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1 Introduction

Let E be a nonempty subset of a normed space X . The set E is called q-
starshaped with q ∈ E if the segment [q, x] = {(1− k)q + kx : k ∈ [0, 1]} joining q

to x is contained in E for all x ∈ E. Let A, S and T be selfmaps on E. We say
that a selfmap A is affine if E is convex and A(kx+ (1− k)y) = kAx+ (1− k)Ay
for all x, y ∈ E and for all k ∈ [0, 1]. We say that a selfmap A is q-affine if E
is q-starshaped and A(kx + (1 − k)q) = kAx + (1 − k)q for all x ∈ E and for all
k ∈ [0, 1].

Here we note that every convex set is q-starshaped with respect to any q ∈ E

but its converse need not be true. Also every affine map is q-affine, but its converse
need not be true.

Example 1.1. Let X = R2
+ with the usual metric, where R+ = [0,∞).

We write E1 = {(1 + α, 2 + 3α) : α ∈ R+}, E2 = {(1 + 2α, 2(1 + α)) : α ∈ R+}
and E = E1 ∪ E2. Then E is q-starshaped subset of X with q = (1, 2). But E is
not convex, for, by taking x = (2, 5) ∈ E and y = (3, 4) ∈ E and k = 1

2 , we get
kx+ (1− k)y = (52 ,

9
2 ). We observe that (52 ,

9
2 ) is not an element of E.

We define a map A : E → E by

A(x, y) =

{

(1, 2) if (x, y) ∈ E1

2(x, y)− (1, 2) if (x, y) ∈ E2.

Then A is q-affine with q = (1, 2) while A is not affine since E is not convex.

A selfmap T on E is said to be A-contraction if there exists k ∈ [0, 1) such
that ‖Tx − Ty‖ ≤ k‖Ax − Ay‖ for all x, y ∈ E. If k = 1, then T is called A-
nonexpansive. The set of all fixed points of A (resp. S and T ) is denoted by F (A)
(resp. F (S) and F (T )). A point x ∈ E is a common fixed (coincidence) point
of A, S and T if Ax = Sx = Tx = x (Ax = Sx = Tx). The set of coincidence
points of A and S (resp. A and T ) is denoted by C(A,S) (resp. C(A, T )). The
set PE(u) = {x ∈ E : ‖x− u‖ = δ(u,E)} is called the set of best approximants to
u ∈ X out of E, where δ(u,E) = inf

y∈E
‖y − u‖.

Though out this paper, we denote the closure of E by E, the boundary of E
by ∂E and the set of all nonnegative integers by Z+.

A pair of mappings (A, T ) is called
(1) commuting if ATx = TAx for all x, y ∈ E.
(2) R-weakly commuting (Pant [8]), if there exists a positive real number R

such that d(ATx, TAx) ≤ Rd(Ax, Tx) for each x ∈ X .
(3) compatible (Jungck [12]) if lim

n→∞
d(ATxn, TAxn) = 0 whenever {xn} is a

sequence in E such that lim
n→∞

Axn = lim
n→∞

Txn = t for some t ∈ E.

(4) weakly compatible (Jungck et. al. [7]) if ATx = TAx for all x ∈ C(A, T ).
(5) Cq-commuting (Al-Thagafi et. al. [2]) if E is q- starshaped and ATx =

TAx for all x ∈ Cq(A, T ), where Cq(A, T ) :=
⋃

{C(A, Tk) : k ∈ [0, 1]} where
Tkx = kTx+ (1− k)q.
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We note that each pair of Cq-commuting mappings is weakly compatible but
its converse need not be true in general as shown by the following example.

Example 1.2. Let E = R+ with the usual metric. Then E is q-starshaped with
q = 0. We define mappings A, T : E → E

A(x) =

{

0 if 0 ≤ x < 2
3

4
3 − x if 2

3 ≤ x < ∞
and T (x) =

{

1
3 if 0 ≤ x < 2

3
2
3 if 2

3 ≤ x < ∞

Then C(A, T ) = { 2
3} and ATx = TAx for all x ∈ C(A, T ) so that the pair

(A, T ) is weakly compatible. We note that Cq(A, T ) = { 4
3 −

2
3k : 0 ≤ k ≤ 1}. Now

let x ∈ Cq(A, T ). Then Ax = 2
3k and Tx = 2

3 so that TAx =

{

2
3 if k = 1
1
3 if k 6= 1

and ATx = 2
3 which shows that ATx 6= TAx for all x ∈ Cq(A, T ) − { 2

3}. Hence,
the pair of mappings (A, T ) is not Cq-commuting maps.

