Coupled Coincidence Points for Monotone Operators in S-Metric Spaces

Somkiat Chaipornjareansri
Department of Mathematics, Faculty of Science
Lampang Rajabhat University, Lampang 52100, Thailand
e-mail : somkiat.chai@gmail.com

Abstract

The aim of this paper is to establish some coupled coincidence point results in S-metric space by using the notion of compatible mappings in the setting of a partially ordered S-metric space. We prove the existence and uniqueness of coupled coincidence points involving a (φ, ψ)-contractive condition for a mappings having the mixed g-monotone property.

Keywords : S-metric space; partially ordered S-metric space; coupled coincidence point; mixed g-monotone property.
2010 Mathematics Subject Classification : 47H10; 54H25.
】

1 Introduction

Metric spaces have very wide applications in mathematics and applied sciences. For this, many authors tried to give definitions of metric spaces in many ways. In 1966, Gahler [1, 2] introduced the notion of 2-metric spaces and Dhage [3] introduced the notion of D-metric spaces. After the introduction of these metric spaces many authors proved some fixed point results related to these metric spaces. In 2006, Mustafa and Sims [4] proved that most of the results of Dhage's D-metric spaces are not valid. So, they introduced the new concept of generalized metric space called G-metric

```
Copyright (c) 2017 by the Mathematical Association of Thailand.
All rights reserved.
```

space and gave some remarkable results in G-metric spaces. In 2012, Sedghi et al. [5] introduced the notion of S-metric spaces as the generalization of G-metric and D^{*}-metric spaces.

The notion of a coupled fixed point was introduced and studied by Opoitsev [6-8] and then by Guo and Lakshmikantham 9]. Bhashkar and Lakshmikantham in [10] introduced the concept of a coupled fixed point of a mapping $F: X \times X \rightarrow X$ and investigated some coupled fixed point theorems in partially ordered complete metric spaces. They also discussed an application of their result by investigating the existence and uniqueness of solution for a periodic boundary value problem. Choudhury and Kundu [11] obtained coupled coincidence point results in partially ordered metric spaces for compatible mappings.

Lakshmikantham and Ćirić [12] defined a mixed g-monotone mapping and prove coupled coincidence and coupled common fixed point theorems for such nonlinear contractive mappings in partially ordered complete metric spaces. In 2011 Alotaibi and Alsulami [13] proved the existence and uniqueness of coupled coincidence point involving a (φ, ψ)-contractive condition for a mappings having the mixed g-monotone property.

2 Preliminaries

We begin with the following definition:
Definition 2.1. 5 Let X be a nonempty set. An S-metric on X is a function $S: X^{3} \rightarrow[0, \infty)$ that satisfies the following conditions, for each $x, y, z, a \in X$.
(i) $S(x, y, z) \geq 0$;
(ii) $S(x, y, z)=0$ if and only if $x=y=z$;
(iii) $S(x, y, z) \leq S(x, x, a)+S(y, y, a)+S(z, z, a)$.

Then the pair (X, S) is called an S-metric space.
The following is an intuitive geometric example for S-metric spaces.
Example 2.2. [5] Let $X=\mathbb{R}^{2}$ and d be an ordinary metric on X. Put

$$
S(x, y, z)=d(x, y)+d(x, z)+d(y, z)
$$

for all $x, y, z \in \mathbb{R}$, that is, S is the perimeter of the triangle given by x, y, z. Then S is an S-metric on X.

Lemma 2.3. [5] Let (X, S) be an S-metric space. Then $S(x, x, y)=$ $S(y, y, x)$ for all $x, y \in X$.

Lemma 2.4. Let (X, S) be an S-metric space. Then
$S(x, x, z) \leq 2 S(x, x, y)+S(y, y, z) \quad$ and $\quad S(x, x, z) \leq 2 S(x, x, y)+S(z, z, y)$
for all $x, y, z \in X$.
Proof. It is a direct consequence of Definition 2.1 and Lemma 2.4.
Definition 2.5. 5] Let (X, S) be an S-metric space.
(i) A sequence $\left\{x_{n}\right\} \subset X$ is said to converge to $x \in X$ if $S\left(x_{n}, x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$. That is, for each $\varepsilon>0$, there exists $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$ we have $S\left(x_{n}, x_{n}, x\right)<\varepsilon$. We write $x_{n} \rightarrow x$ for brevity.
(ii) A sequence $\left\{x_{n}\right\} \subset X$ is called a Cauchy sequence if $S\left(x_{n}, x_{n}, x_{m}\right) \rightarrow$ 0 as $n, m \rightarrow \infty$. That is, for each $\varepsilon>0$, there exists $n_{0} \in \mathbb{N}$ such that for all $n, m \geq n_{0}$ we have $S\left(x_{n}, x_{n}, x_{m}\right)<\varepsilon$.
(iii) The S-metric space (X, S) is said to be complete if every Cauchy sequence is a convergent sequence.

Lemma 2.6. 5] Let (X, S) be an S-metric space. If $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$, then $S\left(x_{n}, x_{n}, y_{n}\right) \rightarrow S(x, x, y)$.

Definition 2.7 ([12], Mixed g-Monotone Property). Let (X, \leq) be a partially ordered set and $F: X^{2} \rightarrow X$. We say that the mapping F has the mixed g-monotone property if F is monotone g-non-decreasing in its first argument and is monotone g-non-increasing in its second argument. That is, for any $x, y \in X$,

$$
\begin{align*}
x_{1}, x_{2} \in X, g x_{1} \leq g x_{2} & \Rightarrow F\left(x_{1}, y\right) \leq F\left(x_{2}, y\right) \tag{2.1}\\
y_{1}, y_{2} \in X, g y_{1} \leq g y_{2} & \Rightarrow F\left(x, y_{1}\right) \geq F\left(x, y_{2}\right)
\end{align*}
$$

Definition 2.8 (Coupled Coincidence Point). Let $(x, y) \in X \times X, F$: $X^{2} \rightarrow X$ and $g: X \rightarrow X$. We say that (x, y) is a coupled coincidence point of F and g if $F(x, y)=g x$ and $F(y, x)=g y$ for $x, y \in X$.

Definition 2.9. The mapping F and g where $F: X^{2} \rightarrow X$ and $g: X \rightarrow X$, are said to be compatible if

$$
\lim _{n \rightarrow \infty} S\left(g\left(F\left(x_{n}, y_{n}\right)\right), g\left(F\left(x_{n}, y_{n}\right)\right), F\left(g x_{n}, g y_{n}\right)\right)=0
$$

and

$$
\lim _{n \rightarrow \infty} S\left(g\left(F\left(y_{n}, x_{n}\right)\right), g\left(F\left(y_{n}, x_{n}\right)\right), F\left(g y_{n}, g x_{n}\right)\right)=0
$$

whenever $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequences in X, such that $\lim _{n \rightarrow \infty} F\left(x_{n}, y_{n}\right)=$ $\lim _{n \rightarrow \infty} g x_{n}=x$ and $\lim _{n \rightarrow \infty} F\left(y_{n}, x_{n}\right)=\lim _{n \rightarrow \infty} g y_{n}=y$, for all $x, y \in X$ are satisfied.

