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Abstract : Let G be a finite connected graph of n vertices v1, v2, . . . , vn. A
buttoning of G is a closed walk consisting of n shortest paths

[v1, v2], [v2, v3], . . . , [vn−1, vn], [vn, v1].

The buttoning is said to be maximal if it has a maximum length when compared
with all other buttonings of G. The goal of this work is to find a length of a
maximal buttoning of non-tree graphs: complete multipartite graphs, grid graphs
and rooted products of graphs.
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1 Introduction

A question on how one can button a shirt can turn to be interesting mathe-
matically. If our shirt has n buttons in a vertical line with a spacing of one unit
between each adjacent pair, most of us usually button the shirt from top to bot-
tom. In these manners, we get the same distance of n − 1 units. If we button
them in a different order, the number of units may be changed. The study by I.
Short [1] addresses the question on what the maximum number of units our hands
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travel. He turned the more general setting for a finite tree T with a graph metric
d. The problem is then identifying the maximum value of the sum

d(v1, v2) + d(v2, v3) + · · ·+ d(vn−1, vn) + d(vn, v1), (1.1)

where v1, v2, . . . , vn are vertices of T and, for the distinct pair i and j, the value
d(vi, vj) is defined to be the length of the shortest path between vi and vj . The
shirt buttoning is a special case of this problem for a path tree with removing the
final term of the sum. Moreover, the author extended the definition of a buttoning
to the case of finite connected graphs in the last section.

As remarked in [1], the problem is a special case of the maximum travelling
salesman problem which is an NP-hard problem in combinatorial optimization.
The maximum travelling salesman problem was studied in [2, 3, 4]. In particular,
a given graph in finding maximal buttoning will be first transformed to a complete
graph with vertices v1, v2, . . . , vn such that for each pair i 6= j, the edge incident
to vi and vj is weighted by the value d(vi, vj). Consequently, the summation (1.1)
is the length of a Hamilton cycle in the induced graph.

In this article, every graph is a finite connected graph with a graph metric d,
and we prefer to use d1 if all edges in G are weighted by length one. This includes
the case of edge-unweighted graphs. For any graph G, we denote VG the set of
all vertices, and EG the family of all edges of G. We let [u, v] denote the shortest
path, (which need not be unique), from the vertex u to the vertex v in G. A
buttoning of a graph G is defined to be a closed walk consisting of n shortest paths
[v1, v2], [v2, v3], . . . , [vn−1, vn], [vn, v1] where v1, v2, . . . , vn are all distinct vertices
of G. The length of the buttoning is the sum of the lengths of all paths in the
buttoning. The buttoning is said to be maximal if it has a maximum length when
compared with all other buttonings of G.

Next we recall a definition for a centroid of a graph. The definition of a centroid
was first introduced for a tree. Let u be any vertex of T , the branch weight of u
is the maximum number of vertices in any branch of u. See more detail in [5, 6].
A vertex c of T is called a centroid of T if its branch weight is minimum over all
vertices of T . Equivalently,∑

u∈VT

d1(c, u) ≤
∑
u∈VT

d1(v, u)

for every v ∈ VT , see [6, Theorem 2]. We call the value
∑

u∈VT
d1(v, u) the distance

of the vertex v and denote it by d1(v). The result in [5] shows that every tree has
either a single centroid or two adjacent centroids.

By using the definition of distance of a vertex, we can generalize the definition
of a centroid of a tree to any metric connected graph G. A centroid of G is a
vertex that has the minimum distance when the distance of a vertex u is defined
by

d(u) =
∑
x∈VG

d(u, x).
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Moreover, we define
Φ(G) = 2d(c),

where c is a centroid of G. This includes the case of the graph metric d1. The
following lemma is the useful result of tree obtained in [1]. We know from this
lemma when a considered buttoning is maximal.

Lemma 1.1. Let [v1, v2], [v2, v3], . . . , [vn−1, vn], [vn, v1] be a buttoning of a tree T .
Then

d(v1, v2) + d(v2, v3) + · · ·+ d(vn−1, vn) + d(vn, v1) ≤ Φ(T ),

with equality if and only if each centroid of T is contained in every path [vi, vi+1]
(including [vn, v1]).

