w) (2 — w)dw + 3.9166 5
9V ) S e g [, W)@ 0w+ 391605 g(x)
2.518 3.522 r
- —w)d .916(1 O3
Srap Tty [ = wgo) + 891601+ 215
2.518 3.522 r
d .916(1 03z
Szap " FEEE /Hg(w) w+3.916(1 + )05
2.518 3.522
= : 3.916(1 O3
Mt ap (@ ) (Fe(@)) 439160+ 2)oy
0.458
< ﬁ + 0.903(5%(1 —+ x)
1+ -
4
1+ % 1+ 2
where we have applied the fact that |z f, (2)] < 1([13], p.23), 1.<0.3, £ <
14z 143
1+ 2)2
0.48 and d3= < (1+31) dz <0.230z for z > 14 in the last inequality. O

5 = @ 1
We note that Proposition 2.2 and Proposition 2.3 are the improvement of the
following results of [8].

Proposition 2.4 Leti € {1,2,...,n} and W& =W — X;. Then for 3 < a <
1
b<ooand (1+a)?a, + (1+a)B, < 307 e have

. 40.98
Pla<W® <p) <
(as sh) < (1+a)

(b — a) + 46.38,.
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1
Proposition 2.5 Letx > 14. If (1+2)%a,+ (1+2)8: < 30 then for |u| < 1—1—1
we have 4.60
EgW® +u) < ——— +5.1302 (1 + z).
(1+9)°

We are now ready to prove our main result.

3 Main Result

Our main result is an improvement of the constant in Theorem 1.1. The
techniques and tools used in proving the result are the improved concentration
inequality and Proposition 2.3.

Proof of Theorem 1.2
It suffices to assume that x > 0 as we can simply apply the result to —W when
x < 0. Since W,, = S, if max | Xi| <1+,

<i<n

[P(Wy < x) = ()] < P(Wy # Se) +|P(Se < x) — ®(a)]

< P(lrgjax |Xi| > 1+2)+|P(S: <z)— P(x)]
< iP(m\ >14z)+ |P(Se <z) — ®(x)

i=1

Z X2I|X|>1+:v)

P +|P(Sy < x) — @(z)]

O
<—+|P < P . 1
(e +[P(Sz < 2) — 2() (3.1)
From the fact that
|P(Sy <z)—®@(z)] < P(Sy>2)+(1—0(x))
Es
< 7+ (1-2()
and 1—®(x) < \e/;;x when z > 0 we have
Qy ESs?
<x)—B(z) € —= 4 TPz (]
|P(W, < z) —®(z)] < Tror T ot + (1 - ®(x))
oy ES} e

+=2+ :
(1+2)? x4 27X
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Casel. z > 14.

1
Subcase 1.1 (1 + z)%a, + (1 +x)8, > 0

€T 1
Since 672 > 6022 and 1tz < 1.072 for z > 14, by Porposition 2.1 and (3.2), we
x

have

oy ES? 1
(14 z)2 T T 60v/2mz?
1
f ixxy IR ?Qf;
O By 1.329
o) "0+ T Ty
1.329(80)

1.327 4, + W{(l + 33)204z +(1+ 'r)ﬁz}

|P(Wy, < 2) — ®(z)]

IN

1.0066
24

Ay
1+

Qg
1+

IN

) )+

IN

1.327(

)+

IN

107.736,
< 9.75=

14>

where the fact that 6, < ( T 4 )25 < (0.3)25% is used in the last inequality.
x

NE

1
Subcase 1.2 (1 +2)%a, + (1 4+ 2)8: < —
Let Kiz(t)=EY; 2 {I(0<t<Y;2)—I(Y;2 <t <0)}. From pp.250-251 of
[3], we set

F(z) —®(x)=Ri+ Ra+ Rs+ Ry (3.3)
where N
Ry=Y B{I(Xi| <1+7) / (Fe W+ X0) = Lo (W + D) K 5 (8t}
i=1 [t[<1+%
Ry=> B{I(X;|>1+ 3) / (LW + Xi) = fL(W + 1) K2 (t)dt},
<1+

i=1

Ry = az Ef,(Wy),

Ry==Y B{XI(|Xi|>1+ (W) = Lo (W)}
i=1

By the fzacts that

E|fz(Wn)| < for z > 2 ([8] p.1960),

15
(14 2)?

0< folw) < min(@, ﬁ) for x € R ([13] p.23-24)

and

|£2(s) — fL(t)] < 1 for all z,s,t € R ([3] p.246)
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we have
|R2 + R3 +R4|
n €T 15a = n E|X1‘I(|Xl‘ >1+ E)
<d PX;|>1+= e 4
< PIXIz 1+ D T2 .
=1 =1
iEX2I|X‘>1—|— ) 1350&3 Z X21(|X|>1—|— )
i=1 )2 ( %)2 i=1 (1 + 4)
. Oé% i 1.3501% n 0.3204%
(R A (R L (3
< 2.6704% (3.4)
R |

z z

+ 1+
4 < 0.3 and 4
T

Note that we use the fact that < 0.32 for x > 14 in the

third inequality.
Note that |R1| S R11 + R12 where

n

X; .
Ru=Y B0 <1+ 5) [ Ky [ BV + wydudt}] and
t

i=1 [t|<1+%
n - ‘ '

Ryp = ZE{I(|X1| < 1+Z)/ P(z—max(t, X;) < WO < z—min(t, X;)| X;)
i=1 [t|<1+%

([3] p-251).

