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1 Introduction

Metric spaces have very wide applications in mathematics and applied
sciences. For this, many authors tried to give definitions of metric spaces
in many ways. In 1966, Gahler [11[2] introduced the notion of 2-metric
spaces and Dhage [3] introduced the notion of D-metric spaces. After the
introduction of these metric spaces many authors proved some fixed point
results related to these metric spaces. In 2006, Mustafa and Sims [4] proved
that most of the results of Dhage’s D-metric spaces are not valid. So, they
introduced the new concept of generalized metric space called G-metric

Copyright (© 2017 by the Mathematical Association of Thailand.
All rights reserved.



702 Thai J. Math. 15 (2017)/ S. Chaipornjareansri

space and gave some remarkable results in G-metric spaces. In 2012, Sedghi
et al. [5] introduced the notion of S-metric spaces as the generalization of
G-metric and D*-metric spaces.

The notion of a coupled fixed point was introduced and studied by
Opoitsev [6H8] and then by Guo and Lakshmikantham [9]. Bhashkar and
Lakshmikantham in [I0] introduced the concept of a coupled fixed point
of a mapping F': X x X — X and investigated some coupled fixed point
theorems in partially ordered complete metric spaces. They also discussed
an application of their result by investigating the existence and uniqueness
of solution for a periodic boundary value problem. Choudhury and Kundu
[11] obtained coupled coincidence point results in partially ordered metric
spaces for compatible mappings.

Lakshmikantham and Ciri¢ [12] defined a mixed g-monotone mapping
and prove coupled coincidence and coupled common fixed point theorems
for such nonlinear contractive mappings in partially ordered complete met-
ric spaces. In 2011 Alotaibi and Alsulami [I3] proved the existence and
uniqueness of coupled coincidence point involving a (¢, 1)-contractive con-
dition for a mappings having the mixed g-monotone property.

2 Preliminaries

We begin with the following definition:

Definition 2.1. [5] Let X be a nonempty set. An S-metric on X is a
function S : X3 — [0,00) that satisfies the following conditions, for each
xz,y, 2,0 € X.

(i) S(z,y,2) = 0;
(ii) S(z,y,z) =0 if and only if z =y = z;
(iii) S(z,y,2) < S(x,x,a) + S(y,y,a) + S(z,z,a).
Then the pair (X, S) is called an S-metric space.
The following is an intuitive geometric example for S-metric spaces.
Example 2.2. [5] Let X = R? and d be an ordinary metric on X. Put
S(x,y, z) =d(z,y) +d(z, z) + d(y, 2)

for all z,y,z € R, that is, S is the perimeter of the triangle given by z,y, z.
Then S is an S-metric on X.
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Lemma 2.3. [5] Let (X,S) be an S-metric space. Then S(z,z,y) =
S(y,y,z) for all z,y € X.

Lemma 2.4. Let (X,S) be an S-metric space. Then

S(z,z,z) <28(x,z,y)+S(y,y,2) and S(z,z,z) <2S(x,z,y)+S(z,2,y)
forallx,y,z € X.

Proof. Tt is a direct consequence of Definition 2] and Lemma 2.4 O
Definition 2.5. [5] Let (X, S) be an S-metric space.

(i) A sequence {x,} C X is said to converge to x € X if S(x,, xp,x) — 0
as n — oo. That is, for each £ > 0, there exists ng € N such that for
all n > ng we have S(xy,,z,,z) < e. We write z,, — = for brevity.

(ii) A sequence {z,} C X is called a Cauchy sequence if S(xy, Tn, Tm) —
0 as n,m — oo. That is, for each £ > 0, there exists ng € N such that
for all n,m > ng we have S(xy, Tpn, Tm) < €.

(iii) The S-metric space (X,S) is said to be complete if every Cauchy
sequence is a convergent sequence.

Lemma 2.6. [5] Let (X,S) be an S-metric space. If x,, — x and y, — vy,
then S(xp, Tn,yn) = S(x,x,y).