3 Existence of Coupled Coincidence Points

Let Φ denote all functions $\varphi:[0, \infty) \rightarrow[0, \infty)$ which satisfy
(1) φ continuous and non-decreasing;
(2) $\varphi(t)=0$ if and only if $t=0$;
(3) $\varphi(t+s) \leq \varphi(t)+\varphi(s), \forall t, s \in[0, \infty)$
and let Ψ denote all the functions $\psi:[0, \infty) \rightarrow(0, \infty)$ which satisfy $\lim _{t \rightarrow r} \psi(t)>0$ for all $r>0$ and $\lim _{t \rightarrow 0^{+}} \psi(t)=0$.

Now, let us start proving our main results.
Theorem 3.1. Let (X, \leq, S) be a partially ordered complete S-metric space. Let $F: X^{2} \rightarrow X$ is such that F has the mixed g-monotone property such that there exists $x_{0}, y_{0} \in X$ with

$$
g x_{0} \leq F\left(x_{0}, y_{0}\right) \quad \text { and } \quad g y_{0} \geq F\left(y_{0}, x_{0}\right) .
$$

Suppose there exist $\varphi \in \Phi$ and $\psi \in \Psi$ such that

$$
\begin{align*}
& \varphi(S(F(x, y), F(x, y), F(u, v))) \\
& \leq \frac{1}{2} \varphi(S(g x, g x, g u)+S(g y, g y, g v))-\psi\left(\frac{S(g x, g x, g u)+S(g y, g y, g v)}{2}\right), \tag{3.1}
\end{align*}
$$

for all $x, y, u, v \in X$ with $g x \geq g u$ and $g y \leq g v$. Suppose $F(X \times X) \subseteq g(X)$, g is continuous and compatible with F and also suppose either
(a) F is continuous or
(b) X has the following property:
(i) if a non-decreasing sequence $\left\{x_{n}\right\} \rightarrow x$, then $x_{n} \leq x$, for all n,
(ii) if a non-increasing sequence $\left\{y_{n}\right\} \rightarrow y$, then $y_{n} \geq y$, for all n.

Then there exists $x, y \in X$ such that

$$
g x=F(x, y) \quad \text { and } \quad g y=F(y, x),
$$

i.e., F and g have a coupled coincidence point in X.

Proof. Let $x_{0}, y_{0} \in X$ be such that $g x_{0} \leq F\left(x_{0}, y_{0}\right)$ and $g y_{0} \geq F\left(y_{0}, x_{0}\right)$. Using $F(X \times X) \subseteq g(X)$, we construct sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X as

$$
\begin{equation*}
g x_{n+1}=F\left(x_{n}, y_{n}\right) \quad \text { and } \quad g y_{n+1}=F\left(y_{n}, x_{n}\right) \quad \text { for all } n \geq 0 . \tag{3.2}
\end{equation*}
$$

We are going to prove that

$$
\begin{equation*}
g x_{n} \leq g x_{n+1} \quad \text { for all } n \geq 0 \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
g y_{n} \geq g y_{n+1} \quad \text { for all } n \geq 0 . \tag{3.4}
\end{equation*}
$$

To prove these, we are going to use the mathematical induction.
Let $n=0$. Since $g x_{0} \leq F\left(x_{0}, y_{0}\right)$ and $g y_{0} \geq F\left(y_{0}, x_{0}\right)$ and as $g x_{1}=$ $F\left(x_{0}, y_{0}\right)$ and $g y_{1}=F\left(y_{0}, x_{0}\right)$, we have $g x_{0} \leq g x_{1}$ and $g y_{0} \geq g y_{1}$. Thus (3.3) and (3.4) hold for $n=0$.

Suppose now that (3.3) and (3.4) hold for some fixed $n \geq 0$, Then, since $g x_{n} \leq g x_{n+1}$ and $g y_{n} \geq g y_{n+1}$, and by mixed g-monotone property of F, we have

$$
\begin{equation*}
g x_{n+2}=F\left(x_{n+1}, y_{n+1}\right) \geq F\left(x_{n}, y_{n+1}\right) \geq F\left(x_{n}, y_{n}\right)=g x_{n+1} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
g y_{n+2}=F\left(y_{n+1}, x_{n+1}\right) \leq F\left(y_{n}, x_{n+1}\right) \leq F\left(y_{n}, x_{n}\right)=g y_{n+1} . \tag{3.6}
\end{equation*}
$$

Using (3.5) and (3.6), we get

$$
g x_{n+1} \leq g x_{n+2} \quad \text { and } \quad g y_{n+1} \geq g y_{n+2} .
$$

Hence by the mathematical induction we conclude that (3.3) and (3.4) hold for all $n \geq 0$.

Therefore,

$$
\begin{equation*}
g x_{0} \leq g x_{1} \leq g x_{2} \leq \cdots \leq g x_{n} \leq g x_{n+1} \leq \cdots \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
g y_{0} \geq g y_{1} \geq g y_{2} \geq \cdots \geq g y_{n} \geq g y_{n+1} \geq \cdots . \tag{3.8}
\end{equation*}
$$

Since $g x_{n} \geq g x_{n-1}$ and $g y_{n} \leq g y_{n-1}$, using (3.1) and (3.2), we have

$$
\begin{align*}
\varphi\left(S\left(g x_{n+1}, g x_{n+1}, g x_{n}\right)\right)= & \varphi\left(S\left(F\left(x_{n}, y_{n}\right), F\left(x_{n}, y_{n}\right), F\left(x_{n-1}, y_{n-1}\right)\right)\right) \\
\leq & \frac{1}{2} \varphi\left(S\left(g x_{n}, g x_{n}, g x_{n-1}\right)+S\left(g y_{n}, g y_{n}, g y_{n-1}\right)\right) \\
& -\psi\left(\frac{S\left(g x_{n}, g x_{n}, g x_{n-1}\right)+S\left(g y_{n}, g y_{n}, g y_{n-1}\right)}{2}\right) . \tag{3.9}
\end{align*}
$$

Similarly, since $g y_{n-1} \geq g y_{n}$ and $g x_{n-1} \leq g x_{n}$, using (3.1) and (3.2), we have

$$
\begin{align*}
\varphi\left(S\left(g y_{n}, g y_{n}, g y_{n+1}\right)\right)= & \varphi\left(S\left(F\left(y_{n-1}, x_{n-1}\right), F\left(y_{n-1}, x_{n-1}\right), F\left(y_{n}, x_{n}\right)\right)\right) \\
\leq & \frac{1}{2} \varphi\left(S\left(g y_{n-1}, g y_{n-1}, g y_{n}\right)+S\left(g x_{n-1}, g x_{n-1}, g x_{n}\right)\right) \\
& -\psi\left(\frac{S\left(g y_{n-1}, g y_{n-1}, g y_{n}\right)+S\left(g x_{n-1}, g x_{n-1}, g x_{n}\right)}{2}\right) \tag{3.10}
\end{align*}
$$