This paper is organized into four sections. We examine maximal buttonings
of complete multipartite graphs, two-dimensional grid graphs, rooted products of
graphs in Section 2 to Section 4, respectively. With the metric d1, we found that
the length of a maximal buttoning of a complete multipartite graph depends on
only the number of its vertices and partite set. Certainly, the results of incomplete
multipartite graphs are different from the complete case as we show in Section 3
for the grid graphs, examples of incomplete bipartite graphs. In the last section,
we study a maximal buttoning of the rooted product of graphs G ◦r H in the case
that G is a tree. The length of its maximal buttoning can be written in terms of
the length of a maximal buttoning on G, the distance of the root of H, and the
numbers of vertices of these two graphs.

2 Buttonings of Complete Multipartite Graphs

A complete multipartite graph is a simple graph whose vertices can be parti-
tioned into different independent sets, called partite sets, such that any two vertices
are adjacent if and only if they are in different partite sets. The complete multi-
partite graph with m partite sets is called a complete m-partite graph and denoted
by Kn1,n2,...,nm

where n1, n2, . . . , nm are the sizes of the partite sets.
In this section, we provide some results of buttonings of complete multipartite

graphs with the metric d1 where every edge is weighted by one.

Proposition 2.1. Let K be a complete m-partite graph of n vertices with the
graph metric d1. Then K contains a maximal buttoning of length 2n−m.

Proof. Let K = Kn1,n2,...,nm and V1, V2, . . . , Vm be all partite sets of K such that

for every j = 1, 2, . . . ,m , Vj = {v(j)1 , v
(j)
2 , . . . v

(j)
nj }. We see that the distance

between two distinct vertices of K is one if they are in different partite sets, and
two if they are in the same partite set. That is,

d1(v(i)r , v(j)s ) =

{
1 if i 6= j,

2 if i = j and r 6= s.
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To obtain a maximal buttoning, shortest paths of length two should be included
in the buttoning as much as possible. Moreover, the shortest paths of length one
have to be added to connect between two vertices in different partite sets. One
way to do this is to button all vertices in the same partite first, then move to the
next partite, and so on. For example, the following buttoning is a maximal one;

[v
(1)
1 , v

(1)
2 ], [v

(1)
2 , v

(1)
3 ], . . . , [v

(1)
n1−1, v

(1)
n1

], [v(1)n1
, v

(2)
1 ],

[v
(2)
1 , v

(2)
2 ], [v

(2)
2 , v

(2)
3 ], . . . , [v

(2)
n2−1, v

(2)
n2

], [v(2)n1
, v

(3)
1 ],

...

[v
(m)
1 , v

(m)
2 ], [v

(m)
2 , v

(m)
3 ], . . . , [v

(m)
nm−1, v

(m)
nm

], [v(m)
n1

, v
(1)
1 ].

The maximum length is m + 2
∑m

j=1(nj − 1) = 2n−m.

For any given positive integer n, a complete m-partite graphs K of n vertices
is not unique. However, Proposition 2.1 also implies that the length of maximal
buttonings of all K is invariant under this non-uniqueness.

Corollary 2.2. Every complete m-partite graph of n vertices with the graph metric
d1 contains maximal buttonings of the same length.

3 Buttonings of Two-Dimensional Grid Graphs

Let Pm and Pn be path graphs of m and n vertices, respectively. A two-
dimensional grid graph, or grid graph, is constructed as the graph Cartesian prod-
uct Pm2Pn, denoted by Gm,n. The set of all vertices of Gm,n is V = VPm × VPn

and the family of all edges is

E =
{

(x, y)(x, z)
∣∣ x ∈ VPm and yz ∈ EPn

}
∪
{

(x, y)(w, y)
∣∣ y ∈ VPn and xw ∈ EPm

}
.

The graph Gm,n can be viewed as an array of an m × n matrix where every
row is a copy of Pn and column is a copy of Pm. See Figure 1, for example, the
grid graph G5,6. We then denote by gij a vertex at the ith row and the jth column
of Gm,n.

In this section, we give a maximal buttoning for a grid graph, a non-complete
bipartite graph, so to contrast with a result from the previous section. We again
endow the graph Gm,n with the metric d1. For any two vertices gij and gkl of
Gm,n, the distance between them can be realized as

d1(gij , gkl) = |i− k|+ |j − l|. (3.1)

Any pair of vertices gij , gkl induces a grid subgraph Aij,kl where vertices at its
four outermost corners are gij , gil, gkl and gkj . It is quite obvious that a vertex gst
of Gm,n belongs to Aij,kl precisely when

d1(gij , gkl) = d1(gij , gst) + d1(gst, gkl).