Definition 2.7 ([12], Mixed g-Monotone Property). Let (X, <) be a par-
tially ordered set and F : X? — X. We say that the mapping F has the
mized g-monotone property if F' is monotone g-non-decreasing in its first
argument and is monotone g-non-increasing in its second argument. That
is, for any z,y € X,

T1,T2 € ng$1 < gra = F($17y) < F(ﬂ?g,y)
> F

(2.1)
y,y2 € X, 901 < gy2 = F(x,y1) (z,12).

Definition 2.8 (Coupled Coincidence Point). Let (z,y) € X x X, F :
X? - X and g: X — X. We say that (x,y) is a coupled coincidence point
of F and g if F(z,y) = gx and F(y,z) = gy for z,y € X.

Definition 2.9. The mapping F and g where F': X? — Xand g: X — X,
are said to be compatible if

lim S(g(F(zn,yn)), 9(F (20, yn)), F(9n, gyn)) =0

n—oo
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and
lim S (g(F (yn, 2n)), 9(F (Yn> Tn)), F(gyn, g7n)) = 0,

n—oo

whenever {x,} and {y,} are sequences in X, such that li_)rn (Tn,yn) =
n o

lim gz, = ¢ and lim F(y,,x,) = lim gy, = y, for all z,y € X are
n— o0 n— o0 n—oo

satisfied.

3 Existence of Coupled Coincidence Points

Let @ denote all functions ¢ : [0,00) — [0, 00) which satisfy
(1) ¢ continuous and non-decreasing;
(2) ¢(t) =0 if and only if ¢t = 0;
(3) w(t+s) < @(t) +p(s), Vt, s € [0,00)

and let ¥ denote all the functions ¢ : [0,00) — (0,00) which satisfy
lim(¢) > 0 for all » > 0 and lim ¢ (t) = 0.
t—r t—0+

Now, let us start proving our main results.

Theorem 3.1. Let (X, <,S) be a partially ordered complete S-metric space.
Let F : X? — X is such that F has the mized g-monotone property such
that there exists xg,yo € X with

gro < F(xo,y0) and gyo > F(yo, o).

Suppose there exist p € @ and Y € ¥ such that

o (S(Fle,y), Fla,y), Fluv))

<

DO =

S(gx, gz, gu) + S(9y, 9y, gv)>
2 b

o(S(gz, gz, gu) + S(gy, gy, gv)) — ¢<
(3.1)

forall x,y,u,v € X with gxr > gu and gy < gv. Suppose F(X xX) C g(X),
g 1s continuous and compatible with F and also suppose either

(a) F is continuous or
(b) X has the following property:

(i) if a non-decreasing sequence {x,} — x, then x, < x, for all n,
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(ii) if a non-increasing sequence {yn} — vy, then y, >y, for all n.

Then there exists x,y € X such that
gr=F(z,y) and gy=F(y, ),
i.e., F' and g have a coupled coincidence point in X.

Proof. Let xg,yo € X be such that grg < F(xo,y0) and gyo > F(yo, zo).
Using FI(X x X) C g(X), we construct sequences {z,,} and {y,} in X as

91 = F(xn,yn) and  gyni1 = F(yn,xy) foralln >0. (3.2)
We are going to prove that
9Tn < gTpi1 for all n >0 (3.3)

and
9Yn = GYni1 for all n > 0. (3.4)

To prove these, we are going to use the mathematical induction.
Let n = 0. Since gxg < F(x0,y0) and gyo > F(yo,20) and as gr; =
F(xo,y0) and gy1 = F(yo, o), we have gzg < gzq and gyo > gy1. Thus

B3) and B34) hold for n = 0.
Suppose now that ([3.3)) and (3:4) hold for some fixed n > 0, Then, since

gxn < gTpi1 and gy, > gyn+1, and by mixed g-monotone property of F,
we have

9Tn+2 = F(Tni1,Yn+1) > F(Tn, Ynt1) 2> F(2n, Yn) = 9Tn41 (3.5)
and
9Yn+2 = F(Yn+1,2n11) < F(Yn, Tnt1) < F(Yn: ¥n) = gynr1- (3.6)
Using ([B.5) and (B:6]), we get
9Tnt1 < gTny2  and  GYni1 2> GYni2.

