Using Recurrence Relation to Count a Number of Perfect Matching in Linear Chain and Snake Chain Graphs

Asekha Khantavchai and Thiradet Jiarasuksakun 11
Department of Mathematics, King Mongkut's University of
Technology Thonburi, 126 Pracha Uthit Rd., Bang Mod
Thung Khru, Bangkok, 10140, Thailand
e-mail : asekha.kh@gmail.com (A. Khantavchai)
thiradet.jia@kmutt.ac.th (T. Jiarasuksakun)

Abstract

This paper presents the recurrence relation using to count a number of perfect matchings in linear chain and snake chain graphs. These graphs are offen found in the chemical structure. A perfect matching graph M is a subgraph of G where there are no edges in M adjacent to each other and $V(M)=V(G)$. $\phi(G)$ is a number of perfect matching of G which leads to important chemical properties.

The results show that a number of perfect matching of a linear chain graph depends on parity of faces and number of edges in each face. A number of perfect matching of a snake chain graph depends on parity of the chain.

Keywords : perfect matching; recurrence relation; linear chain graph; snake chain graph.

2010 Mathematics Subject Classification : Primary 05C70; Secondary 05C62; 11B37.

[^0]
1 Introduction

Graphs are mathematical structures consisting of vertices and edges. We let $G(V, E)$ be a graph such that V is a vertex set and E is an edge set. Graph Theory is one of the most popular mathematical model in study, research and use to solve problems, which include logistics, electronics, industry and business management, biochemistry (genomics), electrical engineering (communications networks and coding theory), computer science (algorithms and computations) and operations research (scheduling) [1]. There are many applications of graph theory, but they remain scattered in the literature [2,3]. Some interesting application of graph theory was used to study speech patterns of both manics and schizophrenics in hopes of creating a less objective and more quantitative means of patient diagnosis $[4,5]$.

In this paper, we present a method to count a number of perfect matching in linear chain and snake chain graphs. A matching graph M is a subgraph of a graph G where there are no edges adjacent to each other(See Figure 1). If $V(M)=V(G)$, we will call M a perfect matching. Let $\phi(G)$ be a number of all perfect matchings of G. Does G always have a perfect matching? How many perfect matchings are there? We want to answer these questions.

Figure 1. (b) and (c) are two different perfect matchings of graph (a)
Recurrence relation is a proof technique in mathematics. It is an equation that recursively defines a sequence or multidimensional array of values. Once one or more initial terms are given: each further term of the sequence or array is defined as a function of the preceding terms. We will use recurrence relation to count a number of perfect matching of chain graphs.

Definition 1.1. Given a sequence $a_{g(0)}, a_{g(1)}, a_{g(2)}, \ldots, a_{g(n)}$, a recurrence relation is an equation which defines the $n^{t h}$ term in the sequence as a function f based on the previous terms:

$$
a_{g(n)}=f\left(a_{g(0)}, a_{g(1)}, a_{g(2)}, \ldots, a_{g(n-1)}\right)
$$

An example of using recurrence relation is the Towers of Hanoi Problem [6]. There are three pegs: first peg having a stack of n disks, each smaller in diameter
than the one below it. An allowable move consists of a disk from $1^{\text {st }} \mathrm{peg}$ and put it onto another peg so that it is not over another disk of smaller size. The propose of this problem is to move the entire disks to another peg and determine the minimum number of moves. To solve the problem on moving all disks to $3^{\text {rd }}$ peg, we deal with the problem of moving $n-1$ disks to $2^{\text {nd }} \mathrm{peg}$, then move $n^{\text {th }}$ disk to $3^{\text {rd }} \mathrm{peg}$, and then deal with the problem of moving the $n-1$ disks on $2^{\text {nd }}$ peg to $3^{r d}$ peg. Thus if a_{n} is the number of moves needed to move n disks from one to another, we have

$$
a_{n}=2 a_{n-1}+1
$$

We have recurrence relation of Towers of Hanoi problem as follows:

$$
a_{g(n)}=f\left(a_{g(0)}, a_{g(1)}, a_{g(2)}, \ldots, a_{g(n-1)}\right)= \begin{cases}0 & \text { if } n=0 \\ 2 a_{n-1}+1 & \text { otherwise }\end{cases}
$$

