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1 Introduction

Metric spaces have very wide applications in mathematics and applied
sciences. For this, many authors tried to give definitions of metric spaces
in many ways. In 1966, Gahler [1, 2] introduced the notion of 2-metric
spaces and Dhage [3] introduced the notion of D-metric spaces. After the
introduction of these metric spaces many authors proved some fixed point
results related to these metric spaces. In 2006, Mustafa and Sims [4] proved
that most of the results of Dhage’s D-metric spaces are not valid. So, they
introduced the new concept of generalized metric space called G-metric
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space and gave some remarkable results in G-metric spaces. In 2012, Sedghi
et al. [5] introduced the notion of S-metric spaces as the generalization of
G-metric and D∗-metric spaces.

The notion of a coupled fixed point was introduced and studied by
Opoitsev [6–8] and then by Guo and Lakshmikantham [9]. Bhashkar and
Lakshmikantham in [10] introduced the concept of a coupled fixed point
of a mapping F : X ×X → X and investigated some coupled fixed point
theorems in partially ordered complete metric spaces. They also discussed
an application of their result by investigating the existence and uniqueness
of solution for a periodic boundary value problem. Choudhury and Kundu
[11] obtained coupled coincidence point results in partially ordered metric
spaces for compatible mappings.

Lakshmikantham and Ćirić [12] defined a mixed g-monotone mapping
and prove coupled coincidence and coupled common fixed point theorems
for such nonlinear contractive mappings in partially ordered complete met-
ric spaces. In 2011 Alotaibi and Alsulami [13] proved the existence and
uniqueness of coupled coincidence point involving a (ϕ,ψ)-contractive con-
dition for a mappings having the mixed g-monotone property.

2 Preliminaries

We begin with the following definition:

Definition 2.1. [5] Let X be a nonempty set. An S-metric on X is a
function S : X3 → [0,∞) that satisfies the following conditions, for each
x, y, z, a ∈ X.

(i) S(x, y, z) ≥ 0;

(ii) S(x, y, z) = 0 if and only if x = y = z;

(iii) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).

Then the pair (X,S) is called an S-metric space.

The following is an intuitive geometric example for S-metric spaces.

Example 2.2. [5] Let X = R
2 and d be an ordinary metric on X. Put

S(x, y, z) = d(x, y) + d(x, z) + d(y, z)

for all x, y, z ∈ R, that is, S is the perimeter of the triangle given by x, y, z.
Then S is an S-metric on X.



Coupled Coincidence Points for Monotone Operators ... 703

Lemma 2.3. [5] Let (X,S) be an S-metric space. Then S(x, x, y) =
S(y, y, x) for all x, y ∈ X.

Lemma 2.4. Let (X,S) be an S-metric space. Then

S(x, x, z) ≤ 2S(x, x, y)+S(y, y, z) and S(x, x, z) ≤ 2S(x, x, y)+S(z, z, y)

for all x, y, z ∈ X.

Proof. It is a direct consequence of Definition 2.1 and Lemma 2.4.

Definition 2.5. [5] Let (X,S) be an S-metric space.

(i) A sequence {xn} ⊂ X is said to converge to x ∈ X if S(xn, xn, x) → 0
as n → ∞. That is, for each ε > 0, there exists n0 ∈ N such that for
all n ≥ n0 we have S(xn, xn, x) < ε. We write xn → x for brevity.

(ii) A sequence {xn} ⊂ X is called a Cauchy sequence if S(xn, xn, xm) →
0 as n,m → ∞. That is, for each ε > 0, there exists n0 ∈ N such that
for all n,m ≥ n0 we have S(xn, xn, xm) < ε.

(iii) The S-metric space (X,S) is said to be complete if every Cauchy
sequence is a convergent sequence.

Lemma 2.6. [5] Let (X,S) be an S-metric space. If xn → x and yn → y,

then S(xn, xn, yn) → S(x, x, y).

Definition 2.7 ([12], Mixed g-Monotone Property). Let (X,≤) be a par-
tially ordered set and F : X2 → X. We say that the mapping F has the
mixed g-monotone property if F is monotone g-non-decreasing in its first
argument and is monotone g-non-increasing in its second argument. That
is, for any x, y ∈ X,

x1, x2 ∈ X, gx1 ≤ gx2 ⇒ F (x1, y) ≤ F (x2, y)

y1, y2 ∈ X, gy1 ≤ gy2 ⇒ F (x, y1) ≥ F (x, y2).
(2.1)

Definition 2.8 (Coupled Coincidence Point). Let (x, y) ∈ X×X, F :
X2 → X and g : X → X. We say that (x, y) is a coupled coincidence point

of F and g if F (x, y) = gx and F (y, x) = gy for x, y ∈ X.