Hence by the mathematical induction we conclude that B3] and (34 hold
for all n > 0.
Therefore,

gro < gry < gro < - < gwp < gTpgr < (3.7)
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and
9Yo > gy1 > gy2 > -+ > GYn > GYnt1 > - - (3.8)

Since gx, > gxn—1 and gy, < gyn—1, using ([B.) and (B:2)), we have
90(5(9$n+17 9Tn+1, gxn)) = <S(F(l‘n, Yn)s F'(Tn, yn), F(Tn-1, yn—l)))

©(S(92n, 9Zn, 9Tn—1) + S(9Yn: 9Yn> GYn—1))

Y (S (9%, 9%n; 9Tn—1)+5(9Yn; GYn, gyn_1)>
5 .

(3.9)

Similarly, since gy,—1 > gy, and gr,—1 < gx,, using BI) and B2), we
have
2 (S(99n: 99ms 99n+1)) = 2 (S (F (1, 01), F(yn-1,30-1), Fyns 7))

=
1
< 59(S(9Yn-1, 9Yn-1,9yn) + S(92n-1,9Tn-1,971))

¥ <S (9Yn—1, 9Yn—1, 9Yn) +5(9Tn—1, gTn—1, g:vn)>
5 :
(3.10)

Using Lemma 2.3l we have

1
P (S(9Yn+1,9Yn+1,99n)) < 59(5(9Yns 9Yns 9Yn-1) + (920, g, gn—1))
_¢(5(9,%,gyn,gyn_1)+5(g:cn,grcmgxn_1)>
5 .
(3.11)
Using (39) and (B.I1]), we have
@ (S(gTn+1, 9Tnt1, 920)) + @(S(9Yn+1, 9Yn+1, 9Yn))
< 0(S(92n, 9T, 9Tn-1) + S(9Yn+ GYn, GYn—1)) (3.12)
_y (5(gwn,gwn,gwn_1) + S(gyn,gyn,gyn_1)>
5 .
By property (3) of ¢, we have
@(S(9Znt1, 9Tnt1, 9n) + S(GYnt1, 9Ynt1, 9Yn)) (3.13)

< o(8(9Tns1, 9Tn+1,97n)) + ©(S(9Yn+1: 9Yn+1, 9Yn))-
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Using (3.12) and (3.13]), we have

@(S(9Tnt1, 9Tnt1, 9Tn) + S(GYnt1, GYn+1: GYn))

_y (5(9%,9%9%—1) + S(Qyn,gyn,gyn_1)>
2 M

which implies, since 1 is a non-negative function,

@ (S(9Tn+1: 9Tnt1, 9Tn) + S(GYnt1: GYn+1: GYn))
< ©(S(92n, 9, 9Tn-1) + S(9Yns GYn, GYn—1))-

Using the fact that ¢ is non-decreasing, we get

S(9%n+1,9%n41,9%n) + S(GYn+1, 9Yn+1, 9Yn)
< S(9zn, gTn, gTn—1) + S(9Yn, GYn, 9Yn—1)-

Set
On = S(9Tn+1, 9%nt1, 9Tn) + S(9Yn+1, GYn+1, 9Yn)-

Now we would like to show that §,, — 0 as n — oo. It is clear that the
sequence {d,} is decreasing. Therefore, there is some § > 0 such that

lim 5n = lim S(gxn-i-la 9Tn+1, gwn) + S(gyn-i-lagyn—i-ly gyn) =9. (315)

n—oo n—oo

We shall show that 6 = 0. Suppose, to the contrary, that § > 0. Then

taking the limit as n — oo (equivalently, d,, — &) of both sides of (B.14))

and remembering %im (t) > 0 for all r > 0 and ¢ is continuous, we have
—r

p(0) = lim ¢(d,) < lim [90(5n_1) — %) (5"—1”

