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Abstract : This paper presents the recurrence relation using to count a number
of perfect matchings in linear chain and snake chain graphs. These graphs are
offen found in the chemical structure. A perfect matching graph M is a subgraph
of G where there are no edges in M adjacent to each other and V (M) = V (G).
φ(G) is a number of perfect matching of G which leads to important chemical
properties.

The results show that a number of perfect matching of a linear chain graph
depends on parity of faces and number of edges in each face. A number of perfect
matching of a snake chain graph depends on parity of the chain.
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1 Introduction

Graphs are mathematical structures consisting of vertices and edges. We let
G(V,E) be a graph such that V is a vertex set and E is an edge set. Graph The-
ory is one of the most popular mathematical model in study, research and use to
solve problems, which include logistics, electronics, industry and business manage-
ment, biochemistry (genomics), electrical engineering (communications networks
and coding theory), computer science (algorithms and computations) and opera-
tions research (scheduling) [1]. There are many applications of graph theory, but
they remain scattered in the literature [2,3]. Some interesting application of graph
theory was used to study speech patterns of both manics and schizophrenics in
hopes of creating a less objective and more quantitative means of patient diagnosis
[4,5].

In this paper, we present a method to count a number of perfect matching in
linear chain and snake chain graphs. A matching graphM is a subgraph of a graph
G where there are no edges adjacent to each other(See Figure 1). If V (M) = V (G),
we will call M a perfect matching. Let φ(G) be a number of all perfect matchings
of G. Does G always have a perfect matching? How many perfect matchings are
there? We want to answer these questions.

Figure 1. (b) and (c) are two different perfect matchings of graph (a)

Recurrence relation is a proof technique in mathematics. It is an equation that
recursively defines a sequence or multidimensional array of values. Once one or
more initial terms are given: each further term of the sequence or array is defined
as a function of the preceding terms. We will use recurrence relation to count a
number of perfect matching of chain graphs.

Definition 1.1. Given a sequence ag(0), ag(1), ag(2), ..., ag(n), a recurrence relation

is an equation which defines the nth term in the sequence as a function f based
on the previous terms:

ag(n) = f(ag(0), ag(1), ag(2), ..., ag(n−1))

An example of using recurrence relation is the Towers of Hanoi Problem [6].
There are three pegs: first peg having a stack of n disks, each smaller in diameter
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than the one below it. An allowable move consists of a disk from 1st peg and
put it onto another peg so that it is not over another disk of smaller size. The
propose of this problem is to move the entire disks to another peg and determine
the minimum number of moves. To solve the problem on moving all disks to 3rd

peg, we deal with the problem of moving n − 1 disks to 2nd peg, then move nth

disk to 3rd peg, and then deal with the problem of moving the n− 1 disks on 2nd

peg to 3rd peg. Thus if an is the number of moves needed to move n disks from
one to another, we have

an = 2an−1 + 1

We have recurrence relation of Towers of Hanoi problem as follows:

ag(n) = f(ag(0), ag(1), ag(2), ..., ag(n−1)) =

{

0 if n = 0
2an−1 + 1 otherwise

2 Perfect Matching of Linear Chain Graph

A graph G is called linear chain if it consists of a chain of regular polygons
with even number of edges and each adjacent pair of faces share exactly one edge
such that all shared edges are parallel up to isomorphism. Each face is adjacent
to at most two other faces.

Figure 2. Example of linear chain

The face in G whose the number of edges is divisible by 4 is called a blue
face(Bi). The face in G whose the number of edges divided by 4 has remainder 2
is called a red face(Ri). We denote the faces by its colors Bi and Ri.

Theorem 2.1. Let G be a linear chain graph with n faces. If the number of edges
in every face divided by 4 has remainder 2 then φ(G) = n+ 1.

Proof. Let G be a linear chain of red faces. Let rn be the number of all perfect
matching of linear chain graph of n red faces. Then we get that rn = φ(G). Let
M be a perfect matching of G. Since every faces are red, we can define ei as an
edge shared between Ri and Ri+1 as shown here. Let e0 and en be edge opposite
to e1 in R1 and edge opposite to en−1 in Rn, respectively.
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Figure 3. Definition of ei in Ri and Ri+1

If M contains e0 of R1, it must also contains both adjacent edges of ei in Ri for
all i. Hence there is only one of perfect matching in G that contains e0. If instead
given e0 /∈ M , then both adjacent edges of e0 in R1 belong to M . Because adjacent
edges of e1 in R1 do not belong to M , the remaining edges of M can now be in
any perfect matching of G without R1. Hence there are rn−1 perfect matching in
G not containing e0. Conclude that φ(G) = rn−1 + 1. Since r0 = 1 and r1 = 2,
φ(G) = n+ 1.