Definition 2.9. The mapping F and g where F : X2 → Xand g : X → X,
are said to be compatible if

lim
n→∞

S
(

g(F (xn, yn)), g(F (xn, yn)), F (gxn, gyn)
)

= 0
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and
lim
n→∞

S
(

g(F (yn, xn)), g(F (yn, xn)), F (gyn, gxn)
)

= 0,

whenever {xn} and {yn} are sequences in X, such that lim
n→∞

F (xn, yn) =

lim
n→∞

gxn = x and lim
n→∞

F (yn, xn) = lim
n→∞

gyn = y, for all x, y ∈ X are

satisfied.

3 Existence of Coupled Coincidence Points

Let Φ denote all functions ϕ : [0,∞) → [0,∞) which satisfy

(1) ϕ continuous and non-decreasing;

(2) ϕ(t) = 0 if and only if t = 0;

(3) ϕ(t+ s) ≤ ϕ(t) + ϕ(s),∀t, s ∈ [0,∞)

and let Ψ denote all the functions ψ : [0,∞) → (0,∞) which satisfy
lim
t→r

ψ(t) > 0 for all r > 0 and lim
t→0+

ψ(t) = 0.

Now, let us start proving our main results.

Theorem 3.1. Let (X,≤, S) be a partially ordered complete S-metric space.

Let F : X2 → X is such that F has the mixed g-monotone property such

that there exists x0, y0 ∈ X with

gx0 ≤ F (x0, y0) and gy0 ≥ F (y0, x0).

Suppose there exist ϕ ∈ Φ and ψ ∈ Ψ such that

ϕ
(

S
(

F (x, y), F (x, y), F (u, v)
)

)

≤
1

2
ϕ
(

S(gx, gx, gu) + S(gy, gy, gv)
)

− ψ

(

S(gx, gx, gu) + S(gy, gy, gv)

2

)

,

(3.1)

for all x, y, u, v ∈ X with gx ≥ gu and gy ≤ gv. Suppose F (X×X) ⊆ g(X),
g is continuous and compatible with F and also suppose either

(a) F is continuous or

(b) X has the following property:

(i) if a non-decreasing sequence {xn} → x, then xn ≤ x, for all n,
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(ii) if a non-increasing sequence {yn} → y, then yn ≥ y, for all n.

Then there exists x, y ∈ X such that

gx = F (x, y) and gy = F (y, x),

i.e., F and g have a coupled coincidence point in X.

Proof. Let x0, y0 ∈ X be such that gx0 ≤ F (x0, y0) and gy0 ≥ F (y0, x0).
Using F (X×X) ⊆ g(X), we construct sequences {xn} and {yn} in X as

gxn+1 = F (xn, yn) and gyn+1 = F (yn, xn) for all n ≥ 0. (3.2)

We are going to prove that

gxn ≤ gxn+1 for all n ≥ 0 (3.3)

and

gyn ≥ gyn+1 for all n ≥ 0. (3.4)

To prove these, we are going to use the mathematical induction.

Let n = 0. Since gx0 ≤ F (x0, y0) and gy0 ≥ F (y0, x0) and as gx1 =
F (x0, y0) and gy1 = F (y0, x0), we have gx0 ≤ gx1 and gy0 ≥ gy1. Thus
(3.3) and (3.4) hold for n = 0.

Suppose now that (3.3) and (3.4) hold for some fixed n ≥ 0, Then, since
gxn ≤ gxn+1 and gyn ≥ gyn+1, and by mixed g-monotone property of F ,
we have

gxn+2 = F (xn+1, yn+1) ≥ F (xn, yn+1) ≥ F (xn, yn) = gxn+1 (3.5)

and

gyn+2 = F (yn+1, xn+1) ≤ F (yn, xn+1) ≤ F (yn, xn) = gyn+1. (3.6)

Using (3.5) and (3.6), we get

gxn+1 ≤ gxn+2 and gyn+1 ≥ gyn+2.

Hence by the mathematical induction we conclude that (3.3) and (3.4) hold
for all n ≥ 0.

Therefore,

gx0 ≤ gx1 ≤ gx2 ≤ · · · ≤ gxn ≤ gxn+1 ≤ · · · (3.7)
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and
gy0 ≥ gy1 ≥ gy2 ≥ · · · ≥ gyn ≥ gyn+1 ≥ · · · . (3.8)

Since gxn ≥ gxn−1 and gyn ≤ gyn−1, using (3.1) and (3.2), we have

ϕ
(

S(gxn+1, gxn+1, gxn)
)

= ϕ
(

S
(

F (xn, yn), F (xn, yn), F (xn−1, yn−1)
)

)

≤
1

2
ϕ
(

S(gxn, gxn, gxn−1) + S(gyn, gyn, gyn−1)
)

− ψ

(

S(gxn, gxn, gxn−1)+S(gyn, gyn, gyn−1)

2

)

.