Using Lemma 2.3, we have

$$
\begin{align*}
\varphi\left(S\left(g y_{n+1}, g y_{n+1}, g y_{n}\right)\right) \leq & \frac{1}{2} \varphi\left(S\left(g y_{n}, g y_{n}, g y_{n-1}\right)+S\left(g x_{n}, g x_{n}, g x_{n-1}\right)\right) \\
& -\psi\left(\frac{S\left(g y_{n}, g y_{n}, g y_{n-1}\right)+S\left(g x_{n}, g x_{n}, g x_{n-1}\right)}{2}\right) \tag{3.11}
\end{align*}
$$

Using (3.9) and (3.11), we have

$$
\begin{align*}
& \varphi\left(S\left(g x_{n+1}, g x_{n+1}, g x_{n}\right)\right)+\varphi\left(S\left(g y_{n+1}, g y_{n+1}, g y_{n}\right)\right) \\
& \quad \leq \varphi\left(S\left(g x_{n}, g x_{n}, g x_{n-1}\right)+S\left(g y_{n}, g y_{n}, g y_{n-1}\right)\right) \tag{3.12}\\
& \quad-2 \psi\left(\frac{S\left(g x_{n}, g x_{n}, g x_{n-1}\right)+S\left(g y_{n}, g y_{n}, g y_{n-1}\right)}{2}\right) .
\end{align*}
$$

By property (3) of φ, we have

$$
\begin{align*}
& \varphi\left(S\left(g x_{n+1}, g x_{n+1}, g x_{n}\right)+S\left(g y_{n+1}, g y_{n+1}, g y_{n}\right)\right) \\
& \quad \leq \varphi\left(S\left(g x_{n+1}, g x_{n+1}, g x_{n}\right)\right)+\varphi\left(S\left(g y_{n+1}, g y_{n+1}, g y_{n}\right)\right) \tag{3.13}
\end{align*}
$$

Using (3.12) and (3.13), we have

$$
\begin{align*}
& \varphi\left(S\left(g x_{n+1}, g x_{n+1}, g x_{n}\right)+S\left(g y_{n+1}, g y_{n+1}, g y_{n}\right)\right) \\
& \quad \leq \varphi\left(S\left(g x_{n}, g x_{n}, g x_{n-1}\right)+S\left(g y_{n}, g y_{n}, g y_{n-1}\right)\right) \tag{3.14}\\
& \quad-2 \psi\left(\frac{S\left(g x_{n}, g x_{n}, g x_{n-1}\right)+S\left(g y_{n}, g y_{n}, g y_{n-1}\right)}{2}\right),
\end{align*}
$$

which implies, since ψ is a non-negative function,

$$
\begin{aligned}
& \varphi\left(S\left(g x_{n+1}, g x_{n+1}, g x_{n}\right)+S\left(g y_{n+1}, g y_{n+1}, g y_{n}\right)\right) \\
& \quad \leq \varphi\left(S\left(g x_{n}, g x_{n}, g x_{n-1}\right)+S\left(g y_{n}, g y_{n}, g y_{n-1}\right)\right)
\end{aligned}
$$

Using the fact that φ is non-decreasing, we get

$$
\begin{aligned}
& S\left(g x_{n+1}, g x_{n+1}, g x_{n}\right)+S\left(g y_{n+1}, g y_{n+1}, g y_{n}\right) \\
& \quad \leq S\left(g x_{n}, g x_{n}, g x_{n-1}\right)+S\left(g y_{n}, g y_{n}, g y_{n-1}\right)
\end{aligned}
$$

Set

$$
\delta_{n}=S\left(g x_{n+1}, g x_{n+1}, g x_{n}\right)+S\left(g y_{n+1}, g y_{n+1}, g y_{n}\right)
$$

Now we would like to show that $\delta_{n} \rightarrow 0$ as $n \rightarrow \infty$. It is clear that the sequence $\left\{\delta_{n}\right\}$ is decreasing. Therefore, there is some $\delta \geq 0$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \delta_{n}=\lim _{n \rightarrow \infty}\left[S\left(g x_{n+1}, g x_{n+1}, g x_{n}\right)+S\left(g y_{n+1}, g y_{n+1}, g y_{n}\right)\right]=\delta \tag{3.15}
\end{equation*}
$$

We shall show that $\delta=0$. Suppose, to the contrary, that $\delta>0$. Then taking the limit as $n \rightarrow \infty$ (equivalently, $\delta_{n} \rightarrow \delta$) of both sides of (3.14) and remembering $\lim _{t \rightarrow r} \psi(t)>0$ for all $r>0$ and φ is continuous, we have

$$
\begin{aligned}
\varphi(\delta) & =\lim _{n \rightarrow \infty} \varphi\left(\delta_{n}\right) \leq \lim _{n \rightarrow \infty}\left[\varphi\left(\delta_{n-1}\right)-2 \psi\left(\frac{\delta_{n-1}}{2}\right)\right] \\
& =\varphi(\delta)-2 \lim _{\delta_{n-1} \rightarrow \delta} \psi\left(\frac{\delta_{n-1}}{2}\right)<\varphi(\delta),
\end{aligned}
$$

this is a contradiction. Thus $\delta=0$, that is

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \delta_{n}=\lim _{n \rightarrow \infty}\left[S\left(g x_{n+1}, g x_{n+1}, g x_{n}\right)+S\left(g y_{n+1}, g y_{n+1}, g y_{n}\right)\right]=0 . \tag{3.16}
\end{equation*}
$$

Now, we will prove that $\left\{g x_{n}\right\}$ and $\left\{g y_{n}\right\}$ are Cauchy sequences. Suppose, to the contrary, that at least one of $\left\{g x_{n}\right\}$ or $\left\{g y_{n}\right\}$ is not Cauchy sequence. Then there exists an $\varepsilon>0$ for which we can find subsequences
$\left\{g x_{n(k)}\right\},\left\{g x_{m(k)}\right\}$ of $\left\{g x_{n}\right\}$ and $\left\{g y_{n(k)}\right\},\left\{g y_{m(k)}\right\}$ of $\left\{g y_{n}\right\}$ with $n(k)>$ $m(k) \geq k$ such that

$$
\begin{equation*}
S\left(g x_{n(k)}, g x_{n(k)}, g x_{m(k)}\right)+S\left(g y_{n(k)}, g y_{n(k)}, g y_{m(k)}\right) \geq \varepsilon . \tag{3.17}
\end{equation*}
$$

Further, corresponding to $m(k)$, we can choose $n(k)$ in such a way that it is the smallest integer with $n(k)>m(k)$ and satisfying (3.17). Then

$$
\begin{equation*}
S\left(g x_{n(k)-1}, g x_{n(k)-1}, g x_{m(k)}\right)+S\left(g y_{n(k)-1}, g y_{n(k)-1}, g y_{m(k)}\right)<\varepsilon \tag{3.18}
\end{equation*}
$$

