The Quasi-Hadamard Product of Certain Analytic and p-Valent Functions

Serap Bulut

Kocaeli University, Civil Aviation College
Arslanbey Campus, İzmit-Kocaeli, Turkey
e-mail : serap.bulut@kocaeli.edu.tr

Abstract

The author establishes certain results concerning the quasi-Hadamard product of certain analytic and p-valent functions with negative coefficients in the open unit disc.

Keywords : Analytic functions; p-valent functions; quasi-Hadamard products; negative coefficients.
2010 Mathematics Subject Classification : 30C45.

1 Introduction

Throughout the paper, let the functions of the form

$$
\begin{gather*}
f(z)=a_{p} z^{p}-\sum_{k=p+1}^{\infty} a_{k} z^{k} \quad\left(a_{p}>0 ; a_{k} \geq 0\right), \tag{1.1}\\
f_{i}(z)=a_{p, i} z^{p}-\sum_{k=p+1}^{\infty} a_{k, i} z^{k} \quad\left(a_{p, i}>0 ; a_{k, i} \geq 0\right), \tag{1.2}\\
g(z)=b_{p} z^{p}-\sum_{k=p+1}^{\infty} b_{k} z^{k} \quad\left(b_{p}>0 ; b_{k} \geq 0\right), \tag{1.3}
\end{gather*}
$$

and

$$
\begin{equation*}
g_{j}(z)=b_{p, j} z^{p}-\sum_{k=p+1}^{\infty} b_{k, j} z^{k} \quad\left(b_{p, j}>0 ; b_{k, j} \geq 0\right) \tag{1.4}
\end{equation*}
$$

where $p, i, j \in \mathbb{N}=\{1,2, \ldots\}$, be analytic and p-valent in

$$
\mathbb{U}=\{z \in \mathbb{C}:|z|<1\} .
$$

For two functions f and g, analytic in \mathbb{U}, we say that the function f is subordinate to g in \mathbb{U}, and write

$$
f(z) \prec g(z) \quad(z \in \mathbb{U})
$$

if there exists a Schwarz function w, which is analytic in \mathbb{U} with

$$
w(0)=0 \quad \text { and } \quad|w(z)|<1 \quad(z \in \mathbb{U}),
$$

such that

$$
f(z)=g(w(z)) \quad(z \in \mathbb{U}) .
$$

Furthermore, if the function g is univalent in \mathbb{U}, then we have the following equivalence [1, p. 4]:

$$
f(z) \prec g(z) \quad(z \in \mathbb{U}) \Leftrightarrow f(0)=g(0) \quad \text { and } \quad f(\mathbb{U}) \subset g(\mathbb{U}) .
$$

Let $\mathcal{T}_{p}(A, B)$ be the class of functions f of the form (1.1) and satisfying

$$
\begin{equation*}
\frac{1}{p} \frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+A z}{1+B z} \quad(-1 \leq A<B \leq 1 ; z \in \mathbb{U}) . \tag{1.5}
\end{equation*}
$$

Also let $\mathcal{C}_{p}(A, B)$ denote the class of functions of the form (1.1) such that $\frac{1}{p} z f^{\prime} \in \mathcal{T}_{p}(A, B)$.

Using similar arguments as given by Reddy and Padmanabhan [2] we can easily prove the following analogous results for functions in the classes $\mathcal{T}_{p}(A, B)$ and $\mathcal{C}_{p}(A, B)$.

A function f defined by (1.1) belongs to the class $\mathcal{T}_{p}(A, B)$ if and only if

$$
\begin{equation*}
\sum_{k=p+1}^{\infty}\left[\{k(B+1)-p(A+1)\} a_{k}\right] \leq p(B-A) a_{p} \tag{1.6}
\end{equation*}
$$

and f defined by (1.1) belongs to the class $\mathcal{C}_{p}(A, B)$ if and only if

$$
\begin{equation*}
\sum_{k=p+1}^{\infty}\left[\frac{k}{p}\{k(B+1)-p(A+1)\} a_{k}\right] \leq p(B-A) a_{p} \tag{1.7}
\end{equation*}
$$

We now introduce a new class of analytic and p-valent functions which plays an important role in the discussion that follows.