2 Perfect Matching of Linear Chain Graph

A graph G is called linear chain if it consists of a chain of regular polygons with even number of edges and each adjacent pair of faces share exactly one edge such that all shared edges are parallel up to isomorphism. Each face is adjacent to at most two other faces.

Figure 2. Example of linear chain
The face in G whose the number of edges is divisible by 4 is called a blue face $\left(B_{i}\right)$. The face in G whose the number of edges divided by 4 has remainder 2 is called a red face $\left(R_{i}\right)$. We denote the faces by its colors B_{i} and R_{i}.

Theorem 2.1. Let G be a linear chain graph with n faces. If the number of edges in every face divided by 4 has remainder 2 then $\phi(G)=n+1$.

Proof. Let G be a linear chain of red faces. Let r_{n} be the number of all perfect matching of linear chain graph of n red faces. Then we get that $r_{n}=\phi(G)$. Let M be a perfect matching of G. Since every faces are red, we can define e_{i} as an edge shared between R_{i} and R_{i+1} as shown here. Let e_{0} and e_{n} be edge opposite to e_{1} in R_{1} and edge opposite to e_{n-1} in R_{n}, respectively.

Figure 3. Definition of e_{i} in R_{i} and R_{i+1}
If M contains e_{0} of R_{1}, it must also contains both adjacent edges of e_{i} in R_{i} for all i. Hence there is only one of perfect matching in G that contains e_{0}. If instead given $e_{0} \notin M$, then both adjacent edges of e_{0} in R_{1} belong to M. Because adjacent edges of e_{1} in R_{1} do not belong to M, the remaining edges of M can now be in any perfect matching of G without R_{1}. Hence there are r_{n-1} perfect matching in G not containing e_{0}. Conclude that $\phi(G)=r_{n-1}+1$. Since $r_{0}=1$ and $r_{1}=2$, $\phi(G)=n+1$.

Figure 4. Counting Methods for Theorem 2.1.
Theorem 2.2. Let G be a linear chain graph with n faces and $b_{n}=\phi(G)$. If the number of edges in every face is divisible by 4 then $b_{0}=1, b_{1}=2$ and $b_{n}=$ $b_{n-1}+b_{n-2}$ for $n \geqslant 2$.

Proof. Let G be a linear chain of blue faces. Let b_{n} be the number of all perfect matching of linear chain graph of n blue faces. Then we get that $b_{n}=\phi(G)$. Let M be a perfect matching of G. Since every faces is blue, we can define e_{i} as an edge shared between B_{i} and B_{i+1} as shown here. Let e_{0} and e_{n} be edge opposite to e_{1} in B_{1} and edge opposite to e_{n-1} in B_{n}, respectively.

Figure 5. Definition of e_{i} in B_{i} and B_{i+1}

If M contains e_{0} of B_{1}, then both adjacent edges of e_{1} in B_{1} do not belong to M and the remaining edges of M can now be in any perfect matching of G without B_{1}. Hence there are b_{n-1} perfect matchings in G that contains e_{0}. If instead given $e_{0} \notin M$, then adjacent edges of e_{0} in B_{1} belong to M and the adjacent edges of e_{1} in B_{1} belong to M too. Thus adjacent edges of e_{2} in B_{2} do not belong to M and the remaining edges of M can now be in any perfect matching of G without B_{1} and B_{2}. Hence there are b_{n-2} perfect matchings in G that do not contain e_{0}. We conclude that $b_{0}=1, b_{1}=2$ and $b_{n}=b_{n-1}+b_{n-2}$ for $n \geqslant 2$.