(3.9)

Similarly, since gyn−1 ≥ gyn and gxn−1 ≤ gxn, using (3.1) and (3.2), we
have

ϕ
(

S(gyn, gyn, gyn+1)
)

= ϕ
(

S
(

F (yn−1, xn−1), F (yn−1, xn−1), F (yn, xn)
)

)

≤
1

2
ϕ
(

S(gyn−1, gyn−1, gyn) + S(gxn−1, gxn−1, gxn)
)

−ψ

(

S(gyn−1, gyn−1, gyn)+S(gxn−1, gxn−1, gxn)

2

)

.

(3.10)

Using Lemma 2.3, we have

ϕ
(

S(gyn+1, gyn+1, gyn)
)

≤
1

2
ϕ
(

S(gyn, gyn, gyn−1) + S(gxn, gxn, gxn−1)
)

−ψ

(

S(gyn, gyn, gyn−1)+S(gxn, gxn, gxn−1)

2

)

.

(3.11)

Using (3.9) and (3.11), we have

ϕ
(

S(gxn+1, gxn+1, gxn)
)

+ ϕ
(

S(gyn+1, gyn+1, gyn)
)

≤ ϕ
(

S(gxn, gxn, gxn−1) + S(gyn, gyn, gyn−1)
)

− 2ψ

(

S(gxn, gxn, gxn−1) + S(gyn, gyn, gyn−1)

2

)

.

(3.12)

By property (3) of ϕ, we have

ϕ
(

S(gxn+1, gxn+1, gxn) + S(gyn+1, gyn+1, gyn)
)

≤ ϕ
(

S(gxn+1, gxn+1, gxn)
)

+ ϕ
(

S(gyn+1, gyn+1, gyn)
)

.
(3.13)
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Using (3.12) and (3.13), we have

ϕ
(

S(gxn+1, gxn+1, gxn) + S(gyn+1, gyn+1, gyn)
)

≤ ϕ
(

S(gxn, gxn, gxn−1) + S(gyn, gyn, gyn−1)
)

− 2ψ

(

S(gxn, gxn, gxn−1) + S(gyn, gyn, gyn−1)

2

)

,

(3.14)

which implies, since ψ is a non-negative function,

ϕ
(

S(gxn+1, gxn+1, gxn) + S(gyn+1, gyn+1, gyn)
)

≤ ϕ
(

S(gxn, gxn, gxn−1) + S(gyn, gyn, gyn−1)
)

.

Using the fact that ϕ is non-decreasing, we get

S(gxn+1, gxn+1, gxn) + S(gyn+1, gyn+1, gyn)

≤ S(gxn, gxn, gxn−1) + S(gyn, gyn, gyn−1).

Set
δn = S(gxn+1, gxn+1, gxn) + S(gyn+1, gyn+1, gyn).

Now we would like to show that δn → 0 as n → ∞. It is clear that the
sequence {δn} is decreasing. Therefore, there is some δ ≥ 0 such that

lim
n→∞

δn = lim
n→∞

[

S(gxn+1, gxn+1, gxn)+S(gyn+1, gyn+1, gyn)
]

= δ. (3.15)

We shall show that δ = 0. Suppose, to the contrary, that δ > 0. Then
taking the limit as n → ∞ (equivalently, δn → δ) of both sides of (3.14)
and remembering lim

t→r
ψ(t) > 0 for all r > 0 and ϕ is continuous, we have

ϕ(δ) = lim
n→∞

ϕ(δn) ≤ lim
n→∞

[

ϕ(δn−1)− 2ψ

(

δn−1

2

)]

= ϕ(δ) − 2 lim
δn−1→δ

ψ

(

δn−1

2

)

< ϕ(δ),

this is a contradiction. Thus δ = 0, that is

lim
n→∞

δn = lim
n→∞

[

S(gxn+1, gxn+1, gxn)+S(gyn+1, gyn+1, gyn)
]

= 0. (3.16)

Now, we will prove that {gxn} and {gyn} are Cauchy sequences. Sup-
pose, to the contrary, that at least one of {gxn} or {gyn} is not Cauchy
sequence. Then there exists an ε > 0 for which we can find subsequences
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{gxn(k)}, {gxm(k)} of {gxn} and {gyn(k)}, {gym(k)} of {gyn} with n(k) >
m(k) ≥ k such that

S
(

gxn(k), gxn(k), gxm(k)

)