Using (3.17), (3.18), Lemma 2.3 and Lemma 2.4, we have

$$
\begin{aligned}
\varepsilon \leq & r_{k}:=S\left(g x_{n(k)}, g x_{n(k)}, g x_{m(k)}\right)+S\left(g y_{n(k)}, g y_{n(k)}, g y_{m(k)}\right) \\
\leq & 2 S\left(g x_{n(k)}, g x_{n(k)}, g x_{n(k)-1}\right)+S\left(g x_{m(k)}, g x_{m(k)}, g x_{n(k)-1}\right) \\
& +2 S\left(g y_{n(k)}, g y_{n(k)}, g y_{n(k)-1}\right)+S\left(g y_{m(k)}, g y_{m(k)}, g y_{n(k)-1}\right) \\
\leq & 2 S\left(g x_{n(k)}, g x_{n(k)}, g x_{n(k)-1}\right)+2 S\left(g y_{n(k)}, g y_{n(k)}, g y_{n(k)-1}\right)+\varepsilon .
\end{aligned}
$$

Letting $k \rightarrow \infty$ and using (3.16), we get

$$
\begin{equation*}
\lim _{k \rightarrow \infty} r_{k}=\lim _{k \rightarrow \infty}\left[S\left(g x_{n(k)}, g x_{n(k)}, g x_{m(k)}\right)+S\left(g y_{n(k)}, g y_{n(k)}, g y_{m(k)}\right)\right]=\varepsilon \tag{3.19}
\end{equation*}
$$

By Lemma 2.4, we have

$$
\begin{aligned}
r_{k}= & S\left(g x_{n(k)}, g x_{n(k)}, g x_{m(k)}\right)+S\left(g y_{n(k)}, g y_{n(k)}, g y_{m(k)}\right) \\
\leq & 2 S\left(g x_{n(k)}, g x_{n(k)}, g x_{n(k)+1}\right)+S\left(g x_{m(k)}, g x_{m(k)}, g x_{n(k)+1}\right) \\
& +2 S\left(g y_{n(k)}, g y_{n(k)}, g y_{n(k)+1}\right)+S\left(g y_{m(k)}, g y_{m(k)}, g y_{n(k)+1}\right) \\
\leq & 2 S\left(g x_{n(k)}, g x_{n(k)}, g x_{n(k)+1}\right)+S\left(g x_{n(k)+1}, g x_{n(k)+1}, g x_{m(k)}\right) \\
& +2 S\left(g y_{n(k)}, g y_{n(k)}, g y_{n(k)+1}\right)+S\left(g y_{n(k)+1}, g y_{n(k)+1}, g y_{m(k)}\right) \\
\leq & 2 S\left(g x_{n(k)}, g x_{n(k)}, g x_{n(k)+1}\right)+\left[2 S\left(g x_{n(k)+1}, g x_{n(k)+1}, g x_{m(k)+1}\right)\right. \\
& \left.+S\left(g x_{m(k)+1}, g x_{m(k)+1}, g x_{m(k)+1}\right)\right]+2 S\left(g y_{n(k)}, g y_{n(k)}, g y_{n(k)+1}\right) \\
& +\left[2 S\left(g y_{n(k)+1}, g y_{n(k)+1}, g y_{m(k)+1}\right)+S\left(g y_{m(k)+1}, g y_{m(k)+1}, g y_{m(k)+1}\right)\right] \\
\leq & 2 \delta_{n(k)}+\delta_{m(k)}+S\left(g x_{n(k)+1}, g x_{n(k)+1}, g x_{m(k)+1}\right) \\
& +S\left(g y_{n(k)+1}, g y_{n(k)+1}, g y_{m(k)+1}\right) .
\end{aligned}
$$

Using the property of φ, we have

$$
\begin{align*}
\varphi\left(r_{k}\right)= & \varphi\left(\delta_{n(k)}+\delta_{m(k)}+S\left(g x_{n(k)+1}, g x_{n(k)+1}, g x_{m(k)+1}\right)\right. \\
& \left.+S\left(g y_{n(k)+1}, g y_{n(k)+1}, g y_{m(k)+1}\right)\right) \tag{3.20}\\
\leq & \varphi\left(\delta_{n(k)}+\delta_{m(k)}\right)+\varphi\left(S\left(g x_{n(k)+1}, g x_{n(k)+1}, g x_{m(k)+1}\right)\right) \\
& +\varphi\left(S\left(g y_{n(k)+1}, g y_{n(k)+1}, g y_{m(k)+1}\right)\right) .
\end{align*}
$$

Since $n(k)>m(k)$, hence $g x_{n(k)} \geq g x_{m(k)}$ and $g y_{n(k)} \geq g y_{m(k)}$. Using (3.1) and (3.2), we get

$$
\begin{align*}
& \varphi\left(S\left(g x_{n(k)+1}, g x_{n(k)+1}, g x_{m(k)+1}\right)\right) \\
& \quad=\varphi\left(S\left(F\left(x_{n(k)}, y_{n(k)}\right), F\left(x_{n(k)}, y_{n(k)}\right), F\left(x_{m(k)}, y_{m(k)}\right)\right)\right) \\
& \quad \leq \frac{1}{2} \varphi\left(S\left(g x_{n(k)}, g x_{n(k)}, g x_{m(k)}\right)+S\left(g y_{n(k)}, g y_{n(k)}, g y_{m(k)}\right)\right) \\
&-\psi\left(\frac{S\left(g x_{n(k)}, g x_{n(k)}, g x_{m(k)}\right)+S\left(g y_{n(k)}, g y_{n(k)}, g y_{m(k)}\right)}{2}\right) \\
& \quad \frac{1}{2} \varphi\left(r_{k}\right)-\psi\left(\frac{r_{k}}{2}\right) . \tag{3.21}
\end{align*}
$$

By the same way, we also have

$$
\begin{align*}
& \varphi\left(S\left(g y_{m(k)+1}, g y_{m(k)+1}, g y_{n(k)+1}\right)\right) \\
& \quad= \varphi\left(S\left(F\left(y_{m(k)}, x_{m(k)}\right), F\left(y_{m(k)}, x_{m(k)}\right), F\left(y_{n(k)}, x_{n(k)}\right)\right)\right) \\
& \quad \leq \frac{1}{2} \varphi\left(S\left(g y_{m(k)}, g y_{m(k)}, g y_{n(k)}\right)+S\left(g x_{m(k)}, g x_{m(k)}, g x_{n(k)}\right)\right) \\
&-\psi\left(\frac{S\left(g y_{m(k)}, g y_{m(k)}, g y_{n(k)}\right)+S\left(g x_{m(k)}, g x_{m(k)}, g x_{n(k)}\right)}{2}\right) \\
& \quad= \frac{1}{2} \varphi\left(r_{k}\right)-\psi\left(\frac{r_{k}}{2}\right) . \tag{3.22}
\end{align*}
$$

Inserting (3.21) and (3.22) in (3.20), we have

$$
\varphi\left(r_{k}\right) \leq \varphi\left(\delta_{n(k)}+\delta_{m(k)}\right)+\varphi\left(r_{k}\right)-2 \psi\left(\frac{r_{k}}{2}\right) .
$$

Letting $k \rightarrow \infty$ and using (3.16) and (3.19), we get

$$
\varphi(\varepsilon) \leq \varphi(0)+\varphi(\varepsilon)-2 \lim _{k \rightarrow \infty} \psi\left(\frac{r_{k}}{2}\right)=\varphi(\varepsilon)-2 \lim _{r_{k} \rightarrow \infty} \psi\left(\frac{r_{k}}{2}\right)<\varphi(\varepsilon),
$$

this is a contradiction. This shows that $\left\{g x_{n}\right\}$ and $\left\{g y_{n}\right\}$ are Cauchy sequences.