Definition 1.1. A function f, defined by (1.1), belongs to the class $f \in \mathcal{T}_{p}^{c}(A, B)$ if and only if

$$
\begin{equation*}
\sum_{k=p+1}^{\infty}\left[\left(\frac{k}{p}\right)^{c}\{k(B+1)-p(A+1)\} a_{k}\right] \leq p(B-A) a_{p} \tag{1.8}
\end{equation*}
$$

where $-1 \leq A<B \leq 1$ and c is any fixed nonnegative real number.
We note that, for every nonnegative real number c, the class $\mathcal{T}_{p}^{c}(A, B)$ is nonempty as the functions of the form

$$
\begin{equation*}
f(z)=a_{p} z^{p}-\sum_{k=p+1}^{\infty} \frac{p(B-A) a_{p}}{\left(\frac{k}{p}\right)^{c}\{k(B+1)-p(A+1)\}} \lambda_{k} z^{k}, \quad(z \in \mathbb{U}) \tag{1.9}
\end{equation*}
$$

where $a_{p}>0, \lambda_{k} \geq 0$ and $\sum_{k=p+1}^{\infty} \lambda_{k} \leq 1$, satisfy the inequality (1.8).
It is evident that $\mathcal{T}_{p}^{1}(A, B) \equiv \mathcal{C}_{p}(A, B)$ and, for $c=0, \mathcal{T}_{p}^{c}(A, B)$ is identical to $\mathcal{T}_{p}(A, B)$. Further, $\mathcal{T}_{p}^{c}(A, B) \subset \mathcal{T}_{p}^{h}(A, B)$ if $c>h \geq 0$, the containment being proper. Hence, for any positive integer c, we have the inclusion relation

$$
\mathcal{T}_{p}^{c}(A, B) \subset \mathcal{T}_{p}^{c-1}(A, B) \subset \cdots \subset \mathcal{T}_{p}^{2}(A, B) \subset \mathcal{C}_{p}(A, B) \subset \mathcal{T}_{p}(A, B)
$$

Let us define the quasi-Hadamard product of the functions f and g by

$$
\begin{equation*}
f * g(z)=a_{p} b_{p} z^{p}-\sum_{k=p+1}^{\infty} a_{k} b_{k} z^{k} \tag{1.10}
\end{equation*}
$$

Similarly, we can define the quasi-Hadamard product of more than two functions.

In this work we establish certain results concerning the quasi-Hadamard product of functions belonging to the classes $\mathcal{T}_{p}^{c}(A, B), \mathcal{T}_{p}(A, B)$ and $\mathcal{C}_{p}(A, B)$.

2 The Main Theorem

Theorem 2.1. Let the functions f_{i} defined by (1.2) be in the class $\mathcal{C}_{p}(A, B)$ for every $i=1,2, \ldots, r$; and let the functions g_{j} defined by (1.4) be in the class $\mathcal{T}_{p}(A, B)$ for every $j=1,2, \ldots, s$. Then the quasi-Hadamard product $f_{1} * f_{2} * \cdots *$ $f_{r} * g_{1} * g_{2} * \cdots * g_{s}(z)$ belongs to the class $\mathcal{T}_{p}^{2 r+s-1}(A, B)$.

Proof. We denote the quasi-Hadamard product $f_{1} * f_{2} * \cdots * f_{r} * g_{1} * g_{2} * \cdots * g_{s}(z)$ by the function $h(z)$, for the sake of convenience.

Clearly,

$$
\begin{equation*}
h(z)=\left\{\prod_{i=1}^{r} a_{p, i} \prod_{j=1}^{s} b_{p, j}\right\} z^{p}-\sum_{k=p+1}^{\infty}\left\{\prod_{i=1}^{r} a_{k, i} \prod_{j=1}^{s} b_{k, j}\right\} z^{k} . \tag{2.1}
\end{equation*}
$$

To prove the theorem, we need to show that

$$
\begin{align*}
\sum_{k=p+1}^{\infty} & {\left[\left(\frac{k}{p}\right)^{2 r+s-1}\{k(B+1)-p(A+1)\}\left\{\prod_{i=1}^{r} a_{k, i} \prod_{j=1}^{s} b_{k, j}\right\}\right] } \\
& \leq p(B-A)\left(\prod_{i=1}^{r} a_{p, i} \prod_{j=1}^{s} b_{p, j}\right) \tag{2.2}
\end{align*}
$$