A Banach space X is siad to satisfy Opial’s condition (Opial [13]) if for every
sequence {xn} in X weakly convergent to x ∈ X , the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖

holds for all x 6= y.
A selfmap T : E → E is said to be demiclosed at 0 if every sequence {xn}

in E such that {xn} converges weakly to x and {Txn} converges to 0 ∈ E, then
0 = Tx. A selfmap T : E → E is said to be weakly continuous if Txn → Tx

weakly whenever xn → x weakly. If {xn} converges weakly to x as n → ∞, we
write it by x = w − limn→∞ xn.

In 1998, Jungck et. al. [7], introduced the notion of weakly compatible maps
which is found to be very helpful in obtaining coincidence points and common
fixed points of various classes of mappings on a metric space. For example we
refer Abbas [14], Ahmed [15], Al-Thagafi et. al. [2], Aydi et. al.[16], Bari et. al.
[17], Beg et. al. [18], Ding et. al.[19], Jha [20], Khan et. al. [21], Karapinar et.
al.[22], Song [23]and the references therein.

In 1994, Pant [8] proved the following common fixed theorem for a pair of
selfmaps.

Theorem 1.3. (Pant [8]). Let (X, d) be a complete metric space and let A and
T be R-weakly commuting selfmaps of X satisfying the condition:

d(Tx, T y) ≤ ϕ(d(Ax,Ay))
for all x, y ∈ X, where ϕ : R+ → R+ is a continuous function such that ϕ(t) < t

for each t > 0. If T (X) ⊂ A(X), and if either A or T is continuous on X, then
A and T have a unique common fixed point in X.

In 2006, Al-Thagafi et. al. [2] proved the following theorem.

Theorem 1.4. (Al-Thagafi et. al. [2]) Let E be a subset of a metric space (X, d),
A and T be selfmaps of E such that T (E) ⊆ A(E). Suppose that A and T are
weakly compatible on E, T is A-contraction and T (E) is complete. Then F (T ) ∩
F (A) is a singleton.
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In 1963, Meinardus [24] combined the concepts of existence of fixed points and
best approximation, and in 1969, Brosowski [3] extended and simplified the result
established by Meinardus as follows.

Theorem 1.5. (Brosowski [3]) Let T be a linear and nonexpansive operator on
a normed space X and let E ⊆ X with T (E) ⊂ E. Let u ∈ F (T ). If PE(u) is
nonempty, compact and convex, then PE(u) ∩ F (T ) 6= ∅.

In 1979, Singh [11] relaxed the linearity of the operator T and the convexity
of PE(u) in Brosowski’s theorem and proved the following theorem.

Theorem 1.6. (Singh [11]) Let X be a normed space, T : X → X a nonexpansive
operator. Suppose that E ⊂ X with T (E) ⊂ E and u ∈ F (T ). If PE(u) is a
nonempty compact and starshaped, then PE(u) ∩ F (T ) 6= ∅.

Hicks et. al. [5] relaxed the condition T (E) ⊂ E by T (∂E) ⊂ E in Singh’s
result. In 1988, Sahab et. al. [10] generalized the results due to Brosowski [3] and
Singh [11], and proved the following theorem.

Theorem 1.7. (Sahab et. al. [10]) Let T and A be selfmaps on a normed linear
space X with E ⊆ X such that T (∂E) ⊂ E and u ∈ F (T ) ∩ F (A). Suppose T

is A-nonexpansive on PE(u) ∪ {u}, T and A are commuting on PE(u) and A is
linear and continuous on PE(u). If PE(u) is nonempty compact and q-starshaped
with q ∈ F (A) and if A(PE(u)) = PE(u), then PE(u) ∩ F (T ) ∩ F (A) 6= ∅.

In 1995, Jungck et. al. [25] proved the following result which extends the
aforementioned theorems.

Theorem 1.8. (Jungck et. al. [25]) Let T and A be selfmaps of a Banach space
X with E ⊆ X such that T (∂E) ⊂ E and u ∈ F (T ) ∩ F (A). Suppose that PE(u)
is q-starshaped with q ∈ F (A) and A(PE(u)) = PE(u), A is affine and continuous
in the weak topology and strong topology on PE(u). If A and T are commuting on
PE(u) and T is A - nonexpansive on PE(u)∪ {u}, then PE(u)∩F (T )∩F (A) 6= ∅
provided either

(i) PE(u) is weakly compact and I − T is demiclosed; or
(ii) PE(u) is weakly compact and E satisfies Opial’s condition.