We have the following lemma.
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Figure 1: Example of grid graph, G5,6

Lemma 3.1. Let gij , gkl and gst be any vertices of a grid graph Gm,n. Then

d1(gij , gkl) = d1(gij , gst) + d1(gst, gkl) (3.2)

if and only if s lies between i and k, and t lies between j and l.

Proof. A proof of this lemma relies on the distance formula for any two vertices
in Gm,n defined in (3.1), and the fact that for any positive integers i, k, and s,
|i− k| = |i− s|+ |s− k| if and only if (i− s)(s− k) ≥ 0.

By the definition of Gm,n, the number of its centroids truly relates to the
number of centroids of the inducing path graphs Pm and Pn. To clarify this
relation, consider a path graph Pn with the set of all ordered vertices VPn

=
{p1, p2, . . . , pn}. One can see that Pn contains either one centroid at pn+1

2
, or

two adjacent centroids at pn
2

and pn+2
2

, depending on whether n is odd or even,

respectively. This implies that Gm,n contains one, two, or four centroids depending
on the integers m and n. More precisely, a vertex gij of Gm,n is a centroid if and
only if pi and pj are centroids of Pm and Pn, respectively. We thus have the
following proposition which includes the computation to verify this fact for the
sake of completeness.

Proposition 3.2. A vertex gij is a centroid of a grid graph Gm,n if and only if
pi and pj are centroids of Pm and Pn respectively. In particular,

1. Gm,n has only one centroid if and only if m and n are odd,

2. Gm,n has two centroids if and only if either m or n are odd,

3. Gm,n has four centroids if and only if m and n are even.
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Proof. Let pi and pj be centroids of Pm and Pn, respectively. Then the distances
of them are minimum on the graph on which they are. Thus, for every k ∈
{1, 2 . . . ,m} and every l ∈ {1, 2, . . . , n}, we have

n∑
t=1

d1(gkj , gkt) ≤
n∑

t=1

d1(gkl, gkt) (3.3)

and

m∑
s=1

d1(gil, gsl) ≤
m∑
s=1

d1(gkl, gsl). (3.4)

This implies directly that d1(gij) is minimum in Gm,n, and so gij is a centroid of
Gm,n.

Conversely, if either pk is not a centroid of Pm, or pl is not a centroid of
Pn, then (3.3) or (3.4) will be a strict inequality. Hence, d1(gkl) cannot be the
minimum in Gm,n. Therefore, gkl is not a centroid of Gm,n.

We are now ready to find the length of a maximal buttoning of Gm,n. The two
lemmas below provide upper bounds of buttoning lengths of Gm,n. Theorem 3.5
provides the length of a maximal buttoning of Gm,n in the case of four centroids
which is different from the two other cases in Theorem 3.6.

Lemma 3.3. Let G be a graph with any metric d. Then 2d(u) is an upper bound
of lengths of all buttonings of G where u is any vertex of G.

Proof. It is immediate from the metric triangle inequality.

Lemma 3.4. Let Gm,n be a grid graph containing four centroids and u be any
vertex of Gm,n. Then the length of a buttoning of Gm,n is less than 2d1(u).

Proof. Since Gm,n has four centroids, Proposition 3.2 implies that the integer m
and n are even. To prove this lemma, we first partition the graph into four grid
subgraphs A,B,D, and E with

VA = {gjk ∈ VGm,n | 1 ≤ j ≤ m/2 and 1 ≤ k ≤ n/2},
VB = {gjk ∈ VGm,n | m/2 < j ≤ m and n/2 < k ≤ n},
VD = {gjk ∈ VGm,n | m/2 < j ≤ m and 1 ≤ k ≤ n/2},
VE = {gjk ∈ VGm,n | 1 ≤ j ≤ m/2 and n/2 < k ≤ n}.

See Figure 2 for an example of the grid graph G6,6.
Let M be a maximal buttoning of Gm,n. We construct a multiple graph

G, of four vertices, VG = {a, b, d, e}, from the graph Gm,n corresponding to M.
Suppose that [w, v] is a path in M such that w ∈ VA and v ∈ VB . In this case
we add an edge ab to the graph G. Similarly, if w ∈ VB and v ∈ VA, an edge
ba, (which can be written as ab), is added to the graph G. Thus the number of
edges ab of G is the number of paths in M between two vertices in VA and VB .
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Figure 2: G6,6

Other edges of G are obtained in the same way. Certainly, the degree of the vertex
a of G is not greater than mn/2.