+ S
(

gyn(k), gyn(k), gym(k)

)

≥ ε. (3.17)

Further, corresponding to m(k), we can choose n(k) in such a way that it
is the smallest integer with n(k) > m(k) and satisfying (3.17). Then

S
(

gxn(k)−1, gxn(k)−1, gxm(k)

)

+ S
(

gyn(k)−1, gyn(k)−1, gym(k)

)

< ε. (3.18)

Using (3.17), (3.18), Lemma 2.3 and Lemma 2.4, we have

ε ≤ rk := S
(

gxn(k), gxn(k), gxm(k)

)

+ S
(

gyn(k), gyn(k), gym(k)

)

≤ 2S
(

gxn(k), gxn(k), gxn(k)−1

)

+ S
(

gxm(k), gxm(k), gxn(k)−1

)

+ 2S
(

gyn(k), gyn(k), gyn(k)−1

)

+ S
(

gym(k), gym(k), gyn(k)−1

)

≤ 2S
(

gxn(k), gxn(k), gxn(k)−1

)

+ 2S
(

gyn(k), gyn(k), gyn(k)−1

)

+ ε.

Letting k → ∞ and using (3.16), we get

lim
k→∞

rk = lim
k→∞

[

S
(

gxn(k), gxn(k), gxm(k)

)

+ S
(

gyn(k), gyn(k), gym(k)

)

]

= ε.

(3.19)
By Lemma 2.4, we have

rk = S
(

gxn(k), gxn(k), gxm(k)

)

+ S
(

gyn(k), gyn(k), gym(k)

)

≤ 2S
(

gxn(k), gxn(k), gxn(k)+1

)

+ S
(

gxm(k), gxm(k), gxn(k)+1

)

+ 2S
(

gyn(k), gyn(k), gyn(k)+1

)

+ S
(

gym(k), gym(k), gyn(k)+1

)

≤ 2S
(

gxn(k), gxn(k), gxn(k)+1

)

+ S
(

gxn(k)+1, gxn(k)+1, gxm(k)

)

+ 2S
(

gyn(k), gyn(k), gyn(k)+1

)

+ S
(

gyn(k)+1, gyn(k)+1, gym(k)

)

≤ 2S
(

gxn(k), gxn(k), gxn(k)+1

)

+
[

2S
(

gxn(k)+1, gxn(k)+1, gxm(k)+1

)

+ S
(

gxm(k)+1, gxm(k)+1, gxm(k)+1

)

]

+ 2S
(

gyn(k), gyn(k), gyn(k)+1

)

+
[

2S
(

gyn(k)+1, gyn(k)+1, gym(k)+1

)

+S
(

gym(k)+1, gym(k)+1, gym(k)+1

)

]

≤ 2δn(k) + δm(k) + S
(

gxn(k)+1, gxn(k)+1, gxm(k)+1

)

+ S
(

gyn(k)+1, gyn(k)+1, gym(k)+1

)

.
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Using the property of ϕ, we have

ϕ(rk) = ϕ
(

δn(k) + δm(k) + S
(

gxn(k)+1, gxn(k)+1, gxm(k)+1

)

+ S
(

gyn(k)+1, gyn(k)+1, gym(k)+1

)

)

≤ ϕ
(

δn(k) + δm(k)

)

+ ϕ
(

S
(

gxn(k)+1, gxn(k)+1, gxm(k)+1

)

)

+ ϕ
(

S
(

gyn(k)+1, gyn(k)+1, gym(k)+1

)

)

.

(3.20)

Since n(k) > m(k), hence gxn(k) ≥ gxm(k) and gyn(k) ≥ gym(k). Using (3.1)
and (3.2), we get

ϕ
(

S
(

gxn(k)+1, gxn(k)+1, gxm(k)+1

)

)

= ϕ
(

S
(

F (xn(k), yn(k)), F (xn(k), yn(k)), F (xm(k), ym(k))
)

)

≤
1

2
ϕ
(

S
(

gxn(k), gxn(k), gxm(k)

)

+ S
(

gyn(k), gyn(k), gym(k)

)

)

− ψ

(

S
(

gxn(k), gxn(k), gxm(k)

)

+ S
(

gyn(k), gyn(k), gym(k)

)

2

)

=
1

2
ϕ(rk)− ψ

(rk

2

)

.

(3.21)

By the same way, we also have

ϕ
(

S
(

gym(k)+1, gym(k)+1, gyn(k)+1

)

)

= ϕ
(

S
(

F (ym(k), xm(k)), F (ym(k), xm(k)), F (yn(k), xn(k))
)

)

≤
1

2
ϕ
(

S
(

gym(k), gym(k), gyn(k)
)

+ S
(

gxm(k), gxm(k), gxn(k)
)

)

− ψ

(

S
(

gym(k), gym(k), gyn(k)
)

+ S
(

gxm(k), gxm(k), gxn(k)
)

2

)

=
1

2
ϕ(rk)− ψ

(rk

2

)

.