In 1996, Al-Thagafi [1] extended, generalized and unified the works of Brosowski
[3], Hicks et. al. [5], Sahab et. al. [10] and Singh [11] as follows:

Theorem 1.9. (Al-Thagafi [1]) Let A and T be selfmaps of a normed space X

with u ∈ F (A) ∩ F (T ) and E ⊂ X with T (∂E ∩ E) ⊂ E. Suppose that D =
PE(u)∩CA

E (u), where CA
E (u) = {x ∈ E : Ax ∈ PE(u)}, is closed and q-starshaped

with q ∈ F (A). Let T be A-nonexpansive on D ∪ {u} with T (D) is compact, A
be continuous, linear, A(D) = D and A commutes with T on D. Then PE(u) ∩
F (T ) ∩ F (A) 6= ∅.
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Throughout this paper, let Φ be the set of all continuous selfmaps ϕ : R+ →
R+ satisfying

(i) ϕ is monotone increasing; and
(ii) 0 ≤ ϕ(t) < t for all t > 0.

Lemma 1.10. (Singh et. al. [26]) If ϕ ∈ Φ, then lim
n→∞

ϕn(t) = 0 for any t ∈

(0,∞), where ϕn denotes the n-times repeated composition of ϕ with itself.

In section 2 of this paper, we prove the existence of common fixed points for
three selfmaps A, S and T defined on a nonempty subset E of a metric space
(X, d) under the assumption that (i) A, S and T satisfy a contractive condition
given by (2.1.1); (ii) S(E) ⊆ A(E) and T (E) ⊆ A(E); and (iii) the pairs (A,S)
and (A, T ) are weakly compatible. We use this result to find common fixed points
of three Cq-commuting continuous selfmaps defined on q-starshaped subset E of
a normed space X satisfying certain nonexpansive inequality involving rational
expressions. In section 3, we apply the results of section 2 to prove the existence
of common fixed points from the set of best approximations. These results extend,
generalize and unify the works of Al-Thagafi [1], Al-Thagafi et. al. [2], Brosowski
[3], Habiniak[4], Hicks et. al. [5], Jungck [6], Jungck et. al. [25], Pant [8], Sahab
et. al. [9], Sahab et. al. [10] and Singh [11].

2 Main Results

Theorem 2.1. Let E be a nonempty subset of a metric space (X, d) and A,S, T :
E → E be three selfmaps such that S(E) ⊆ A(E) and T (E) ⊆ A(E). Assume that
there exists a ϕ ∈ Φ such that

d(Sx, T y) ≤ ϕ(max{d(Ax,Ay),
d(Ax, Sx) d(Ay, Ty)

1 + d(Ax, Ay)
,

d(Ax, Ty) d(Ay, Sx)

1 + d(Ax, Ay)
}) (2.1.1)

for all x, y ∈ E. Assume also that the pairs of mappings (A,S) and (A, T ) are
weakly compatible. If A(E) is complete, then A, S and T have a unique common
fixed point in X.

Proof. Let x0 ∈ E. Since S(E) ⊆ A(E), we can find x1 ∈ E such that Sx0 = Ax1

and since T (E) ⊆ A(E), we can find x2 ∈ E such that Tx1 = Ax2. Continuing
this way inductively, we get a sequence {xn} in E such that Axn = Sxn−1 if n is
odd and Axn = Txn−1 if n is even. Now we claim that the sequence {Axn}∞n=1 is
Cauchy in E.

Case (i): Axn = Axn+1 for some n.

Without loss of generality, we assume that n is even. Then n = 2m for some
m ∈ Z+. So Ax2m = Ax2m+1.

Thus, we have
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d(Ax2m+1, Ax2m+2) = d(Sx2m, T x2m+1)

≤ ϕ(max{d(Ax2m, Ax2m+1),
d(Ax2m, Sx2m) d(Ax2m+1, T x2m+1)

1 + d(Ax2m, Ax2m+1)
,

d(Ax2m, T x2m+1) d(Ax2m+1, Sx2m)

1 + d(Ax2m, Ax2m+1)
})

≤ ϕ(max{d(Ax2m, Ax2m+1),
d(Ax2m, Ax2m+1) d(Ax2m+1, Ax2m+2)

1+d(Ax2m, Ax2m+1)
,

d(Ax2m, Ax2m+2) d(Ax2m+1, Ax2m+1)

1 + d(Ax2m, Ax2m+1)
})

= ϕ(0)

This implies that d(Ax2m+1, Ax2m+2) = 0 and hence Ax2m+1 = Ax2m+2, i.e.,
Axn+1 = Axn+2 which shows that Axn = Axn+2. Repeating this procedure
inductively, we get Axn = Axn+k for k ≥ 1.

Hence, {Axm}m≥n is a constant sequence and hence is Cauchy in E.

Case (ii): Axn 6= Axn+1 for all n = 1, 2, · · · .

First we assume that n is even. Then n = 2m for some m ∈ Z+.