We now contrarily assume that a maximal buttoningM of Gm,n has the length
of 2d1(u). Thus, every shortest path [w, v] in M, we have d(w, v) = d(w, u) +
d(u, v). We may suppose that the vertex u is a centroid of Gm,n belonging to VA.
By Lemma 3.1, every vertex of B can connect to only vertices of A. Now there
are mn/2 edges incident to the vertex a of G. Certainly, d or e is adjacent to a
since the definition of a buttoning. It is impossible that the degree of the vertex
a is greater than mn/2. Hence, the length of M is less than 2d1(u).

Theorem 3.5. A grid graph Gm,n of four centroids contains a maximal buttoning
of length Φ(Gm,n)− 2.

Proof. Let gst be a centroid of Gm,n. To complete this proof, we first verify that
2d1(gst)−2 is an upper bound of lengths of buttonings of Gm,n, and then construct
a buttoning whose length is 2d1(gst)− 2.

Let B be a buttoning of Gm,n. Since Gm,n contains four centroids, Lemma 3.4
implies that the length of B is less than d1(gst), that is, at least one of the shortest
paths in B does not satisfy (3.2). We Suppose that the path [gij , gkl] in B lacks
(3.2), so by Lemma 3.1 and (3.1) we have

|i− k| < |i− s|+ |s− k| or |j − l| < |j − t|+ |t− l|.

We may assume that |i− k| = |i− s|+ |s− k|. Then |j − l| < |j − t|+ |t− l|, so
|j − t| 6= 0 6= |t − l| and |j − t| + |t − l| − |j − l| = 2 min{|j − t|, |t − l|}. We thus
have

2 ≤ |j − t|+ |t− l| − |j − l|.

Hence,

2 ≤ d1(gij , gst) + d1(gst, gkl)− d1(gij , gkl).
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This implies that the length of B is not greater than 2d1(gst) − 2. Therefore,
2d1(gst)− 2 is an upper bound of lengths of buttonings of Gm,n.

Next we show that the value 2d1(gst) − 2 can be attained by the length of a
buttoning of Gm,n. We first separate Gm,n into four grid subgraphs A,B,D, and
E as in Lemma 3.4. We write,

VA = {a1, a2, . . . , ak = cA}, VD = {d1, d2, . . . , dk = cD},
VB = {b1, b2, . . . , bk = cB}, VE = {cE = e1, e2, . . . , ek},

where cA, cB , cD, and cE are centroids of Gm,n contained in A,B,D, and E, re-
spectively. We may, without loss of generality, assume that cA = gst. By Lemma
3.1, all paths in the buttoning

[e1, d1], [d1, e2], [e2, d2], . . . , [ek, dk], [dk, a1],

[a1, b1], [b1, a2], [a2, b2], . . . , [ak, bk], [bk, e1]

satisfy the equation (3.2) except the path [bk, e1] = [cB , cE ]. Then the buttoning
has the length of

2d1(cA)−
(
d1(cB , cA) + d1(cA, cE)− d1(cB , cE)

)
= 2d1(cA)− 2.

Consequently, every grid graph Gm,n of four centroids contains a maximal
buttoning of length Φ(Gm,n)− 2.

Theorem 3.6. A grid graph Gm,n of one or two centroids contains a maximal
buttoning of length Φ(Gm,n).

Proof. We only show that the value Φ(Gm,n) can be obtained as the length of
some buttoning of Gm,n, and then it becomes the length of a maximal buttoning
of Gm,n by Lemma 3.3.

We start the proof with the case that Gm,n has two centroids. By Proposition
3.2, we may suppose that m is odd and n is even. The case of m = 1 is trivial by
[1, Lemma 4]. Thus we may assume that m ≥ 3. To prove this case we partition
the graph into four grid subgraphs A,B,D, and E with

VA = {gjk ∈ VGm,n
| 1 ≤ j ≤ (m + 1)/2 and 1 ≤ k ≤ n/2},

VB = {gjk ∈ VGm,n
| (m + 1)/2 ≤ j ≤ m and n/2 < k ≤ n},

VD = {gjk ∈ VGm,n
| (m + 1)/2 < j ≤ m and 1 ≤ k ≤ n/2},

VE = {gjk ∈ VGm,n
| 1 ≤ j ≤ (m− 1)/2 and n/2 < k ≤ n}.