Figure 6. Counting Methods for Theorem 2.2.
Since the recurrence relation $b_{n}=b_{n-1}+b_{n-2}$ is linear homogeneous of degree 2 with the initial conditions $b_{0}=1, b_{1}=2$, we get the general solution

$$
b_{n}=\left(\frac{\sqrt{5}+3}{2 \sqrt{5}}\right)\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\left(\frac{\sqrt{5}-3}{2 \sqrt{5}}\right)\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

For example, graph G is a linear chain of 3 blue faces. By theorem 2.2, we have $b_{3}=b_{2}+b_{1}=2 b_{1}+b_{0}=5$. If we use the general solution, then

$$
b_{3}=\left(\frac{\sqrt{5}+3}{2 \sqrt{5}}\right)\left(\frac{1+\sqrt{5}}{2}\right)^{3}+\left(\frac{\sqrt{5}-3}{2 \sqrt{5}}\right)\left(\frac{1-\sqrt{5}}{2}\right)^{3}=5
$$

Figure 7. All perfect matching of linear chain with 3 blue faces.

In the case of G being a linear chain graph which alternates between blue faces and red faces, if the number of faces is even, we call even linear chain. Given the number of faces is $2 k$ when $k \in \mathbb{N}$, then by symmetry $b_{2 k}=r_{2 k}$, where $b_{2 k}$ is the number of all perfect matching of G which the first face is blue, $r_{2 k}$ is the number of all perfect matching of G which the first face is red. If the number of faces is odd, we call odd linear chain. They are many cases such that we will use recurrence relation again.

Theorem 2.3. Let G be an odd linear chain graph with n faces. Let the first face of G be a blue face and $b_{n}=\phi(G)$. Then $b_{0}=1, b_{1}=2, b_{2}=3$ and $b_{n}=b_{n-1}+b_{n-3}$ for odd $n \geqslant 3$.
Proof. Let G be an odd linear chain graph. Given $b_{n}=\phi(G)$ and n be odd. Let M be a perfect matching of G. Since the number of edges in every face is even, we can define e_{i} as an edge shared between blue faces and red faces as shown in Figure 8. Let e_{0} and e_{n} be edge opposite to e_{1} in B_{1} and edge opposite to e_{n-1} in B_{n}, respectively.

Figure 8. Definition of e_{i} in G
If M contains e_{0} of B_{1}, then both adjacent edges of e_{1} in B_{1} do not belong to M, because B_{1} is a blue face, and the remaining edges of M can now be in any perfect matching of G without B_{1}. Hence there are $r_{n-1}=b_{n-1}$ perfect matching in G that contain e_{0}. If instead given $e_{0} \notin M$, then both adjacent edges of e_{0} in B_{1} belong to M. Since adjacent edges of e_{1} in B_{1} and e_{2} in R_{2} belong to M too, then both adjacent edges of e_{3} in B_{3} do not belong to M and the remaining edges of M can now be in any perfect matching of G without B_{1}, R_{2} and B_{3}. Hence there are $r_{n-3}=b_{n-3}$ perfect matching in G not containing e_{0}. We conclude that $b_{n}=b_{n-1}+b_{n-3}$ for odd $n \geqslant 3$ when $b_{0}=1, b_{1}=2$ and $b_{2}=3$.

Figure 9. Counting Methods for Theorem 2.3.

Theorem 2.4. Let G be an odd linear chain graph with n faces and $r_{n}=\phi(G)$. Let the first face of G be a red face. Then $r_{0}=1, r_{1}=2$ and $r_{n}=r_{n-1}+r_{n-2}$ for odd $n \geqslant 3$.

Proof. Let G be an odd linear chain graph. Given $r_{n}=\phi(G)$ and n be odd. Let M be a perfect matching of G. Since the number of edges in every faces is even, we can define e_{i} as an edge shared between red faces and blue faces as shown here. Let e_{0} and e_{n} be edge opposite to e_{1} in R_{1} and edge opposite to e_{n-1} in R_{n}, respectively.