Now consider

d(Ax2m+1, Ax2m) = d(Sx2m, T x2m−1)

≤ ϕ(max{d(Ax2m, Ax2m−1),
d(Ax2m, Sx2m) d(Ax2m−1, Tx2m−1)

1+d(Ax2m, Ax2m−1)
,

d(Ax2m, Tx2m−1) d(Ax2m−1, Sx2m)
1+d(Ax2m, Ax2m−1)

})

= ϕ(max{d(Ax2m, Ax2m−1),
d(Ax2m, Ax2m+1) d(Ax2m−1, Ax2m)

1+d(Ax2m, Ax2m−1)
,

d(Ax2m, Ax2m) d(Ax2m−1, Ax2m+1)
1+d(Ax2m, Ax2m−1)

})

≤ ϕ(max{d(Ax2m, Ax2m−1), d(Ax2m+1, Ax2m)}).

Hence,

d(Ax2m+1, Ax2m) ≤ ϕ(d(Ax2m, Ax2m−1)), m = 1, 2, · · · , (2.1.2)

since the other possibility leads us to a contradiction.

Similarly, if n = 2m+ 1 for some m ∈ Z+, we get

d(Ax2m+2, Ax2m+1) = d(Ax2m+1, Ax2m+2)

≤ ϕ(d(Ax2m, Ax2m+1))

= ϕ(d(Ax2m+1, Ax2m)), m = 1, 2, · · · . (2.1.3)

Hence, from (2.1.2) and (2.1.3), we get

d(Axn+1, Axn) ≤ ϕ(d(Axn, Axn−1)), for all n = 2, 3, · · · . (2.1.4)
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This implies that

d(Axn+1, Axn) < d(Axn, Axn−1), for all n = 2, 3, · · · . (2.1.5)

Hence, {d(Axn+1, Axn)}∞n=2 is a decreasing sequence of nonnegative reals.

Now by repeated applications of (2.1.4), we get

d(Axn+1, Axn) ≤ ϕn−1(d(Ax2, Ax1)), for all n = 2, 3, · · · . (2.1.6)

Letting n → ∞, by Lemma 1.10, the right hand side of (2.1.6) tends to zero, i.e.,

limn→∞ d(Axn+1, Axn) = 0. (2.1.7)

By (2.1.5) and (2.1.7), it is sufficient to show that {Ax2n} is Cauchy. Otherwise,
there exists an ε > 0 and there exist sequences {mk} and {nk} with mk > nk > k

such that

d(Ax2mk
, Ax2nk

) ≥ ε and d(Ax2mk−2, Ax2nk
) < ε. (2.1.8)

Hence,

ε ≤ lim inf
k→∞

d(Ax2mk
, Ax2nk

). (2.1.9)

Now for each positive integer k, by triangle inequality, we get

d(Ax2mk
, Ax2nk

) ≤ d(Ax2mk
, Ax2mk−1) + d(Ax2mk−1, Ax2mk−2)

+d(Ax2mk−2, Ax2nk
).

On taking limit supremum of both sides, as k → ∞, we get

lim sup
n→∞

d(Ax2mk
, Ax2nk

) ≤ ε. (2.1.10)

Hence, from (2.1.9) and (2.1.10), we have

lim
k→∞

d(Ax2mk
, Ax2nk

) = ε. (2.1.11)

Now from the triangle inequality, we have

d(Ax2mk
, Ax2nk−1) ≤ d(Ax2mk

, Ax2nk
) + d(Ax2nk

, Ax2nk−1).

On taking limit supremum, as k → ∞, we get

lim sup
n→∞

d(Ax2mk
, Ax2nk−1) ≤ ε. (2.1.12)

Again from the triangle inequality, we get

d(Ax2mk
, Ax2nk

) ≤ d(Ax2mk
, Ax2nk−1) + d(Ax2nk−1, Ax2nk

);

On taking limit infimum, as k → ∞, we get

ε ≤ lim inf
n→∞

d(Ax2mk
, Ax2nk−1). (2.1.13)

Hence, from (2.1.12) and (2.1.13), we have

lim
k→∞

d(Ax2mk
, Ax2nk−1) = ε. (2.1.14)
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Similarly, using the triangle inequality and (2.1.11), we obtain

lim
k→∞

d(Ax2mk+1, Ax2nk−1) = ε. (2.1.15)

Now consider

d(Ax2mk
, Ax2nk

) ≤ d(Ax2mk
, Ax2mk+1) + d(Ax2mk+1, Ax2nk

)

= d(Ax2mk
, Ax2mk+1) + d(Sx2mk

, T x2nk−1)

≤ d(Ax2mk
, Ax2mk+1) + ϕ(max{d(Ax2mk

, Ax2nk−1),

d(Ax2mk
, Sx2mk

) d(Ax2nk−1, T x2nk−1)

1 + d(Ax2mk
, Ax2nk−1)

,

d(Ax2mk
, T x2nk−1) d(Ax2nk−1, Sx2mk

)

1 + d(Ax2mk
, Ax2nk−1)

})

= d(Ax2mk
, Ax2mk+1) + ϕ(max{d(Ax2mk

, Ax2nk−1),

d(Ax2mk
, Ax2mk+1) d(Ax2nk−1, Ax2nk

)

1 + d(Ax2mk
, Ax2nk−1)

,

d(Ax2mk
, Ax2nk

) d(Ax2nk−1, Ax2mk+1)

1 + d(Ax2mk
, Ax2nk−1)

}).