(3.22)

Inserting (3.21) and (3.22) in (3.20), we have

ϕ(rk) ≤ ϕ
(

δn(k) + δm(k)

)

+ ϕ(rk)− 2ψ
(rk

2

)

.
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Letting k → ∞ and using (3.16) and (3.19), we get

ϕ(ε) ≤ ϕ(0) + ϕ(ε) − 2 lim
k→∞

ψ
(rk

2

)

= ϕ(ε) − 2 lim
rk→∞

ψ
(rk

2

)

< ϕ(ε),

this is a contradiction. This shows that {gxn} and {gyn} are Cauchy se-
quences.

Since X is a complete metric space, there exist x, y ∈ X such that

lim
n→∞

F (xn, yn) = lim
n→∞

gxn = x and lim
n→∞

F (yn, xn) = lim
n→∞

gyn = y.

(3.23)
Since F and g are compatible mappings, we have

lim
n→∞

S
(

g
(

F (xn, yn)
)

, g
(

F (xn, yn)
)

, F
(

gxn, gyn
)

)

= 0 (3.24)

and

lim
n→∞

S
(

g
(

F (yn, xn)
)

, g
(

F (yn, xn)
)

, F
(

gyn, gxn
)

)

= 0. (3.25)

We now show that gx = F (x, y) and gy = F (y, x). Suppose that the
assumption (a) holds. For all n ≥ 0, we have

S
(

gx, gx, F (gxn, gyn)
)

≤ S
(

gx, gx, g(F (xn , yn))
)

+ S
(

g(F (xn, yn)), g(F (xn, yn)), F (gxn, gyn)
)

.

Taking the limit as n→ ∞, using (3.2), (3.23), (3.24) and the fact that F
and g are continuous, we have S(gx, gx, F (x, y)) = 0.

Similarly, using (3.2), (3.23), (3.25) and the fact that F and g are
continuous, we have S(gy, gy, F (y, x)) = 0.

Combining the above two results, we get

gx = F (x, y) and gy = F (y, x).

Finally, suppose that (b) holds. By (3.3), (3.4) and (3.23), we have {gxn} is
a non-decreasing sequence, gxn → x and {gyn} is a non-increasing sequence,
gyn → y as n→ ∞. Hence, by assumption (b), we have for all n ≥ 0,

gxn ≤ x and gyn ≤ y. (3.26)

Since F and g are compatible mappings and g is continuous, by (3.24) and
(3.25), we have

lim
n→∞

g(gxn) = gx = lim
n→∞

g
(

F (xn, yn)
)

= lim
n→∞

F (gxn, gyn) (3.27)
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and

lim
n→∞

g(gyn) = gy = lim
n→∞

g
(

F (yn, xn)
)

= lim
n→∞

F (gyn, gxn). (3.28)

Now we have

S
(

gx, gx, F (x, y)
)

≤ S
(

gx, gx, g(gxn+1)
)

+ S
(

g(gxn+1), g(gxn+1), F (x, y)
)

.

Taking n→ ∞ in the above inequality, using (3.2) and (3.20) we have,

S
(

gx, gx, F (x, y)
)

≤ lim
n→∞

S
(

gx, gx, g(gxn+1)
)

+ lim
n→∞

S
(

g(F (xn, yn)), g(F (xn, yn)), F (x, y)
)

≤ lim
n→∞

S
(

F (gxn, gyn), F (gxn, gyn), F (x, y)
)

.

(3.29)

Using the property of ϕ, we get

ϕ
(

S
(

gx, gx, F (x, y)
)

)

≤ lim
n→∞

ϕ
(

S
(

F (gxn, gyn), F (gxn, gyn), F (x, y)
)

)

.

Since the mapping g is monotone increasing, using (3.1), (3.26) and (3.29),
we have for all n ≥ 0,

ϕ
(

S
(

gx, gx, F (x, y)
)

)

≤ lim
n→∞

1

2
ϕ
(

S
(

ggxn, ggxn, gx
)

+ S
(

gyn, gyn, ggy
)

)

− lim
n→∞

(

S
(

ggxn, ggxn, gx
)

+ S
(

gyn, gyn, ggy
)

2

)

.

Using the above inequality, using (3.23) and the property of ψ, we get

ψ
(

S
(

gx, gx, F (x, y)
)

)

= 0, thus S(gx, gx, F (x, y)) = 0. Hence gx =

F (x, y).
Similarly, we can show that gy = F (y, x). Thus we proved that F and

g have a coupled coincidence point.