Since X is a complete metric space, there exist $x, y \in X$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} F\left(x_{n}, y_{n}\right)=\lim _{n \rightarrow \infty} g x_{n}=x \text { and } \lim _{n \rightarrow \infty} F\left(y_{n}, x_{n}\right)=\lim _{n \rightarrow \infty} g y_{n}=y . \tag{3.23}
\end{equation*}
$$

Since F and g are compatible mappings, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} S\left(g\left(F\left(x_{n}, y_{n}\right)\right), g\left(F\left(x_{n}, y_{n}\right)\right), F\left(g x_{n}, g y_{n}\right)\right)=0 \tag{3.24}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} S\left(g\left(F\left(y_{n}, x_{n}\right)\right), g\left(F\left(y_{n}, x_{n}\right)\right), F\left(g y_{n}, g x_{n}\right)\right)=0 \tag{3.25}
\end{equation*}
$$

We now show that $g x=F(x, y)$ and $g y=F(y, x)$. Suppose that the assumption (a) holds. For all $n \geq 0$, we have

$$
\begin{aligned}
S\left(g x, g x, F\left(g x_{n}, g y_{n}\right)\right) \leq & S\left(g x, g x, g\left(F\left(x_{n}, y_{n}\right)\right)\right) \\
& +S\left(g\left(F\left(x_{n}, y_{n}\right)\right), g\left(F\left(x_{n}, y_{n}\right)\right), F\left(g x_{n}, g y_{n}\right)\right) .
\end{aligned}
$$

Taking the limit as $n \rightarrow \infty$, using (3.2), (3.23), (3.24) and the fact that F and g are continuous, we have $S(g x, g x, F(x, y))=0$.

Similarly, using (3.2), (3.23), (3.25) and the fact that F and g are continuous, we have $S(g y, g y, F(y, x))=0$.

Combining the above two results, we get

$$
g x=F(x, y) \quad \text { and } \quad g y=F(y, x) .
$$

Finally, suppose that (b) holds. By (3.3), (3.4) and (3.23), we have $\left\{g x_{n}\right\}$ is a non-decreasing sequence, $g x_{n} \rightarrow x$ and $\left\{g y_{n}\right\}$ is a non-increasing sequence, $g y_{n} \rightarrow y$ as $n \rightarrow \infty$. Hence, by assumption (b), we have for all $n \geq 0$,

$$
\begin{equation*}
g x_{n} \leq x \quad \text { and } \quad g y_{n} \leq y . \tag{3.26}
\end{equation*}
$$

Since F and g are compatible mappings and g is continuous, by (3.24) and (3.25), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} g\left(g x_{n}\right)=g x=\lim _{n \rightarrow \infty} g\left(F\left(x_{n}, y_{n}\right)\right)=\lim _{n \rightarrow \infty} F\left(g x_{n}, g y_{n}\right) \tag{3.27}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} g\left(g y_{n}\right)=g y=\lim _{n \rightarrow \infty} g\left(F\left(y_{n}, x_{n}\right)\right)=\lim _{n \rightarrow \infty} F\left(g y_{n}, g x_{n}\right) . \tag{3.28}
\end{equation*}
$$

Now we have
$S(g x, g x, F(x, y)) \leq S\left(g x, g x, g\left(g x_{n+1}\right)\right)+S\left(g\left(g x_{n+1}\right), g\left(g x_{n+1}\right), F(x, y)\right)$.
Taking $n \rightarrow \infty$ in the above inequality, using (3.2) and (3.20) we have,

$$
\begin{align*}
S(g x, g x, F(x, y)) \leq & \lim _{n \rightarrow \infty} S\left(g x, g x, g\left(g x_{n+1}\right)\right) \\
& +\lim _{n \rightarrow \infty} S\left(g\left(F\left(x_{n}, y_{n}\right)\right), g\left(F\left(x_{n}, y_{n}\right)\right), F(x, y)\right) \tag{3.29}\\
\leq & \lim _{n \rightarrow \infty} S\left(F\left(g x_{n}, g y_{n}\right), F\left(g x_{n}, g y_{n}\right), F(x, y)\right)
\end{align*}
$$

Using the property of φ, we get

$$
\varphi(S(g x, g x, F(x, y))) \leq \lim _{n \rightarrow \infty} \varphi\left(S\left(F\left(g x_{n}, g y_{n}\right), F\left(g x_{n}, g y_{n}\right), F(x, y)\right)\right) .
$$

Since the mapping g is monotone increasing, using (3.1), (3.26) and (3.29), we have for all $n \geq 0$,

$$
\begin{aligned}
\varphi(S(g x, g x, F(x, y))) \leq & \lim _{n \rightarrow \infty} \frac{1}{2} \varphi\left(S\left(g g x_{n}, g g x_{n}, g x\right)+S\left(g y_{n}, g y_{n}, g g y\right)\right) \\
& -\lim _{n \rightarrow \infty}\left(\frac{S\left(g g x_{n}, g g x_{n}, g x\right)+S\left(g y_{n}, g y_{n}, g g y\right)}{2}\right)
\end{aligned}
$$

Using the above inequality, using (3.23) and the property of ψ, we get $\psi(S(g x, g x, F(x, y)))=0$, thus $S(g x, g x, F(x, y))=0$. Hence $g x=$ $F(x, y)$.

Similarly, we can show that $g y=F(y, x)$. Thus we proved that F and g have a coupled coincidence point.