Letting k → ∞, using the continuity of ϕ, and using (2.1.7),(2.1.11), (2.1.14) and
(2.1.15), we get

ε ≤ 0 + ϕ(max{ε, 0
1+ε

, ε2

1+ε
}) = ϕ(ε),

a contradiction. Thus {Ax2n}∞n=1 is Cauchy and hence {Axn}∞n=1 is a Cauchy
sequence in A(E).

As A(E) is complete, there exists z ∈ A(E) such that lim
n→∞

Axn = z.

Hence,

lim
n→∞

Ax2n+1 = lim
n→∞

Sx2n = z. (2.1.16)

and

lim
n→∞

Ax2n+2 = lim
n→∞

Tx2n+1 = z. (2.1.17)

Since z ∈ A(E), there exists u ∈ E such that z = Au. (2.1.18)

Now consider

d(Sx2n, T u) ≤ ϕ(max{d(Ax2n, Au),
d(Ax2n, Sx2n) d(Au, Tu)

1 + d(Ax2n, Au)
,

d(Ax2n, T u) d(Sx2n, Au)

1 + d(Ax2n, Au)
}).

Letting n → ∞, by using (2.1.16), (2.1.17) and (2.1.18) and the continuity of ϕ,
we get
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d(z, Tu) ≤ ϕ(max{d(z, Au),
d(z, z) d(Au, Tu)

1 + d(z, Au)
,
d(z, Tu) d(z, Au)

1 + d(z, Au)
})

= ϕ(0).

Hence, z = Tu. (2.1.19)

Again consider

d(Su, Tx2n+1) ≤ ϕ(max{d(Au,Ax2n+1),
d(Au, Su) d(Ax2n+1, T x2n+1)

1 + d(Au, Ax2n+1)
,

d(Au, Tx2n+1) d(Su, Ax2n+1)

1 + d(Au, Ax2n+1)
}).

Letting n → ∞, by using (2.1.16), (2.1.17) and (2.1.18) and the continuity of ϕ,
we get

d(Su, z) ≤ ϕ(max{d(Au, z),
d(Au, Su) d(z, z)

1 + d(Au, z)
,
d(Su, z) d(Au, z)

1 + d(Au, z)
})

= ϕ(0).

Hence, z = Su. (2.1.20)

Hence, from (2.1.18), (2.1.19) and (2.1.20), it follows that

z = Au = Su = Tu. (2.1.21)

Since (A,S) and (A, T ) are weakly compatible pairs of mappings, it follows
from (2.1.21) that ASu = SAu and ATu = TAu and hence, we have

Sz = SAu = ASu = Az = ATu = TAu = Tz.

Hence, Sz = Az = Tz. (2.1.22)

Now we claim that z is a common fixed point of A, S and T .

Consider

d(Sz, z) = d(Sz, Tu) ≤ ϕ(max{d(Az,Au),
d(Az, Sz) d(Au, Tu)

1 + d(Az, Au)
,

d(Az, Tu) d(Au, Sz)

1 + d(Az, Au)
})

= ϕ(d(Sz, z)).

Hence, d(Sz, z) = 0, i.e., Sz = z.

Hence, Az = Sz = Tz = z.

Uniqueness of z follows from the inequality (2.1.1). Hence this completes the
proof of the theorem.

Corollary 2.2. Let E be a nonempty subset of a metric space (X, d) and A,S, T :
E → E be three selfmaps such that S(E) ⊆ A(E) and T (E) ⊆ A(E). Assume that
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there exists a k ∈ [0, 1) such that

d(Sx, T y) ≤ k max{d(Ax,Ay),
d(Ax, Sx) d(Ay, Ty)

1 + d(Ax, Ay)
,

d(Ax, Ty) d(Ay, Sx)

1 + d(Ax, Ay)
} (2.2.1)

for all x, y ∈ E. Assume also that the pairs of mappings (A,S) and (A, T ) are
weakly compatible. If A(E) is complete, then A, S and T have a unique common
fixed point in X.

Proof. Follows from Theorem 2.1, by taking ϕ(t) = kt for some k ∈ [0, 1).

Remark 2.3. By choosing S = T in Corollary 2.2, clearly Theorem 1.4 follows as
a corollary to Corollary 2.2. In Theorem 1.4, the assumption is T (E) is complete,
where as here A(E) is complete.

If we relax the continuity condition of ‘either A or T ’ and impose the assump-
tion ‘ϕ is monotonically increasing on R+’ on ϕ in Theorem 1.3, the following
corollary suggests that the conclusion of Theorem 1.3 still holds.