Corollary 3.2. Let (X,≤, S) be a partially ordered complete S-metric

space. Let F : X2 → X is such that F has the mixed monotone prop-

erty such that there exists x0, y0 ∈ X with

x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0).

Suppose there exist ϕ ∈ Φ and ψ ∈ Ψ such that

ϕ
(

S
(

F (x, y), F (x, y), F (u, v)
)

)

≤
1

2
ϕ
(

S(x, x, u) + S(y, y, v)
)

− ψ

(

S(x, x, u) + S(y, y, v)

2

)

,
(3.30)

for all x, y, u, v ∈ X with x ≥ u and y ≤ v. Suppose either
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(a) F is continuous or

(b) X has the following property:

(i) if a non-decreasing sequence {xn} → x, then xn ≤ x, for all n,

(ii) if a non-increasing sequence {yn} → y, then yn ≥ y , for all n.

Then there exists x, y ∈ X such that

x = F (x, y) and y = F (y, x),

that is, F has a coupled fixed point in X.

Corollary 3.3. Let (X,≤, S) be a partially ordered complete S-metric

space. Let F : X2 → X is such that F has the mixed monotone prop-

erty such that there exists x0, y0 ∈ X with

x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0).

Suppose there exist ψ ∈ Ψ such that

S
(

F (x, y), F (x, y), F (u, v)
)

≤
S(x, x, u) + S(y, y, v)

2
− ψ

(

S(x, x, u) + S(y, y, v)

2

)

,

(3.31)

for all x, y, u, v ∈ X with x ≥ u and y ≤ v. Suppose either

(a) F is continuous or

(b) X has the following property:

(i) if a non-decreasing sequence {xn} → x, then xn ≤ x, for all n,

(ii) if a non-increasing sequence {yn} → y, then yn ≥ y , for all n.

Then there exists x, y ∈ X such that

x = F (x, y) and y = F (y, x),

that is, F has a coupled fixed point in X.

Proof. Take ϕ(t) = t in Corollary 3.2.
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Corollary 3.4. Let (X,≤, S) be a partially ordered complete S-metric

space. Let F : X2 → X is such that F has the mixed monotone prop-

erty such that there exists x0, y0 ∈ X with

x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0).

Suppose there exists a real number k ∈ [0, 1) such that

S
(

F (x, y), F (x, y), F (u, v)
)

≤
k

2

(

S(x, x, u) + S(y, y, v)
)

, (3.32)

for all x, y, u, v ∈ X with x ≥ u and y ≤ v. Suppose either

(a) F is continuous or

(b) X has the following property:

(i) if a non-decreasing sequence {xn} → x, then xn ≤ x, for all n,

(ii) if a non-increasing sequence {yn} → y, then yn ≥ y , for all n.

Then there exists x, y ∈ X such that

x = F (x, y) and y = F (y, x),

that is, F has a coupled fixed point in X.

Proof. Take ψ(t) = (1− k)t in Corollary 3.3.

4 Uniqueness of Coupled Coincidence Point

In this section, we will prove the uniqueness of the coupled coincidence
point. Note that if (X;≤) is a partially ordered set, then we endow the
product X2 with the following partial order relation, for all (x, y), (u, v) ∈
X2,

(x, y) ≤ (u, v) ⇔ x ≤ u , y ≥ v.

Theorem 4.1. In addition to hypotheses of Theorem 3.1, suppose that for

every (x, y), (z, t) in X2, if there exists a (u, v) in X2 that is comparable to

(x, y) and (z, t), then F has a unique coupled coincidence point.

Proof. From Theorem 3.1, the set of coupled coincidence points of F and g
is nonempty. Suppose (x, y) and (z, t) are coupled coincidence points of F
and g, that is gx = F (x, y), gy = F (y, x), gz = F (z, t) and gt = F (t, z). We
are going to show that gx = gz and gy = gt. By assumption, there exists
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(u, v) ⊂ X2 that is comparable to (x, y) and (z, t). We define sequences
{gun}, {gvn} as follows,

u0 = u , v0 = v. gun+1 = F (un, vn) and gvn+1 = F (vn, un) for all n.