Corollary 3.2. Let (X, \leq, S) be a partially ordered complete S-metric space. Let $F: X^{2} \rightarrow X$ is such that F has the mixed monotone property such that there exists $x_{0}, y_{0} \in X$ with

$$
x_{0} \leq F\left(x_{0}, y_{0}\right) \quad \text { and } \quad y_{0} \geq F\left(y_{0}, x_{0}\right) .
$$

Suppose there exist $\varphi \in \Phi$ and $\psi \in \Psi$ such that

$$
\begin{align*}
& \varphi(S(F(x, y), F(x, y), F(u, v))) \\
& \quad \leq \frac{1}{2} \varphi(S(x, x, u)+S(y, y, v))-\psi\left(\frac{S(x, x, u)+S(y, y, v)}{2}\right) \tag{3.30}
\end{align*}
$$

for all $x, y, u, v \in X$ with $x \geq u$ and $y \leq v$. Suppose either
(a) F is continuous or
(b) X has the following property:
(i) if a non-decreasing sequence $\left\{x_{n}\right\} \rightarrow x$, then $x_{n} \leq x$, for all n,
(ii) if a non-increasing sequence $\left\{y_{n}\right\} \rightarrow y$, then $y_{n} \geq y$, for all n.

Then there exists $x, y \in X$ such that

$$
x=F(x, y) \quad \text { and } \quad y=F(y, x)
$$

that is, F has a coupled fixed point in X.
Corollary 3.3. Let (X, \leq, S) be a partially ordered complete S-metric space. Let $F: X^{2} \rightarrow X$ is such that F has the mixed monotone property such that there exists $x_{0}, y_{0} \in X$ with

$$
x_{0} \leq F\left(x_{0}, y_{0}\right) \quad \text { and } \quad y_{0} \geq F\left(y_{0}, x_{0}\right)
$$

Suppose there exist $\psi \in \Psi$ such that

$$
\begin{align*}
& S(F(x, y), F(x, y), F(u, v)) \\
& \quad \leq \frac{S(x, x, u)+S(y, y, v)}{2}-\psi\left(\frac{S(x, x, u)+S(y, y, v)}{2}\right) \tag{3.31}
\end{align*}
$$

for all $x, y, u, v \in X$ with $x \geq u$ and $y \leq v$. Suppose either
(a) F is continuous or
(b) X has the following property:
(i) if a non-decreasing sequence $\left\{x_{n}\right\} \rightarrow x$, then $x_{n} \leq x$, for all n,
(ii) if a non-increasing sequence $\left\{y_{n}\right\} \rightarrow y$, then $y_{n} \geq y$, for all n.

Then there exists $x, y \in X$ such that

$$
x=F(x, y) \quad \text { and } \quad y=F(y, x)
$$

that is, F has a coupled fixed point in X.
Proof. Take $\varphi(t)=t$ in Corollary 3.2,

Corollary 3.4. Let (X, \leq, S) be a partially ordered complete S-metric space. Let $F: X^{2} \rightarrow X$ is such that F has the mixed monotone property such that there exists $x_{0}, y_{0} \in X$ with

$$
x_{0} \leq F\left(x_{0}, y_{0}\right) \quad \text { and } \quad y_{0} \geq F\left(y_{0}, x_{0}\right) .
$$

Suppose there exists a real number $k \in[0,1)$ such that

$$
\begin{equation*}
S(F(x, y), F(x, y), F(u, v)) \leq \frac{k}{2}(S(x, x, u)+S(y, y, v)) \tag{3.32}
\end{equation*}
$$

for all $x, y, u, v \in X$ with $x \geq u$ and $y \leq v$. Suppose either
(a) F is continuous or
(b) X has the following property:
(i) if a non-decreasing sequence $\left\{x_{n}\right\} \rightarrow x$, then $x_{n} \leq x$, for all n,
(ii) if a non-increasing sequence $\left\{y_{n}\right\} \rightarrow y$, then $y_{n} \geq y$, for all n.

Then there exists $x, y \in X$ such that

$$
x=F(x, y) \quad \text { and } \quad y=F(y, x),
$$

that is, F has a coupled fixed point in X.
Proof. Take $\psi(t)=(1-k) t$ in Corollary 3.3.

4 Uniqueness of Coupled Coincidence Point

In this section, we will prove the uniqueness of the coupled coincidence point. Note that if $(X ; \leq)$ is a partially ordered set, then we endow the product X^{2} with the following partial order relation, for all $(x, y),(u, v) \in$ X^{2},

$$
(x, y) \leq(u, v) \quad \Leftrightarrow \quad x \leq u, \quad y \geq v .
$$

Theorem 4.1. In addition to hypotheses of Theorem [3.1, suppose that for every $(x, y),(z, t)$ in X^{2}, if there exists a (u, v) in X^{2} that is comparable to (x, y) and (z, t), then F has a unique coupled coincidence point.

Proof. From Theorem 3.1, the set of coupled coincidence points of F and g is nonempty. Suppose (x, y) and (z, t) are coupled coincidence points of F and g, that is $g x=F(x, y), g y=F(y, x), g z=F(z, t)$ and $g t=F(t, z)$. We are going to show that $g x=g z$ and $g y=g t$. By assumption, there exists
$(u, v) \subset X^{2}$ that is comparable to (x, y) and (z, t). We define sequences $\left\{g u_{n}\right\},\left\{g v_{n}\right\}$ as follows,
$u_{0}=u, \quad v_{0}=v . \quad g u_{n+1}=F\left(u_{n}, v_{n}\right) \quad$ and $g v_{n+1}=F\left(v_{n}, u_{n}\right)$ for all n.
Since (u, v) is comparable with (x, y), we may assume that $(x, y) \geq(u, v)=$ $\left(u_{0}, v_{0}\right)$. Using the mathematical induction, it is easy to prove that

$$
\begin{equation*}
(x, y) \geq\left(u_{n}, v_{n}\right) \quad \text { for all } n \tag{4.1}
\end{equation*}
$$

Using (3.1) and (4.1), we have

$$
\begin{align*}
\varphi\left(S\left(g x, g x, g u_{n+1}\right)\right)= & \varphi\left(S\left(F(x, y), F(x, y), F\left(u_{n}, v_{n}\right)\right)\right) \\
\leq & \frac{1}{2} \varphi\left(S\left(g x, g x, g u_{n}\right)+S\left(g y, g y, g v_{n}\right)\right) \\
& -\psi\left(\frac{S\left(g x, g x, g u_{n}\right)+S\left(g y, g y, g v_{n}\right)}{2}\right) . \tag{4.2}
\end{align*}
$$

Similarly,

$$
\begin{align*}
\varphi\left(S\left(g v_{n+1}, g y, g y\right)\right)= & \varphi\left(S\left(F\left(v_{n}, u_{n}\right), F(y, x), F(y, x)\right)\right) \\
\leq & \frac{1}{2} \varphi\left(S\left(g v_{n}, g y, g y\right)+S\left(g u_{n}, g x, g x\right)\right) \\
& -\psi\left(\frac{S\left(g v_{n}, g y, g y\right)+S\left(g u_{n}, g x, g x\right)}{2}\right) \tag{4.3}
\end{align*}
$$