Corollary 2.4. Let (X, d) be a complete metric space and let A and T be R-weakly
commuting selfmaps of X satisfying the condition:

d(Tx, T y) ≤ ϕ(d(Ax,Ay)) (2.4.1)

for all x, y ∈ X, where ϕ : R+ → R+ is a continuous, monotone increasing
function such that ϕ(t) < t for each t > 0. If T (X) ⊂ A(X), then A and T have
a unique common fixed point in X.

Proof. Since A and T are R-weakly commuting, they are weakly compatible and
since the inequality (2.4.1) implies the inequality (2.1.1) with S = T , the conclusion
of Corollary 2.4 follows from Theorem 2.1.

Remark 2.5. Since Theorem 1 of Jungck [6] is a corollary to Corollary 2.4, it
also follows as a corollary to Theorem 2.1.

Example 2.6. Let X = R, the real line with the usual metric and E = [0, 1]. We
define mappings A, S and T on E by

A(x) =

{

0 if 0 ≤ x < 2
3

4
3 − x if 2

3 ≤ x ≤ 1,
S(x) =

{

1
2 if 0 ≤ x < 2

3
1− 1

2x if 2
3 ≤ x ≤ 1

and

T (x) =

{

2
3 if 0 ≤ x < 2

3
1− 1

2x if 2
3 ≤ x ≤ 1.
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Here A(E) = {0} ∪ [ 13 ,
2
3 ], S(E) = T (E) = [ 12 ,

2
3 ] so that S(E) ⊆ A(E) and

T (E) ⊆ A(E). Besides A(E) is compact and the pairs of mappings (A,S) and
(A, T ) are weakly compatible. We also observe that the mappings A, S and T

satisfy the inequality (2.1.1) with ϕ : R+ → R+ defined by ϕ(t) = 1
2 t, t ∈ R+.

Hence the mappings A, S and T satisfy all the conditions of the hypotheses of
Theorem 2.1 and 2

3 is the unique common fixed point of the mappings A, S and
T .

Further, we observe that the pairs of mappings (A,S) and (A, T ) are not
compatible, for, if xn = 2

3+
1
n
, n ≥ 3; Axn = 2

3−
1
n
, n ≥ 3, Sxn = Txn = 2

3−
1
2n , n ≥

3 so that Axn → 2
3 , Sxn → 2

3 and Txn → 2
3 as n → ∞. Now SAxn = 1

2 ,
ASxn = 0, TAxn = 2

3 , and ATxn = 0 so that lim
n→∞

d(SAxn, ASxn) = 1
2 6= 0,

lim
n→∞

d(TAxn, ATxn) =
2
3 6= 0.

Here if we choose A as above and S(x) = T (x) =

{

1
2 if 0 ≤ x < 2

3
1− 1

2x if 2
3 ≤ x ≤ 1,

the pair of mappins (A, T ) is not compatible which implies that (A, T ) is not
R-weakly commuting. Hence Corollary 2.4 is not applicable. Also, since the
mappings A and T are not commuting, Theorem 1 of Jungck [6] is not applicable.

Example 2.7. Let X = R+ with the usual metric and E = X . We define
mappings A and T on E by Ax = x and Tx = x

1+x
.

Here if we choose S = T , though A and T are continuous and commuting
maps; A and T satisfy all the conditions of the hypotheses of Theorem 2.1 with
ϕ : R+ → R+ defined by ϕ(t) = t

1+t
.

But T is not A-contraction, for, fixing y = 0 and for all x ∈ X , |Tx−T 0| = x
1+x

and |Ax−A0| = x. Hence, for all x ∈ X , there does not exist a k ∈ [0, 1) satisfying
x

1+x
≤ kx. In fact, for all k ∈ [0, 1), T is not a A-contraction when y = 0 and

0 < x < 1−k
k

.

Hence, Theorem 1.4 fails to hold.

THerefore, Example 2.6 and Example 2.7 show that Theorem 2.1 is a gener-
alization of Theorem 1.4, Corollary 2.4 and Jungck ([6], Theorem 1).

We now prove the following results as an application of Corollary 2.2.

Theorem 2.8. Let E be a nonempty q-starshaped subset of a normed space X

and let S, T,A : E → E be three continuous selfmaps such that S(E) ⊆ A(E) and
T (E) ⊆ A(E) and satisfying

‖Sx− Ty‖ ≤ max{‖Ax−Ay‖,
δ(Ax, [Sx, q]) δ(Ay, [Ty, q])

1 + ‖Ax−Ay‖
,

δ(Ax, [Ty, q]) δ(Ay, [Sx, q])

1 + ‖Ax−Ay‖
} (2.8.1)
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for all x, y ∈ E. Suppose that both (T,A) and (S,A) are Cq-commuting and A is
q-affine. If A(E) is a compact subset of E, then F (T ) ∩ F (S) ∩ F (A) 6= ∅.