Figure 4. Counting Methods for Theorem 2.1.

Theorem 2.2. Let G be a linear chain graph with n faces and bn = φ(G). If
the number of edges in every face is divisible by 4 then b0 = 1, b1 = 2 and bn =
bn−1 + bn−2 for n > 2.

Proof. Let G be a linear chain of blue faces. Let bn be the number of all perfect
matching of linear chain graph of n blue faces. Then we get that bn = φ(G). Let
M be a perfect matching of G. Since every faces is blue, we can define ei as an
edge shared between Bi and Bi+1 as shown here. Let e0 and en be edge opposite
to e1 in B1 and edge opposite to en−1 in Bn, respectively.

Figure 5. Definition of ei in Bi and Bi+1
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If M contains e0 of B1, then both adjacent edges of e1 in B1 do not belong to M
and the remaining edges of M can now be in any perfect matching of G without
B1. Hence there are bn−1 perfect matchings in G that contains e0. If instead given
e0 /∈ M , then adjacent edges of e0 in B1 belong to M and the adjacent edges of
e1 in B1 belong to M too. Thus adjacent edges of e2 in B2 do not belong to M
and the remaining edges of M can now be in any perfect matching of G without
B1 and B2. Hence there are bn−2 perfect matchings in G that do not contain e0.
We conclude that b0 = 1, b1 = 2 and bn = bn−1 + bn−2 for n > 2.

Figure 6. Counting Methods for Theorem 2.2.

Since the recurrence relation bn = bn−1+bn−2 is linear homogeneous of degree
2 with the initial conditions b0 = 1, b1 = 2, we get the general solution

bn = (
√
5+3
2
√
5
)(1+

√
5

2 )n + (
√
5−3
2
√
5
)(1−

√
5

2 )n

For example, graph G is a linear chain of 3 blue faces. By theorem 2.2, we have
b3 = b2 + b1 = 2b1 + b0 = 5. If we use the general solution, then

b3 = (
√
5+3
2
√
5
)(1+

√
5

2 )3 + (
√
5−3
2
√
5
)(1−

√
5

2 )3 = 5

Figure 7. All perfect matching of linear chain with 3 blue faces.



788 Thai J. Math. 15 (2017)/ A. Khantavchai and T. Jiarasuksakun

In the case of G being a linear chain graph which alternates between blue faces
and red faces, if the number of faces is even, we call even linear chain. Given the
number of faces is 2k when k ∈ N, then by symmetry b2k = r2k, where b2k is
the number of all perfect matching of G which the first face is blue, r2k is the
number of all perfect matching of G which the first face is red. If the number of
faces is odd, we call odd linear chain. They are many cases such that we will use
recurrence relation again.

Theorem 2.3. Let G be an odd linear chain graph with n faces. Let the first
face of G be a blue face and bn = φ(G). Then b0 = 1, b1 = 2, b2 = 3 and
bn = bn−1 + bn−3 for odd n > 3.

Proof. Let G be an odd linear chain graph. Given bn = φ(G) and n be odd. Let
M be a perfect matching of G. Since the number of edges in every face is even,
we can define ei as an edge shared between blue faces and red faces as shown in
Figure 8. Let e0 and en be edge opposite to e1 in B1 and edge opposite to en−1

in Bn, respectively.

Figure 8. Definition of ei in G

If M contains e0 of B1, then both adjacent edges of e1 in B1 do not belong to
M , because B1 is a blue face, and the remaining edges of M can now be in any
perfect matching of G without B1. Hence there are rn−1 = bn−1 perfect matching
in G that contain e0. If instead given e0 /∈ M , then both adjacent edges of e0 in
B1 belong to M . Since adjacent edges of e1 in B1 and e2 in R2 belong to M too,
then both adjacent edges of e3 in B3 do not belong to M and the remaining edges
of M can now be in any perfect matching of G without B1, R2 and B3. Hence
there are rn−3 = bn−3 perfect matching in G not containing e0. We conclude that
bn = bn−1 + bn−3 for odd n > 3 when b0 = 1, b1 = 2 and b2 = 3.