Figure 10. Definition of e_{i} in G
If M contains e_{0} of R_{1}, then both adjacent edges of e_{1} in R_{1} belong to M. Because adjacent edges of e_{2} of B_{2} do not belong to M, the remaining edges of M can now be in any perfect matching of G without R_{1} and B_{2}. Hence there are r_{n-2} perfect matchings in G that contain e_{0}. If instead given $e_{0} \notin M$ then both adjacent edges of e_{0} of R_{1} belong to M. Because of adjacent edges of e_{1} in R_{1} not belong to M, and the remaining edges of M can now be in any perfect matching of G without R_{1}. Hence there are $b_{n-1}=r_{n-1}$ perfect matchings in G not containing e_{0}. Conclude that $r_{0}=1, r_{1}=2$ and $r_{n}=r_{n-1}+r_{n-2}$ for odd $n \geqslant 3$.

Figure 11. Counting Methods for Theorem 2.4.
In particular, $r_{n}=r_{n-1}+r_{n-2}$ is linear homogeneous of degree 2 with the initial conditions $r_{0}=1, r_{1}=2$, we get the general solution

$$
r_{n}=\left(\frac{\sqrt{5}+3}{2 \sqrt{5}}\right)\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\left(\frac{\sqrt{5}-3}{2 \sqrt{5}}\right)\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

As mentioned previously, we have $b_{2 k}=r_{2 k}$, where $b_{2 k}$ is the number of perfect matching in G which the first face is blue, $r_{2 k}$ is the number of perfect matching of G which the first face is red and $k \in \mathbb{N}$. Now we can apply counting concepts in Theorem 2.3 and 2.4 to the case of the number of faces is an even number.

Theorem 2.5. Let G be an even linear chain graph with n faces.
(1) If the first face of G be a blue face and G alternates between blue faces and red faces. Then $r_{0}=1, r_{1}=2, r_{2}=3$ and $b_{n}=r_{n-1}+r_{n-3}$ for even $n \geqslant 4$.
(2) If the first face of G be a red face and G alternates between red faces and blue faces. Then $b_{0}=1, b_{1}=2$ and $r_{n}=b_{n-1}+b_{n-2}$ for even $n \geqslant 2$.

For example, graph G is an even linear chain graph with 4 faces as shown in Figure 12. By theorem 2.4 and 2.5 , we have $b_{4}=r_{3}+r_{1}=\left(r_{2}+r_{1}\right)+r_{1}=$ $(3+2)+2=7$.

Figure 12. An example of linear chain with 4 faces (B \& R).
The followings are all perfect matchings of G,

Figure 13. All perfect matchings of even linear chain with 4 faces (B \& R).

3 Perfect Matching of Snake Chain Graphs

A graph of chain, which is not linear, is called snake chain if the shared edges are not all parallel. Let G consist of a chain of several faces $G_{1}, G_{2}, G_{3}, \ldots, G_{p}$. For $i=1,2,3, \ldots, p$, edges shared by G_{i-1} and G_{i} is called $e_{i, 1}$. Define the first shared edge $e_{2,1}$ in G_{2} to be the same edge as $e_{1, k_{1}}$ in G_{1} and the opposite of this edge in G_{1} is called $e_{1,1}$. Then define the rest edges in each G_{i} as $e_{i, j}$ clockwise as shown in Figure 14(c). All shared edges are called $e_{1, k_{1}}=e_{2,1}, e_{2, k_{2}}=e_{3,1}, \ldots$, $e_{p-1, k_{p-1}}=e_{p, 1}$. It is called an odd snake chain if k_{i} is odd for all $i=2,3, \ldots, p-1$. It is called an even snake chain if k_{i} is even for all $i=2,3, \ldots, p-1$.