Since (u, v) is comparable with (x, y), we may assume that (x, y) ≥ (u, v) =
(u0, v0). Using the mathematical induction, it is easy to prove that

(x, y) ≥ (un, vn) for all n. (4.1)

Using (3.1) and (4.1), we have

ϕ
(

S
(

gx, gx, gun+1

)

)

= ϕ
(

S
(

F (x, y), F (x, y), F (un, vn)
)

)

≤
1

2
ϕ
(

S(gx, gx, gun) + S(gy, gy, gvn)
)

− ψ

(

S(gx, gx, gun) + S(gy, gy, gvn)

2

)

. (4.2)

Similarly,

ϕ
(

S
(

gvn+1, gy, gy
)

)

= ϕ
(

S
(

F (vn, un), F (y, x), F (y, x)
)

)

≤
1

2
ϕ
(

S(gvn, gy, gy) + S(gun, gx, gx)
)

− ψ

(

S(gvn, gy, gy) + S(gun, gx, gx)

2

)

. (4.3)

Using (4.2), (4.3) and the property of ϕ, we have

ϕ
(

S
(

gx, gx, gun+1

)

+ S
(

gvn+1, gy, gy
)

)

≤ ϕ
(

S
(

gx, gx, gun+1

)

)

+ ϕ
(

S
(

gvn+1, gy, gy
)

)

≤ ϕ
(

S
(

gx, gx, gun
)

+ S
(

gy, gy, gvn
)

)

− 2ψ

(

S
(

gvn, gy, gy
)

+ S
(

gun, gx, gx
)

2

)

, (4.4)

which implies, using the definition of ψ,

ϕ
(

S
(

gx, gx, gun+1

)

+ S
(

gvn+1, gy, gy
)

)

≤ ϕ
(

S
(

gx, gx, gun
)

)

+ ϕ
(

S
(

gvn, gy, gy
)

)

.
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Thus, using the definition of ϕ,

S
(

gx, gx, gun+1

)

+ S
(

gvn+1, gy, gy
)

≤ S
(

gx, gx, gun
)

+ S
(

gvn, gy, gy
)

.

That is the sequence
{

S(gx, gx, gun)+S(gy, gy, gvn)
}

is decreasing. There-
fore, there exists α ≥ 0 such that

lim
n→∞

(

S
(

gx, gx, gun
)

+ S
(

gy, gy, gvn
)

)

= α. (4.5)

We will show that α = 0. Suppose to the contrary that α > 0. Taking the
limit as n→ ∞ in (4.4), we have, using the property of ψ,

ϕ(α) ≤ ϕ(α) − 2 lim
n→∞

ψ

(

S(gx, gx, gun) + S(gy, gy, gvn)

2

)

< ϕ(α),

this is a contradiction. Thus α = 0, that is,

lim
n→∞

(

S
(

gx, gx, gun
)

+ S
(

gy, gy, gvn
)

)

= 0.

It implies

lim
n→∞

S
(

gx, gx, gun
)

= lim
n→∞

S
(

gy, gy, gvn
)

= 0. (4.6)

Similarly, we show that

lim
n→∞

S
(

gz, gz, gun
)

= lim
n→∞

S
(

gt, gt, gvn
)

= 0. (4.7)

Using (4.6) and (4.7), we have gx = gz and gy = gt.

Corollary 4.2. In addition to hypotheses of Corollary 3.2, suppose that for

every (x, y), (z, t) in X2, if there exists a (u, v) in X2 that is comparable to

(x, y) and (z, t), then F has a unique coupled fixed point.

5 Example

Example 5.1. Let X = [0, 1]. Then (X,≤) is a partially ordered set with
the natural ordering of real numbers. Let

S(x, y, z) =
|x− y|+ |x− z|+ |y − z|

2
for x, y, z ∈ [0, 1].

Then S(x, x, y) = |x− y| and (X,S) is a complete S-metric space.
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Let g : X → X be defined as:

gx = x2 , for all x ∈ X,

and let F : X2 → X be defined as:

F (x, y) =







x2 − y2

3
, if x ≥ y;

0, if x < y.

F obeys the mixed g-monotone property. Let ϕ : [0,∞) → [0,∞) be defined
as:

ϕ(t) =
3

4
t , for t ∈ [0,∞),

and let ψ : [0,∞) → [0,∞) be defined as:

ψ(t) =
1

4
t , for t ∈ [0,∞).

Let {xn} and {yn} be two sequences in X such that lim
n→∞

F (xn, yn) = a,

lim
n→∞

gxn = a, lim
n→∞

F (yn, xn) = b and lim
n→∞

gyn = b Then obviously, a = 0

and b = 0. Now, for all n ≥ 0,

gxn = x2n , gyn = y2n , F (xn, yn) =







x2n − y2n
3

, if xn ≥ yn;

0, if xn < yn,

and

F (yn, xn) =







y2n − x2n
3

, if yn ≥ xn;

0, if yn < xn.

Then it follows that,

lim
n→∞

S
(

g
(

F (xn, yn)
)

, g
(

F (xn, yn)
)

, F (gxn, gyn)
)

= 0

and

lim
n→∞

S
(

g
(

F (yn, xn)
)

, g
(

F (yn, xn)
)

, F (gyn, gxn)
)

= 0.