Figure 9. Counting Methods for Theorem 2.3.
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Theorem 2.4. Let G be an odd linear chain graph with n faces and rn = φ(G).
Let the first face of G be a red face. Then r0 = 1, r1 = 2 and rn = rn−1 + rn−2

for odd n > 3.

Proof. Let G be an odd linear chain graph. Given rn = φ(G) and n be odd. Let
M be a perfect matching of G. Since the number of edges in every faces is even,
we can define ei as an edge shared between red faces and blue faces as shown
here. Let e0 and en be edge opposite to e1 in R1 and edge opposite to en−1 in Rn,
respectively.

Figure 10. Definition of ei in G

If M contains e0 of R1, then both adjacent edges of e1 in R1 belong to M .
Because adjacent edges of e2 of B2 do not belong to M , the remaining edges of
M can now be in any perfect matching of G without R1 and B2. Hence there
are rn−2 perfect matchings in G that contain e0. If instead given e0 /∈ M then
both adjacent edges of e0 of R1 belong to M . Because of adjacent edges of e1 in
R1 not belong to M , and the remaining edges of M can now be in any perfect
matching of G without R1. Hence there are bn−1 = rn−1 perfect matchings in G
not containing e0. Conclude that r0 = 1, r1 = 2 and rn = rn−1 + rn−2 for odd
n > 3.

Figure 11. Counting Methods for Theorem 2.4.

In particular, rn = rn−1 + rn−2 is linear homogeneous of degree 2 with the
initial conditions r0 = 1, r1 = 2, we get the general solution

rn = (
√
5+3
2
√
5
)(1+

√
5

2 )n + (
√
5−3
2
√
5
)(1−

√
5

2 )n
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As mentioned previously, we have b2k = r2k, where b2k is the number of perfect
matching in G which the first face is blue, r2k is the number of perfect matching
of G which the first face is red and k ∈ N. Now we can apply counting concepts
in Theorem 2.3 and 2.4 to the case of the number of faces is an even number.

Theorem 2.5. Let G be an even linear chain graph with n faces.
(1) If the first face of G be a blue face and G alternates between blue faces and

red faces. Then r0 = 1, r1 = 2, r2 = 3 and bn = rn−1 + rn−3 for even n > 4.
(2) If the first face of G be a red face and G alternates between red faces and

blue faces. Then b0 = 1, b1 = 2 and rn = bn−1 + bn−2 for even n > 2.

For example, graph G is an even linear chain graph with 4 faces as shown in
Figure 12. By theorem 2.4 and 2.5, we have b4 = r3 + r1 = (r2 + r1) + r1 =
(3 + 2) + 2 = 7.

Figure 12. An example of linear chain with 4 faces(B & R).

The followings are all perfect matchings of G,

Figure 13. All perfect matchings of even linear chain with 4 faces(B & R).

3 Perfect Matching of Snake Chain Graphs

A graph of chain, which is not linear, is called snake chain if the shared edges
are not all parallel. Let G consist of a chain of several faces G1, G2, G3, ..., Gp.
For i = 1, 2, 3, ..., p, edges shared by Gi−1 and Gi is called ei,1. Define the first
shared edge e2,1 in G2 to be the same edge as e1,k1

in G1 and the opposite of this
edge in G1 is called e1,1. Then define the rest edges in each Gi as ei,j clockwise
as shown in Figure 14(c). All shared edges are called e1,k1

= e2,1, e2,k2
= e3,1, ...,

ep−1,kp−1
= ep,1. It is called an odd snake chain if ki is odd for all i = 2, 3, ..., p−1.

It is called an even snake chain if ki is even for all i = 2, 3, ..., p− 1.
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Figure 14. Example of (a)odd snake chain, (b)even snake chain graphs and
(c) ei,j in G2

Theorem 3.1. Let G be an odd snake chain graph with p faces and ap = φ(G).
Then a0 = 1, a1 = 2 and ap = ap−1 + ap−2 for p > 2.

Proof. Let G be an odd snake chain graph which consists of a chain of several
faces G1, G2, G3, ..., Gp. We define ei,j by definition of an odd snake chain.