See Figure 3 for an example of the grid graph G5,6.
Let cA and cB be centroids of Gm,n contained in A and B, respectively. For

i = (m + 1)/2, we write

VA = {gi1 = a1, a2, . . . , ak}, VD = {d1, d2, . . . , dj},
VB = {b1, b2, . . . , bk = cB}, VE = {e1, e2, . . . , ej}.
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Thus Lemma 3.1 and Lemma 3.3 imply that the buttoning

[a1, b1], [b1, a2], [a2, b2], . . . , [ak, bk], [bk, d1], [d1, e1], [e1, d2], . . . , [dj , ej ], [ej , a1]

is a maximal one with the length Φ(Gm,n).

In the case that Gm,n has only one centroid Proposition 3.2 implies that m
and n are odd. The case of m = 1 or n = 1 are obvious by [1, Lemma 4], so we
assume that m ≥ 3 and n ≥ 3. In this case we define grid subgraphs A,B,D, and
E of Gm,n by

VA = {gjk ∈ VGm,n
| 1 ≤ j ≤ (m + 1)/2 and 1 ≤ k ≤ (n + 1)/2},

VB = {gjk ∈ VGm,n
| (m + 1)/2 ≤ j ≤ m and (n + 1)/2 < k ≤ n},

VD = {gjk ∈ VGm,n
| (m + 1)/2 < j ≤ m and 1 ≤ k ≤ (n− 1)/2},

VE = {gjk ∈ VGm,n
| 1 ≤ j ≤ (m− 1)/2 and (n + 1)/2 < k ≤ n}.

Figure 4 shows an example of the grid graph G5,5.

b b b b b

b b b b b

b b r b b

b b b b b

b b b b b

c

A

BD

E

Figure 4: G5,5
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In this case we let c be a centroid of Gm,n. For i = 1 we write

VA = {gi1 = a1, a2, . . . , ak = c}, VD = {d1, d2, . . . , dj},
VB = {b1, b2, . . . , bk = c}, VE = {e1, e2, . . . , ej}.

Hence, Lemma 3.1 and Lemma 3.3 imply that

[a1, b1], [b1, a2], . . . , [ak−1, bk−1], [bk−1, bk], [bk, d1], [d1, e1], [e1, d2], . . . , [dj , ej ], [ej , a1]

is a maximal buttoning of length Φ(Gm,n).

4 Buttonings of Rooted Product of Graphs

A rooted graph is a graph in which one vertex, called the root, is distinguished
from others. Let H be a rooted graph with the root r, the rooted product of
graphs G and H at r, denoted by G ◦r H, is the graph obtained by identifying
each vertex of G by the root r of |VG| copies of H. This product was studied
regarding its metric dimension in [7, 8]. The rooted product of graphs was first
introduced by Godsil and McKay in [9] that the rooted graphs at every vertex of
G may be different.

In formal defining, the vertex set of G ◦r H is the set V = VG × VH , and the
family of all edges therein is the set

E =
{

(g, h)(g′, h) | gg′ ∈ EG

}
∪
{

(g, h)(g, h′) | g ∈ VG and hh′ ∈ EH

}
.

The metric on G ◦r H is induced from the given metrics dG and dH on G and H,
respectively. For any (g, h), (g′, h′) ∈ V ,

d((g, h), (g′, h′)) =

{
dH(h, r) + dG(g, g′) + dH(r, h′) if g 6= g′,

dH(h, h′) if g = g′.

If G has a single vertex, G ◦r H is simply H. Thus the maximal buttonings of
G ◦r H follows from those of H. We will now assume that G has more than one
vertex.

If T and S are both trees, then T ◦r S ia also a tree and its maximal buttoning
is obtained by Lemma 1.1. Here we give the length of a maximal buttoning of
T ◦r S in the form of Φ(T ) and ds(r), the distance of r in S.

Proposition 4.1. Let T be a tree, and S be a rooted tree with the root r. Then
T ◦r S contains a maximal buttoning of length |VS |Φ(T ) + 2|VT |dS(r).