Figure 14. Example of (a)odd snake chain, (b)even snake chain graphs and
(c) $e_{i, j}$ in G_{2}

Theorem 3.1. Let G be an odd snake chain graph with p faces and $a_{p}=\phi(G)$. Then $a_{0}=1, a_{1}=2$ and $a_{p}=a_{p-1}+a_{p-2}$ for $p \geqslant 2$.

Proof. Let G be an odd snake chain graph which consists of a chain of several faces $G_{1}, G_{2}, G_{3}, \ldots, G_{p}$. We define $e_{i, j}$ by definition of an odd snake chain.

Figure 15. Definition of $e_{i, j}$ in G

Case I G_{1} is a blue face. If M contains $e_{1,1}$ of G_{1}, then both adjacent edges of $e_{2,1}$ in G_{1} do not belong to M. The remaining edges of M can now be in any perfect matching of G without G_{1}. Hence there are a_{p-1} perfect matchings in G that contain $e_{1,1}$. If instead given $e_{1,1} \notin M$, then M must contain $e_{1,2}$ and $e_{1, p}$ of G_{1}. It must also contain both adjacent edges of $e_{2,1}$ in G_{1}. Since k_{i} is odd for all $i=2,3, \ldots, p-1$, then $e_{2, k_{2}-1}$ and $e_{2, k_{2}+1}$ do not belong to M. The remaining edges of M can now be in any perfect matching of G without G_{1} and G_{2}. Hence there are a_{p-2} perfect matching in G not containing $e_{1,1}$. Conclude that $a_{0}=1$, $a_{1}=2$ and $a_{p}=a_{p-1}+a_{p-2}$ for $p \geqslant 2$.

Figure 16. G_{1} is a blue face which (a) M contains $e_{1,1}$ of G_{1} and (b) $e_{1,1} \notin M$
Case II G_{1} is a red face.

Figure 17. G_{1} is a red face. (a) M contains $e_{1,1}$ of G_{1} (b) $e_{1,1} \notin M$
If M contains $e_{1,1}$ of G_{1}, then it must also contain both adjacent edges of $e_{2,1}$ in G_{1}. Since k_{i} is odd for all $i=2,3, \ldots, p-1$, then $e_{2, k_{2}-1}$ and $e_{2, k_{2}+1}$ do not belong to M. The remaining edges of M can now be in any perfect matching of G without G_{1} and G_{2}. Hence there are a_{p-2} perfect matchings in G that contain $e_{1,1}$.

If instead given $e_{1,1} \notin M$, then M must contain $e_{1,2}$ and $e_{1, p}$ of G_{1}. The adjacent edges of $e_{2,1}$ in G_{1} do not belong to M. The remaining edges of M can now be in any perfect matching of G without G_{1}. Hence there are a_{p-1} perfect matchings in G not containing $e_{1,1}$. Conclude that $a_{0}=1, a_{1}=2$ and $a_{p}=a_{p-1}+a_{p-2}$ for $p \geqslant 2$.

In particular, $a_{p}=a_{p-1}+a_{p-2}$ is linear homogeneous of degree 2 with the initial conditions $a_{0}=1, a_{1}=2$, we get the general solution

$$
a_{p}=\left(\frac{\sqrt{5}+3}{2 \sqrt{5}}\right)\left(\frac{1+\sqrt{5}}{2}\right)^{p}+\left(\frac{\sqrt{5}-3}{2 \sqrt{5}}\right)\left(\frac{1-\sqrt{5}}{2}\right)^{p}
$$

Theorem 3.2. Let G be an even snake chain graph with p faces and $a_{p}=\phi(G)$. Then $a_{p}=p+1$.

Proof. Let G be an even snake chain graph which consists of a chain of several faces $G_{1}, G_{2}, G_{3}, \ldots, G_{p}$. We define $e_{i, j}$ by definition of an even snake chain.