Proof. We choose a sequence {kn} ⊆ (0, 1) with lim
n→∞

kn = 1. For each n = 1, 2, · · ·

and for all x ∈ E, define mappings Sn and Tn by

Snx = knSx+ (1− kn)q and Tnx = knTx+ (1− kn)q.

Since E is q-starshaped, A is q-affine, S(E) ⊆ A(E) and T (E) ⊆ A(E), we get
Snx ∈ A(E) and Tnx ∈ A(E).

Hence, Sn(E) ⊆ A(E) and Tn(E) ⊆ A(E).

Also, for all x, y ∈ E,

‖Snx− Tny‖ = kn‖Sx− Ty‖

≤ kn max{‖Ax−Ay‖,
δ(Ax, [Sx, q]) δ(Ay, [Ty, q])

1 + ‖Ax−Ay‖
,

δ(Ax, [Ty, q]) δ(Ay, [Sx, q])

1 + ‖Ax−Ay‖
}

≤ kn max{‖Ax−Ay‖,
‖Ax− Snx‖ ‖Ay − Tny‖

1 + ‖Ax−Ay‖
,
‖Ax− Tny‖ ‖Ay − Snx‖

1 + ‖Ax−Ay‖
}

where δ(Ax, [Sx, q]) = inf{‖Ax − y‖ : y ∈ [Sx, q]} ≤ ‖Ax − Snx‖ for each n =
1, 2, · · · .

Hence,for each n = 1, 2, · · · , mappings Sn, Tn and A satisfy the inequality (2.2.1).

Since the pairs (T,A) and (S,A) are Cq-commuting and A is q-affine, if Snx =
Ax = Tnx, we get SnAx = ASnx and TnAx = ATnx.

This implies that the pairs (Sn, A) and (Tn, A) are weakly compatible maps.
As A(E) is compact, then A(E) is complete. Therefore, maps Sn, Tn and A satisfy
all the conditions of Corollary 2.2 and hence for each n = 1, 2, · · · , there exists a
unique xn ∈ E such that Snxn = Axn = Tnxn = xn.

Since A(E) is compact, there exists a subsequence {xnj
} of {xn} such that

lim
j→∞

Axnj
= z (say) in A(E), and hence xnj

→ z as j → ∞.

Now as j → ∞, the continuity of A, S and T , we obtain

Txnj
→ Tz, Axnj

→ Az, and Sxnj
→ Sz .

Hence,we have

z = lim
j→∞

xnj
= lim

j→∞
Axnj

= Az;

z = lim
j→∞

xnj
= lim

j→∞
Snj

xnj
= Sz; and

z = lim
j→∞

xnj
= lim

j→∞
Tnj

xnj
= Tz.
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Hence, z = Az = Tz = Sz. Hence the theorem follows.

Now we give an example in support of Theorem 2.8.

Example 2.9. Let X = [0,∞) with the usual metric and E = [0, 3
2 ]. We define

mappings A,S, T : E → E by

A(x) =

{

x if 0 ≤ x < 1
2

1
2x+ 1

4 if 1
2 ≤ x ≤ 3

2 ,
S(x) =







x if 0 ≤ x < 1
2

1
2 if 1

2 ≤ x ≤ 3
4

1
2x+ 1

8 if 3
4 ≤ x ≤ 3

2

and

T (x) =















x if 0 ≤ x < 1
2

1
2 if 1

2 ≤ x ≤ 3
4

1
2x+ 1

8 if 3
4 ≤ x ≤ 1

5
8 if 1 ≤ x ≤ 3

2 .

Here we observe that A(E) = [0, 1], S(E) = [0, 7
8 ] and T (E) = [0, 58 ] so that

S(E) ⊆ A(E) and T (E) ⊆ A(E). Also, E is convex and hence q-starshaped at any
q ∈ E and A is q-affine with q = 1

2 . We also observe that the pairs of mappings
(A,S) and (A, T ) are Cq-commuting with Cq(A,S) = Cq(A, T ) = { 1

2} and A(E) is
compact. Further, the mappings A, S and T satisfy the inequality (2.8.1). Hence,
the mappings A, S and T satisfy all the conditions of Theorem 2.8 and 1

2 is the
unique common fixed point of A, S and T .

Theorem 2.10. Let E be a nonempty q-starshaped subset of a Banach space
X and let S, T,A : E → E be three weakly continuous selfmaps satisfying the
inequality (2.8.1). Assume that S(E) ⊆ A(E) and T (E) ⊆ A(E). Further suppose
that the pairs (T,A) and (S,A) are Cq-commuting and A is q-affine. If A(E) is a
weakly compact subset of E, then F (T ) ∩ F (S) ∩ F (A) 6= ∅.