Hence, the mappings F and g are compatible in X. Also, x0 = 0 and
y0 = c (> 0) are two points in X such that

gx0 = g(0) = 0 = F (0, c) = F (x0, y0) and
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gy0 = g(c) = c2 ≥
c2

3
= F (c, 0) = F (y0, x0).

We next verify the contraction (3.1). We take x, y, u, v ∈ X such that
gx ≥ gu and gy ≤ gv, that is, x2 ≥ u2 and y2 ≤ v2.

We consider the following cases:

Case 1. x ≥ y, u ≥ v. Then

ϕ
(

S
(

F (x, y), F (x, y), F (u, v)
)

)

=
3

4

(

S
(

F (x, y), F (x, y), F (u, v)
)

)

=
3

4

(

S

(

x2 − y2

3
,
x2 − y2

3
,
u2 − v2

3

))

=
3

4

∣

∣

∣

∣

(x2 − y2)− (u2 − v2)

3

∣

∣

∣

∣

=
3

4

(

|x2 − u2| − |y2 − v2|

3

)

=
1

2

(

S(gx, gx, gu) + S(gy, gy, gv)

2

)

=
3

4

(

S(gx, gx, gu) + S(gy, gy, gv)

2

)

−
1

4

(

S(gx, gx, gu) + S(gy, gy, gv)

2

)

=
3

8

(

S(gx, gx, gu) + S(gy, gy, gv)
)

−
1

4

(

S(gx, gx, gu) + S(gy, gy, gv)

2

)

=
1

2
ϕ
(

S(gx, gx, gu) + S(gy, gy, gv)
)

− ψ

(

S(gx, gx, gu) + S(gy, gy, gv)

2

)

.

Case 2. x ≥ y, u < v. Then

ϕ
(

S
(

F (x, y), F (x, y), F (u, v)
)

)

=
3

4

(

S
(

F (x, y), F (x, y), F (u, v)
)

)

=
3

4

(

S

(

x2 − y2

3
,
x2 − y2

3
, 0

))

=
3

4

|x2 − y2|

3
=

3

4

(

|u2 + x2 − y2 − u2|

3

)

<
3

4

(

|v2 + x2 − y2 − u2|

3

)

=
3

4

(

|(v2 − y2)− (u2 − x2)|

3

)
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≤
3

4

(

|u2 − x2|+ |y2 − v2|

3

)

=
1

2

(

S(gx, gx, gu) + S(gy, gy, gv)

2

)

=
3

4

(

S(gx, gx, gu) + S(gy, gy, gv)

2

)

−
1

4

(

S(gx, gx, gu) + S(gy, gy, gv)

2

)

=
3

8

(

S(gx, gx, gu) + S(gy, gy, gv)
)

−
1

4

(

S(gx, gx, gu) + S(gy, gy, gv)

2

)

=
1

2
ϕ
(

S(gx, gx, gu) + S(gy, gy, gv)
)

− ψ

(

S(gx, gx, gu) + S(gy, gy, gv)

2

)

.

Case 3. x < y, u ≥ v. Then,

ϕ
(

S
(

F (x, y), F (x, y), F (u, v)
)

)

=
3

4

(

S

(

0, 0,
u2 − v2

3

))

=
3

4

|u2 − v2|

3
=

3

4

(

|u2 + x2 − v2 − x2|

3

)

<
3

4

(

|u2 + y2 − v2 − x2|

3

)

≤
3

4

(

|u2 − x2|+ |y2 − v2|

3

)

=
1

2

(

S(gx, gx, gu) + S(gy, gy, gv)

2

)

=
3

4

(

S(gx, gx, gu) + S(gy, gy, gv)

2

)

−
1

4

(

S(gx, gx, gu) + S(gy, gy, gv)

2

)

=
3

8

(

S(gx, gx, gu) + S(gy, gy, gv)
)

−
1

4

(

S(gx, gx, gu) + S(gy, gy, gv)

2

)

=
1

2
ϕ
(

S(gx, gx, gu) + S(gy, gy, gv)
)

− ψ

(

S(gx, gx, gu) + S(gy, gy, gv)

2

)

.

Case 4. x < y and u < v with x2 ≤ u2 and y2 ≥ v2. Then, F (x, y) = 0
and F (u, v) = 0, that is,

ϕ
(

S
(

F (x, y), F (x, y), F (u, v)
)

)

= ϕ
(

S(0, 0, 0)
)

= ϕ(0) = 0.

Therefore all conditions of Theorem 3.1 are satisfied. Thus the conclusion
follows.
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