Proof. Let c be a centroid of T and [t1, t2], [t2, t3], . . . , [tn−1, tn], [tn, t1] be a max-
imal buttoning of T . By Lemma 1.1, each of these shortest paths [ti, tj ] contains
the centroid c of T . Let VS = {s1, s2, . . . , sm} be the set of all vertices of S and
r = s1 be the root. At the rooted product, we see that (c, r) becomes a centroid
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of T ◦r S. Therefore, a maximal buttoning of a tree T ◦r S can be constructed as
follows:

[(t1, s1), (t2, s1)], [(t2, s1), (t3, s1)], . . . , [(tn−1, s1), (tn, s1)], [(tn, s1), (t1, s2)],

[(t1, s2), (t2, s2)], [(t2, s2), (t3, s2)], . . . , [(tn−1, s2), (tn, s2)], [(tn, s2), (t1, s3)],

...

[(t1, sm), (t2, sm)], [(t2, sm), (t3, sm)], . . . , [(tn−1, sm), (tn, sm)], [(tn, sm), (t1, s1)].

This is a buttoning of length |VS |Φ(T )+2|VT |dS(r), and its maximality comes from
the fact that the centroid (c, r) lies in each of the shortest paths [(ti, sk), (tj , sl)]
in the buttoning.

Next we extend the result to the case when S is a rooted graph instead of a
tree. The lemma below shows the technique of constructing a spanning tree S′ of
S preserving the distance of the root r. That is, dS′(r) = dS(r) where dS′ is a
metric on S′ induced from the same edges’ length of S.

Lemma 4.2. Let S be a rooted graph with the root r. Then there exists a spanning
tree S′ of S such that dS′(r) = dS(r).

Proof. Let 0 = k0 < k1 < k2 < . . . < kn be the list in ascending order of all
different distances from r to every vertex of S. We partition VS into n+ 1 subsets
{r} = V0, V1, . . . , Vn, where Vi = {v ∈ VS | dS(r, v) = ki}, corresponding to the
list of distances as above.

For m ∈ {1, 2, . . . , n}, v ∈ Vm, we see that v is adjacent to some vertex
u ∈ ∪m−1j=0 Vj where dS(r, u) + dS(u, v) = km. We use this fact to construct a
subgraph S′ of S by connecting the vertex v with the vertex u. Hence, the subgraph
S′ is a spanning tree of S and dS′(r) = dS(r).

Corollary 4.3. Let T be a tree, and S be a rooted graph with the root r. Then
T ◦r S contains a maximal buttoning of length |VS |Φ(T ) + 2|VT |dS(r).

Proof. Let S′ be a spanning tree of S constructed as in the above lemma. We know
that any pair of vertices si, and sj of S, the length of the shortest path [si, sj ] in S′

is greater than or equal to that in S. By Proposition 4.1, 2|VS |dT (c) + 2|VG|dS′(r)
is an upper bound of lengths of buttonings of T ◦r S. We see that the maximal
buttoning of T ◦r S obtained by the same way of Proposition 4.1 is also a maximal
buttoning of T ◦r S. Now the corollary is proved.

From the corollary above, we see that the length of a maximal buttoning of
the rooted product T ◦r S depends on the choice of the root r of S.

Lastly, we note that computing a maximal buttoning of the rooted product
between graphs can be subtle. The construction in Proposition 4.1 cannot be
extended to the rooted product in general.

Consider the rooted product C4 ◦ P2 with the metric d1. In this case the
product graph does not depend on the choice of the root r of P2, so we omit the
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root r from the notation and use the simple notation of vertices, without using
oder pairs, see in Figure 5.

b b

bb

b b

bb

c1 c2

c3c4

p1 p2

p3p4

Figure 5: the rooted product C4 ◦ P2

By Theorem 3.5, a buttoning [c1, c3], [c3, c2], [c2, c4], [c4, c1] of C4 is a maximal
one. By the way of Proposition 4.1 we obtain the buttoning

[c1, c3], [c3, c2], [c2, c4], [c4, p1], [p1, p3], [p3, p2], [p2, p4], [p4, c1].

However, it is not maximal since its length is less than the length of the following
buttoning

[c1, c3], [c3, p1], [p1, p3], [p3, c2], [c2, c4], [c4, p2], [p2, p4], [p4, c1].
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