Using (4.2), (4.3) and the property of φ, we have

$$
\begin{align*}
\varphi\left(S\left(g x, g x, g u_{n+1}\right)+\right. & \left.S\left(g v_{n+1}, g y, g y\right)\right) \\
\leq & \varphi\left(S\left(g x, g x, g u_{n+1}\right)\right)+\varphi\left(S\left(g v_{n+1}, g y, g y\right)\right) \\
\leq & \varphi\left(S\left(g x, g x, g u_{n}\right)+S\left(g y, g y, g v_{n}\right)\right) \\
& -2 \psi\left(\frac{S\left(g v_{n}, g y, g y\right)+S\left(g u_{n}, g x, g x\right)}{2}\right) \tag{4.4}
\end{align*}
$$

which implies, using the definition of ψ,

$$
\begin{aligned}
\varphi\left(S\left(g x, g x, g u_{n+1}\right)\right. & \left.+S\left(g v_{n+1}, g y, g y\right)\right) \\
& \leq \varphi\left(S\left(g x, g x, g u_{n}\right)\right)+\varphi\left(S\left(g v_{n}, g y, g y\right)\right)
\end{aligned}
$$

Thus, using the definition of φ,

$$
S\left(g x, g x, g u_{n+1}\right)+S\left(g v_{n+1}, g y, g y\right) \leq S\left(g x, g x, g u_{n}\right)+S\left(g v_{n}, g y, g y\right)
$$

That is the sequence $\left\{S\left(g x, g x, g u_{n}\right)+S\left(g y, g y, g v_{n}\right)\right\}$ is decreasing. Therefore, there exists $\alpha \geq 0$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(S\left(g x, g x, g u_{n}\right)+S\left(g y, g y, g v_{n}\right)\right)=\alpha \tag{4.5}
\end{equation*}
$$

We will show that $\alpha=0$. Suppose to the contrary that $\alpha>0$. Taking the limit as $n \rightarrow \infty$ in (4.4), we have, using the property of ψ,

$$
\varphi(\alpha) \leq \varphi(\alpha)-2 \lim _{n \rightarrow \infty} \psi\left(\frac{S\left(g x, g x, g u_{n}\right)+S\left(g y, g y, g v_{n}\right)}{2}\right)<\varphi(\alpha),
$$

this is a contradiction. Thus $\alpha=0$, that is,

$$
\lim _{n \rightarrow \infty}\left(S\left(g x, g x, g u_{n}\right)+S\left(g y, g y, g v_{n}\right)\right)=0
$$

It implies

$$
\begin{equation*}
\lim _{n \rightarrow \infty} S\left(g x, g x, g u_{n}\right)=\lim _{n \rightarrow \infty} S\left(g y, g y, g v_{n}\right)=0 \tag{4.6}
\end{equation*}
$$

Similarly, we show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} S\left(g z, g z, g u_{n}\right)=\lim _{n \rightarrow \infty} S\left(g t, g t, g v_{n}\right)=0 \tag{4.7}
\end{equation*}
$$

Using (4.6) and (4.7), we have $g x=g z$ and $g y=g t$.
Corollary 4.2. In addition to hypotheses of Corollary 3.2, suppose that for every $(x, y),(z, t)$ in X^{2}, if there exists a (u, v) in X^{2} that is comparable to (x, y) and (z, t), then F has a unique coupled fixed point.

5 Example

Example 5.1. Let $X=[0,1]$. Then (X, \leq) is a partially ordered set with the natural ordering of real numbers. Let

$$
S(x, y, z)=\frac{|x-y|+|x-z|+|y-z|}{2} \quad \text { for } x, y, z \in[0,1]
$$

Then $S(x, x, y)=|x-y|$ and (X, S) is a complete S-metric space.

Let $g: X \rightarrow X$ be defined as:

$$
g x=x^{2}, \quad \text { for all } x \in X,
$$

and let $F: X^{2} \rightarrow X$ be defined as:

$$
F(x, y)= \begin{cases}\frac{x^{2}-y^{2}}{3}, & \text { if } x \geq y \\ 0, & \text { if } x<y\end{cases}
$$

F obeys the mixed g-monotone property. Let $\varphi:[0, \infty) \rightarrow[0, \infty)$ be defined as:

$$
\varphi(t)=\frac{3}{4} t, \quad \text { for } t \in[0, \infty)
$$

and let $\psi:[0, \infty) \rightarrow[0, \infty)$ be defined as:

$$
\psi(t)=\frac{1}{4} t, \quad \text { for } t \in[0, \infty) .
$$

Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be two sequences in X such that $\lim _{n \rightarrow \infty} F\left(x_{n}, y_{n}\right)=a$, $\lim _{n \rightarrow \infty} g x_{n}=a, \lim _{n \rightarrow \infty} F\left(y_{n}, x_{n}\right)=b$ and $\lim _{n \rightarrow \infty} g y_{n}=b$ Then obviously, $a=0$ and $b=0$. Now, for all $n \geq 0$,

$$
g x_{n}=x_{n}^{2}, \quad g y_{n}=y_{n}^{2}, \quad F\left(x_{n}, y_{n}\right)= \begin{cases}\frac{x_{n}^{2}-y_{n}^{2}}{3}, & \text { if } x_{n} \geq y_{n} \\ 0, & \text { if } x_{n}<y_{n}\end{cases}
$$

and

$$
F\left(y_{n}, x_{n}\right)= \begin{cases}\frac{y_{n}^{2}-x_{n}^{2}}{3}, & \text { if } y_{n} \geq x_{n} \\ 0, & \text { if } y_{n}<x_{n}\end{cases}
$$

Then it follows that,

$$
\lim _{n \rightarrow \infty} S\left(g\left(F\left(x_{n}, y_{n}\right)\right), g\left(F\left(x_{n}, y_{n}\right)\right), F\left(g x_{n}, g y_{n}\right)\right)=0
$$

and

$$
\lim _{n \rightarrow \infty} S\left(g\left(F\left(y_{n}, x_{n}\right)\right), g\left(F\left(y_{n}, x_{n}\right)\right), F\left(g y_{n}, g x_{n}\right)\right)=0
$$

Hence, the mappings F and g are compatible in X. Also, $x_{0}=0$ and $y_{0}=c(>0)$ are two points in X such that

$$
g x_{0}=g(0)=0=F(0, c)=F\left(x_{0}, y_{0}\right) \quad \text { and }
$$

$$
g y_{0}=g(c)=c^{2} \geq \frac{c^{2}}{3}=F(c, 0)=F\left(y_{0}, x_{0}\right)
$$

We next verify the contraction (3.1). We take $x, y, u, v \in X$ such that $g x \geq g u$ and $g y \leq g v$, that is, $x^{2} \geq u^{2}$ and $y^{2} \leq v^{2}$.