Proof. We choose a sequence {kn} ⊆ (0, 1) with lim
n→∞

kn = 1. For n = 1, 2, · · ·

and for all x ∈ E, define mappings Sn and Tn by

Snx = knSx+ (1− kn)q and Tnx = knTx+ (1 − kn)q.

Here we note that A(E) is complete, since the weak topology is Hausdorff and
A(E) is weakly compact. Hence by the proof of Theorem 2.8, for each n, there
exists a unique xn ∈ E such that Snxn = Axn = Tnxn = xn.

Since A(E) is weakly compact, there exists a subsequence {xnj
} of {xn} such

that Axnj
→ z (say) weakly in A(E) as j → ∞and hence xnj

→ z weakly as
j → ∞.

By the weak continuity of A, S and T , as j → ∞, we obtain

Txnj
→ Tz weakly, Axnj

→ Az weakly,and Sxnj
→ Sz weakly .
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Hence,we have

z = w − lim
j→∞

xnj
= w − lim

j→∞
Axnj

= Az;

z = w − lim
j→∞

xnj
= w − lim

j→∞
Snj

xnj
= Sz; and

z = w − lim
j→∞

xnj
= w − lim

j→∞
Tnj

xnj
= Tz.

Hence, z = Az = Tz = Sz. Hence the theorem follows.

3 Invariant Approximation Results

In this section, we prove the existence of common fixed points in the set of
best approximations by using Theorem 2.8 and Theorem 2.10.

Theorem 3.1. Let E be a subset of a normed space X and A,S, T : E → E be
three continuous selfmaps such that u ∈ F (T )∩F (S)∩F (A) for some u ∈ X and
S(∂E ∩ E) ⊂ E and T (∂E ∩ E) ⊂ E. Assume that PE(u) is q-starshaped, A is
q-affine and A(PE(u)) = PE(u) is compact. Suppose the pairs (S,A) and (T,A)
are Cq-commuting and for all x, y ∈ PE(u) ∪ {u}, satisfy the inequality

‖Sx− Ty‖ ≤



























‖Ax−Au‖ if y = u

‖Au− Ay‖ if x = u

max{‖Ax−Ay‖,
δ(Ax, [Sx, q]) δ(Ay, [Ty, q])

1+‖Ax−Ay‖ , (3.1.1)
δ(Ax, [Ty, q]) δ(Ay, [Sx, q])

1+‖Ax−Ay‖ } if x, y ∈ PE(u).

Then PE(u) ∩ F (T ) ∩ F (S) ∩ F (A) 6= ∅.

Proof. Let x ∈ PE(u). Then ‖x− u‖ = δ(u,E). Since for any k ∈ (0, 1),
‖ku+ (1− k)x− u‖ = (1− k)‖x− u‖ < δ(u,E), the line segment {ku+ (1− k)x :
0 < k < 1} and the set E are disjoint. Thus x is not an interior point of E and so
x ∈ ∂E ∩ E.

Since S(∂E ∩ E) ⊂ E and T (∂E ∩ E) ⊂ E, we have Sx, Tx ∈ E. Also, since
Ax ∈ PE(u), u ∈ F (T ) ∩ F (S) ∩ F (A), and S, T and A satisfy the inequality
(3.1.1), we have ‖Sx− u‖ ≤ δ(u,E) and ‖u− Tx‖ ≤ δ(u,E).

Hence, Sx, Tx ∈ PE(u) and hence S(PE(u)) ⊆ A(PE(u)) and T (PE(u)) ⊆ A(PE(u)).

Therefore, by Theorem 2.8, there exists z ∈ PE(u) such that Sz = Tz = Az = z.

Hence, PE(u) ∩ F (T ) ∩ F (S) ∩ F (A) 6= ∅.

Theorem 3.2. Let E be a subset of a Banach space X and A,S, T : E → E

be three weakly continuous selfmappings such that u ∈ F (T ) ∩ F (S) ∩ F (A) for
some u ∈ X and S(∂E ∩ E) ⊂ E and T (∂E ∩ E) ⊂ E. Assume that PE(u) is
q-starshaped, A is q-affine and A(PE(u)) = PE(u) is weakly compact. Suppose the
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pairs (S,A) and (T,A) are Cq-commuting and satisfy the inequality (3.1.1). Then
PE(u) ∩ F (T ) ∩ F (S) ∩ F (A) 6= ∅.

Proof. Runs on the same lines as that of the proof of Theorem 3.1, where we use
Theorem 2.10 instead of Theorem 2.8.

Remark 3.3. Theorem 3.1 extends Theorem 1.5, Theorem 1.6, Theorem 1.7,
Theorem 1.9 and Habiniak ([4], Theorem 8 ) to three selfmaps.
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