Case I G_{1} is a blue face. If M contains $e_{1,1}$ of G_{1}, then both adjacent edges of $e_{2,1}$ in G_{1} do not belong to M. The remaining edges of M can now be in any perfect matching of G without G_{1}. Hence there are a_{p-1} perfect matchings in G that contain $e_{1,1}$. If instead given $e_{1,1} \notin M$, then M must contain $e_{1,2}$ and $e_{1,\left|E\left(G_{1}\right)\right|}$ of G_{1}. It must also contain both adjacent edges of $e_{2,1}$ in G_{1}. Since k_{i} is even for all $i=2,3, \ldots, p-1$, then both adjacent edges of $e_{i, k_{i}}$ in G_{i} must belong to M. Thus there is only one perfect matching in G that contains $e_{1,1}$. Conclude that $a_{p}=a_{p-1}+1$. Since $a_{0}=1, a_{1}=2$, then $a_{p}=p+1$.

Figure 18. Example of $p=4$ and G_{1} is a blue face. (a) $e_{1,1} \in M$ (b) $e_{1,1} \notin M$

Case II G_{1} is a red face. If M contains $e_{1,1}$ of G_{1}, then it must also contain adjacent edges of $e_{2,1}$ in G_{1}. Since k_{i} is even for all $i=2,3, \ldots, p-1$, then both adjacent edges of $e_{i, k_{i}}$ in G_{i} must belong to M. Thus there is only one perfect matching in G that contains $e_{1,1}$. If instead given $e_{1,1} \notin M$, then M must contain $e_{1,2}$ and $e_{1,\left|E\left(G_{1}\right)\right|}$ of G_{1}. Both adjacent edges of $e_{2,1}$ in G_{1} do not belong to M. The remaining edges of M can now be in any perfect matching of G without G_{1}. Hence there are a_{p-1} perfect matching in G not containing $e_{1,1}$. Conclude that $a_{p}=a_{p-1}+1$. Since $a_{0}=1, a_{1}=2, a_{p}=p+1$.

Figure 19. Example of $p=4$ and G_{1} is a red face. (a) $e_{1,1} \in M$ (b) $e_{1,1} \notin M$
The recurrence relation is a useful tool for counting a number of perfect matching of other graphs. Moreover, we can apply it to other part of graph theory, such as counting number of vertex independent set, face independent set, chromatic polynomial of graph and counting acyclic orientation, etc.

Acknowledgements : The authors would like to thank many teachers and friends for all the comments and remarks. This research is (partially) supported by the Centre of Excellence in Mathematics, the Commission on Higher Education, Thailand.

References

[1] S. Pirzada, A. Dharwadker, Applications of Graph Theory, The journal of the Korean Society for Industrial and Applied Mathematics(KSIAM) 11 (4) (2007) 19-38.
[2] E. Bertram, P. Horak, Some applications of graph theory to other parts of mathematics, The Mathematical Intelligencer (Springer-Verlag, New York) 1999, 6-11.
[3] L. Lovasz, L. Pyber, D.J.A. Welsh, G.M. Ziegler, Combinatorics in pure mathematics, in Handbook of Combinatorics, Elsevier Sciences B.V., Amsterdam (1996).
[4] N.B. Mota, N.A.P. Vasconcelos, N. Lemos, A.C. Pieretti, O. Kinouchi et al., Speech Graphs Provide a Quantitative Measure of Thought Disorder in Psychosis. PLOS ONE 7 (4) (2012) doi.org/10.1371/journal.pone.0034928.
[5] E.W. Weisstein, Nonahedral Graph, From MathWorld-A Wolfram Web Resource, Available from: http://mathworld.wolfram.com/ NonahedralGraph.html.
[6] A.M. Hinz et al., The Tower of Hanoi-Myths and Maths, Springer Science \& Business Media, 2013.
(Received 10 December 2016)
(Accepted 21 February 2017)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright © 2017 by the Mathematical Association of Thailand. All rights reserved.