We consider the following cases:
Case 1. $x \geq y, u \geq v$. Then

$$
\begin{aligned}
& \varphi(S(F(x, y), F(x, y), F(u, v))) \\
& =\frac{3}{4}(S(F(x, y), F(x, y), F(u, v))) \\
& =\frac{3}{4}\left(S\left(\frac{x^{2}-y^{2}}{3}, \frac{x^{2}-y^{2}}{3}, \frac{u^{2}-v^{2}}{3}\right)\right) \\
& =\frac{3}{4}\left|\frac{\left(x^{2}-y^{2}\right)-\left(u^{2}-v^{2}\right)}{3}\right| \\
& =\frac{3}{4}\left(\frac{\left|x^{2}-u^{2}\right|-\left|y^{2}-v^{2}\right|}{3}\right) \\
& =\frac{1}{2}\left(\frac{S(g x, g x, g u)+S(g y, g y, g v)}{2}\right) \\
& =\frac{3}{4}\left(\frac{S(g x, g x, g u)+S(g y, g y, g v)}{2}\right)-\frac{1}{4}\left(\frac{S(g x, g x, g u)+S(g y, g y, g v)}{2}\right) \\
& =\frac{3}{8}(S(g x, g x, g u)+S(g y, g y, g v))-\frac{1}{4}\left(\frac{S(g x, g x, g u)+S(g y, g y, g v)}{2}\right) \\
& =\frac{1}{2} \varphi(S(g x, g x, g u)+S(g y, g y, g v))-\psi\left(\frac{S(g x, g x, g u)+S(g y, g y, g v)}{2}\right) .
\end{aligned}
$$

Case 2. $x \geq y, u<v$. Then

$$
\begin{aligned}
\varphi(S(F(x, y), F(x, y), F(u, v))) & =\frac{3}{4}(S(F(x, y), F(x, y), F(u, v))) \\
& =\frac{3}{4}\left(S\left(\frac{x^{2}-y^{2}}{3}, \frac{x^{2}-y^{2}}{3}, 0\right)\right) \\
& =\frac{3}{4} \frac{\left|x^{2}-y^{2}\right|}{3}=\frac{3}{4}\left(\frac{\left|u^{2}+x^{2}-y^{2}-u^{2}\right|}{3}\right) \\
& <\frac{3}{4}\left(\frac{\left|v^{2}+x^{2}-y^{2}-u^{2}\right|}{3}\right) \\
& =\frac{3}{4}\left(\frac{\left|\left(v^{2}-y^{2}\right)-\left(u^{2}-x^{2}\right)\right|}{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{3}{4}\left(\frac{\left|u^{2}-x^{2}\right|+\left|y^{2}-v^{2}\right|}{3}\right) \\
& =\frac{1}{2}\left(\frac{S(g x, g x, g u)+S(g y, g y, g v)}{2}\right) \\
& =\frac{3}{4}\left(\frac{S(g x, g x, g u)+S(g y, g y, g v)}{2}\right)-\frac{1}{4}\left(\frac{S(g x, g x, g u)+S(g y, g y, g v)}{2}\right) \\
& =\frac{3}{8}(S(g x, g x, g u)+S(g y, g y, g v))-\frac{1}{4}\left(\frac{S(g x, g x, g u)+S(g y, g y, g v)}{2}\right) \\
& =\frac{1}{2} \varphi(S(g x, g x, g u)+S(g y, g y, g v))-\psi\left(\frac{S(g x, g x, g u)+S(g y, g y, g v)}{2}\right) .
\end{aligned}
$$

Case 3. $x<y, u \geq v$. Then,

$$
\begin{aligned}
& \varphi(S(F(x, y), F(x, y), F(u, v))) \\
& =\frac{3}{4}\left(S\left(0,0, \frac{u^{2}-v^{2}}{3}\right)\right) \\
& =\frac{3}{4} \frac{\left|u^{2}-v^{2}\right|}{3}=\frac{3}{4}\left(\frac{\left|u^{2}+x^{2}-v^{2}-x^{2}\right|}{3}\right) \\
& <\frac{3}{4}\left(\frac{\left|u^{2}+y^{2}-v^{2}-x^{2}\right|}{3}\right) \\
& \leq \frac{3}{4}\left(\frac{\left|u^{2}-x^{2}\right|+\left|y^{2}-v^{2}\right|}{3}\right) \\
& =\frac{1}{2}\left(\frac{S(g x, g x, g u)+S(g y, g y, g v)}{2}\right) \\
& =\frac{3}{4}\left(\frac{S(g x, g x, g u)+S(g y, g y, g v)}{2}\right)-\frac{1}{4}\left(\frac{S(g x, g x, g u)+S(g y, g y, g v)}{2}\right) \\
& =\frac{3}{8}(S(g x, g x, g u)+S(g y, g y, g v))-\frac{1}{4}\left(\frac{S(g x, g x, g u)+S(g y, g y, g v)}{2}\right) \\
& =\frac{1}{2} \varphi(S(g x, g x, g u)+S(g y, g y, g v))-\psi\left(\frac{S(g x, g x, g u)+S(g y, g y, g v)}{2}\right) .
\end{aligned}
$$

Case 4. $x<y$ and $u<v$ with $x^{2} \leq u^{2}$ and $y^{2} \geq v^{2}$. Then, $F(x, y)=0$ and $F(u, v)=0$, that is,

$$
\varphi(S(F(x, y), F(x, y), F(u, v)))=\varphi(S(0,0,0))=\varphi(0)=0
$$

Therefore all conditions of Theorem 3.1 are satisfied. Thus the conclusion follows.

Acknowledgement : The author would like to thank Faculty of Science, Lampang Rajabhat university, for financial support during the preparation of this paper.

References

[1] S. Gahlers, 2-Metrische Raume and ihre topologische structure, Math. Nachr 26 (1963) 115-148.
[2] S. Gahlers, Zur geometric 2-metrische raume, Revue Roumaine Math. Pures Appl. 11 (1966) 665-667.
[3] B.C. Dhage, Generalized metric space and mapping with fixed point, Bull. Cal. Math. Soc. 84 (1992) 329-336.
[4] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2) (2006) 289-297.
[5] S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik 64 (3) (2012) 258-266.
[6] V.I. Opoitsev, Heterogenic and combined-concave operators, Syber. Math. J. 16 (1975) 781-792.
[7] V.I. Opoitsev, Dynamics of collective behavior. III. Heterogenic systems, Avtomat. i Telemekh. 36 (1975) 124-138.
[8] V.I. Opoitsev, T.A. Khurodze, Nonlinear operators in space with a cone, Tbilis. Gos. Univ., Tbilisi 271 (1984).
[9] D. Guo, V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Anal. TMA 11 (1987) 623-632.
[10] T.G. Bhashkar, V. Lakshmikantham, Fixed point theorems in partially ordered cone metric spaces and applications, Nonlinear Anal. 65 (7) (2006) 825-832.
[11] B.S. Choudhury, A. Kundu, A coupled coincidence point result in partially ordered metric spaces for compatible mappings, Nonlinear Anal. 73 (2010) 2524-2531.
[12] V. Lakshmikantham, L. Ćirić, Couple fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70 (2009) 4341-4349.
[13] A. Alotaibi, S.M. Alsulami, Couple coincidence points for monotone operators in partially ordered metric spaces, Fixed Point Theory Appl. (2011) https://doi.org/10.1186/1687-1812-2011-44.
(Received 25 May 2016)
(Accepted 25 December 2017)
Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