Since $f_{i} \in \mathcal{C}_{p}(A, B)$, we have

$$
\begin{equation*}
\sum_{k=p+1}^{\infty}\left[\frac{k}{p}\{k(B+1)-p(A+1)\} a_{k, i}\right] \leq p(B-A) a_{p, i} \tag{2.3}
\end{equation*}
$$

for every $i=1,2, \ldots, r$. Therefore

$$
\frac{k}{p}\{k(B+1)-p(A+1)\} a_{k, i} \leq p(B-A) a_{p, i}
$$

or

$$
a_{k, i} \leq \frac{p(B-A) a_{p, i}}{\frac{k}{p}\{k(B+1)-p(A+1)\}}
$$

for every $i=1,2, \ldots, r$. The right side of the above inequality is not greater than $\left(\frac{k}{p}\right)^{-2} a_{p, i}$. Hence

$$
\begin{equation*}
a_{k, i} \leq\left(\frac{k}{p}\right)^{-2} a_{p, i} \tag{2.4}
\end{equation*}
$$

for every $i=1,2, \ldots, r$. Similarly, for $g_{j} \in \mathcal{T}_{p}(A, B)$, we have

$$
\begin{equation*}
\sum_{k=p+1}^{\infty}\left[\{k(B+1)-p(A+1)\} b_{k, j}\right] \leq p(B-A) b_{p, j} \tag{2.5}
\end{equation*}
$$

for every $j=1,2, \ldots, s$. Whence we obtain

$$
\begin{equation*}
b_{k, j} \leq\left(\frac{k}{p}\right)^{-1} b_{p, j} \tag{2.6}
\end{equation*}
$$

for every $j=1,2, \ldots, s$.
Using (2.4) for $i=1,2, \ldots, r$, (2.6) for $j=1,2, \ldots, s-1$ and (2.5) for $j=s$, we get

$$
\begin{aligned}
\sum_{k=p+1}^{\infty} & {\left[\left(\frac{k}{p}\right)^{2 r+s-1}\{k(B+1)-p(A+1)\}\left\{\prod_{i=1}^{r} a_{k, i} \prod_{j=1}^{s} b_{k, j}\right\}\right] } \\
& \leq \sum_{k=p+1}^{\infty}\left[\left(\frac{k}{p}\right)^{2 r+s-1}\{k(B+1)-p(A+1)\} b_{k, s}\left\{\left(\frac{k}{p}\right)^{-2 r}\left(\frac{k}{p}\right)^{-(s-1)}\right\}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\times\left(\prod_{i=1}^{r} a_{p, i} \prod_{j=1}^{s-1} b_{p, j}\right)\right] \\
= & \left(\sum_{k=p+1}^{\infty}\left[\{k(B+1)-p(A+1)\} b_{k, s}\right]\right)\left(\prod_{i=1}^{r} a_{p, i} \prod_{j=1}^{s-1} b_{p, j}\right) \\
\leq & p(B-A)\left(\prod_{i=1}^{r} a_{p, i} \prod_{j=1}^{s} b_{p, j}\right),
\end{aligned}
$$

and therefore $h \in \mathcal{T}_{p}^{2 r+s-1}(A, B)$, completing the proof of the theorem.
We note that the required estimate can be also obtained by using (2.4) for $i=1,2, \ldots, r-1$, (2.6) for $j=1,2, \ldots, s$, and (2.3) for $i=r$.

Now we discuss some applications of Theorem 2.1, Taking into account the quasi-Hadamard product of functions $f_{1}, f_{2}, \ldots, f_{r}$ only, in the proof of Theorem 2.1) and using (2.4) for $i=1,2, \ldots, r-1$ and (2.3) for $i=r$ we are led to

Corollary 2.2. Let the functions f_{i} defined by (1.2) belong to the class $\mathcal{C}_{p}(A, B)$ for every $i=1,2, \ldots, r$. Then the quasi-Hadamard product $f_{1} * f_{2} * \cdots * f_{r}(z)$ belongs to the class $\mathcal{T}_{p}^{2 r-1}(A, B)$.

Next, taking into account the quasi-Hadamard product of the functions g_{1}, g_{2}, \ldots, g_{s} only, in the proof of Theorem 2.1 and using (2.6) for $j=1,2, \ldots, s-1$, and (2.3) for $j=s$, we have the following corollary.
Corollary 2.3. Let the functions g_{j} defined by (1.4) belong to the class $\mathcal{T}_{p}(A, B)$ for every $j=1,2, \ldots, s$. Then the quasi-Hadamard product $g_{1} * g_{2} * \cdots * g_{s}(z)$ belongs to the class $\mathcal{T}_{p}^{s-1}(A, B)$.

References

[1] S.S. Miller, P.T. Mocanu, Differential Subordinations: Theory and Applications. Monographs and Textbooks in Pure and Applied Mathematics, 225. Marcel Dekker, Inc., New York, 2000.
[2] G. Laksma Reddy, K.S. Padmanabhan, On analytic functions with reference to the Bernardi integral operator, Bull. Aust. Math. Soc. 25 (1982) 387-396.
(Received 2 July 2012)
(Accepted 8 March 2013)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