By Proposition 2.3(1), we have

0.458
(1+3)°
0.9160=

_ 0.9168;
T (1438

R11§2{ +0.903(1 + )0 }ZED@&P

+ 1806(1 + x)5£ﬂ£
+0.0238 (3.5)

where we have used the result that

1

Bz EIX;PI(|X;] <1 )<Y EBIXPI(X] <1 <
> BX 0K < +37 S BIX I < 14 2) = B < AT o)

P
=1 =1

in the last inequality.
By Proposition 2.2(3) and the inequalities

x — max(t, X;) > gz:—(l—i—E

11

K s (t)dt}
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for | X;|, |t]| <1+ z, we have

|Ri2| < ;E{I(Xi| <1+ Z)/uguz (ﬁ%}(ﬂ + X)) + 3,9165%)1(1.,%@)&}
< (17:)%%)3@ +3.916520
< (;)fgg)gﬁz +0.3250 (3.7)
01+

142
where we have used the fact that 24 < 0436 and 62 < ———-50=
1+ ’ (1+5) "
0.1905% for x > 14 in the last inequality.
Hence, by (3.3)-(3.7) we have

IN

|F(.Z’) — @(m)\ < |R1 + Ry + R3 + R4| < 3.025%.

Case2. 7.98 <z < 14.

We use the same argument as in case 1. by using Proposition 2.3(2) and Proposi-
tion 2.2(2) to bound (3.5) and (3.7), respectively.

Case3. 3.99 < x < 7.98.

We use the same argument as in case 1. by using Proposition 2.3(3) and Propo-
sition 2.2(1) to bound (3.5) and (3.7), respectively, and replacing inequality (3.6)
by the following inequality

:U—max(t,Xi)zx—(l—i—g)zi—lzz

References
[1] Bikelis, A., Estimates of the remainder in a combinatorial central limit theo-
rem, Litovsk. Math. Sb., 6(3)(1966): 323-46.

[2] Berry, A.C, The accuracy of the Gaussian approximation to the sum of inde-
pendent variables, Trans. Amer.Math.Soc.49(1941): 122-136

[3] Chen, L.H.Y., Shao, Q.M., A non-uniform Berry-Esseen bound via Stein’s
method, Probab. Theory Related Fields, 120(2001): 236-254.

[4] Chen, Asymptotic refinement of the Berry-Esseen constant. Unpublished
manuscript (2002).

[5] Esseen,C.G, Fourier analysis of distribution functions. A Mathematical Study
of the Laplace Gaussian Law, Acta Math.77(1945): 1-125.

[6] Michel, R., On the constant in the non-uniform version of the Berry-Esseen
theorem, Z. Wahrsch. Verw. Gebiete, 55(1981): 109-117.



Refinement on the Constants in the Non-uniform Version of the Berry-Esseen Theorem .. .13

[7] Nagaev, S.V., Some limit theorems for large deviations, Theory Probab. Appl.,
10(1965): 214-235.

[8] Neammanee, K.,On the constant in the nonuniform version of the Berry-
Esseen theorem. International Journal of Mathematics and Mathematical Sci-
ences, 12(2005): 1951-1967.

[9] Paditz, L., Ber die Annherung der Verteilungsfunktionen von Summen
unabhngiger Zufallsgrben gegen unberrenzt teilbare Verteilungsfunktionen
unter besonderer berchtung der Verteilungsfunktion de standarddisierten
Normalver- teilung. Dissertation, A. TU Dresden, 1977.

[10] Paditz, L., On the analytical structure of the constant in the nonuniform
version of the Esseen inequality, statistics, 20(1989): 453-464.

[11] Siganov, I.S., Refinement of the upper bound of the constant in the central
limit theorem. Journal of Soviat Mathematics, 1986: 2545-2550.

[12] Stein, C., A bound for the error in the normal approximation to the distri-
bution of a sum of dependent random variables, Proc. Sizth Berkeley Symp.
Math. Stat. Prob., 2, 583-602, Calif: Univ. California Press. Berkeley, 1972.

[13] Stein, C., Approzimation Computation of Expectation, Hayword California:
IMS, 1986.

[14] Van Beek, P., An application of fourier methods to the problem of sharpening
the Berry-Esseen inequality. Z. Wahrsch. Verw. Gebiete 23(1972): 187-196.

(Received 20 August 2007)

P. Thongtha and K. Neammanee

Department of Mathematics, Faculty of Science,
Chulalongkorn University, Bangkok 10330, Thailand
e-mail : Kritsana.n@chula.ac.th