Figure 15. Definition of ei,j in G
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Case I G1 is a blue face. If M contains e1,1 of G1, then both adjacent edges
of e2,1 in G1 do not belong to M . The remaining edges of M can now be in any
perfect matching of G without G1. Hence there are ap−1 perfect matchings in G
that contain e1,1. If instead given e1,1 /∈ M , then M must contain e1,2 and e1,p
of G1. It must also contain both adjacent edges of e2,1 in G1. Since ki is odd for
all i = 2, 3, ..., p− 1, then e2,k2−1 and e2,k2+1 do not belong to M . The remaining
edges of M can now be in any perfect matching of G without G1 and G2. Hence
there are ap−2 perfect matching in G not containing e1,1. Conclude that a0 = 1,
a1 = 2 and ap = ap−1 + ap−2 for p > 2.

Figure 16. G1 is a blue face which (a) M contains e1,1 of G1 and (b) e1,1 /∈ M

Case II G1 is a red face.

Figure 17. G1 is a red face. (a) M contains e1,1 of G1 (b) e1,1 /∈ M

If M contains e1,1 of G1, then it must also contain both adjacent edges of e2,1
in G1. Since ki is odd for all i = 2, 3, ..., p − 1, then e2,k2−1 and e2,k2+1 do not
belong to M . The remaining edges of M can now be in any perfect matching of G
without G1 and G2. Hence there are ap−2 perfect matchings in G that contain e1,1.
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If instead given e1,1 /∈ M , then M must contain e1,2 and e1,p of G1 . The adjacent
edges of e2,1 in G1 do not belong to M . The remaining edges of M can now be in
any perfect matching of G without G1. Hence there are ap−1 perfect matchings
in G not containing e1,1. Conclude that a0 = 1, a1 = 2 and ap = ap−1 + ap−2 for
p > 2.

In particular, ap = ap−1 + ap−2 is linear homogeneous of degree 2 with the
initial conditions a0 = 1, a1 = 2, we get the general solution

ap = (

√
5 + 3

2
√
5

)(
1 +

√
5

2
)p + (

√
5− 3

2
√
5

)(
1 −

√
5

2
)p

Theorem 3.2. Let G be an even snake chain graph with p faces and ap = φ(G).
Then ap = p+ 1.

Proof. Let G be an even snake chain graph which consists of a chain of several
faces G1, G2, G3, ..., Gp. We define ei,j by definition of an even snake chain.

Case I G1 is a blue face. If M contains e1,1 of G1, then both adjacent edges
of e2,1 in G1 do not belong to M . The remaining edges of M can now be in any
perfect matching of G without G1. Hence there are ap−1 perfect matchings in
G that contain e1,1. If instead given e1,1 /∈ M , then M must contain e1,2 and
e1,|E(G1)| of G1. It must also contain both adjacent edges of e2,1 in G1. Since ki is
even for all i = 2, 3, ..., p− 1, then both adjacent edges of ei,ki

in Gi must belong
to M . Thus there is only one perfect matching in G that contains e1,1. Conclude
that ap = ap−1 + 1. Since a0 = 1, a1 = 2, then ap = p+ 1.

Figure 18. Example of p = 4 and G1 is a blue face. (a) e1,1 ∈ M (b) e1,1 /∈ M
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Case II G1 is a red face. If M contains e1,1 of G1, then it must also contain
adjacent edges of e2,1 in G1. Since ki is even for all i = 2, 3, ..., p− 1, then both
adjacent edges of ei,ki

in Gi must belong to M . Thus there is only one perfect
matching in G that contains e1,1. If instead given e1,1 /∈ M , then M must contain
e1,2 and e1,|E(G1)| of G1 . Both adjacent edges of e2,1 in G1 do not belong to M .
The remaining edges of M can now be in any perfect matching of G without G1.
Hence there are ap−1 perfect matching in G not containing e1,1. Conclude that
ap = ap−1 + 1. Since a0 = 1, a1 = 2, ap = p+ 1.

Figure 19. Example of p = 4 and G1 is a red face. (a) e1,1 ∈ M (b) e1,1 /∈ M

The recurrence relation is a useful tool for counting a number of perfect match-
ing of other graphs. Moreover, we can apply it to other part of graph theory, such
as counting number of vertex independent set, face independent set, chromatic
polynomial of graph and counting acyclic orientation, etc.
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