n—00 2

= (6) —2 lim % (5"_1> < ¢(0),

6n71_>6 2

this is a contradiction. Thus § = 0, that is

lim &, = S(9Tnt1, 9Znt1, 9%n) +S(9Yn+15 9Yn+1,9Yn) | = 0. (3.16)

lim

n—oo n—oo
Now, we will prove that {gz,} and {gy,} are Cauchy sequences. Sup-
pose, to the contrary, that at least one of {gz,} or {gy,} is not Cauchy
sequence. Then there exists an € > 0 for which we can find subsequences
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{97000 1> {9Tm@ } of {92n} and {g¥nk)}s {9Ump)} of {gyn} with n(k) >
m(k) > k such that

S(9Tn(k)> 9Tn(k)» 9Tm(k)) + S (9Yn (k) GYn (k) Fm(k)) = €- (3.17)

Further, corresponding to m(k), we can choose n(k) in such a way that it
is the smallest integer with n(k) > m(k) and satisfying (B.I7). Then

S(9Zn)—1> 9Tn(k)—1 9Tmk)) T S(IYn(k)—1> Wn(k) 1 Wmk)) < €. (3.18)
Using (3.17), (B.I8), Lemma 2.3 and Lemma 2.4 we have

e <1 = S(9Tn(k) 9Tn(k)> 9Tm(k)) + S(9Ynk) Yn(k)> GYm(k))
< 25(92n(k)> 9%n (k) 9Tn(k)-1) + S (9Tmk) > 9Tm(k): 9Tn(k)-1)
+ 25(9Yn(i)» WYn(i)> WYn(k)—1) + S(9Ym(k)> SYmi)> SYn()—1)
< 25(9%n (k) 9Tn (k) 9Tn(k)—1) + 28 (9Yn(k)s GYn(k)> Wn(k)—1) + €-

Letting k — oo and using (3.10]), we get

kh—>n;o TR = klglolo [5 (9%n(k)> 9Tn(k)> 9Tm@y) + 5 (gyn(k)agyn(k)agym(k))] =e.
(3.19)
By Lemma 2.4 we have

e = S(9Tn(k)s 9T (k)> 9Tm(k)) + S (IYn(r)» SYn () FYm(r))
< 25(9!En(k),9$n(k),9$n(k)+1) + S(gxm(k)angm(k)ygxn(k)—H)
+ 25(9Yn(k), 9Yn(k), Wn(k)+1) + S (GYmk)> WYm(k)> WYn()+1)
< 25(9Znk)s 9T (k) 9Tn(k)+1) + S (9Tn(k)+1> ITn (k)41 9Tm(k))
+ 25(9Yn(k)» GYn(k)> Wn(k)+1) + S (GUn)+1> 9Yn(k)+1> SYm(k))
< 25(9n k), 9Tn (k) Gn(k)+1) + [25 (9T n(k)+1> 9Tn(k)+1> 9Tm(k)+1)
+ S (9T m(k)+1> Tm k)15 gwm(k>+1)} + 25 (9Yn (k) GYn(k)> IYn(k)+1)

+ [25 (9Yn(k)+1> GYn )41 9Ym)+1)FS (9Ym (k) +1> FYm()+1> gym(k)ﬂ)]
< 25n(k) + 5m(k) + S(gxn(k)—l-lv g$n(k)+179$m(k)+1)
+ S(gyn(k)—i-h 9Yn(k)+15 gym(k)—i—l)-
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Using the property of ¢, we have

o(ry) = 90<5n(k) + ) + S (90 (k) +15 9T (k) 415 ITm(k)+1)
+ S(9Yn(k)+1> SYn(k)+15 gym(k>+1)) 520,
< 90(5n(k) + 5m(k)) +® (S (gxn(k)—l-lv 9Tn(k)+1, g$m(k)+1))

+ 90<5 (9Yn(k)+1> GYn () 415 gym(k)ﬂ)) :

Since n(k) > m(k), hence gy ) > 9Ty and gynk) = gYm)- Using (B.1)
and ([B.2), we get

® (5(9$n(k)+1, 9T (k)41 gxm(k)+1)>

[NCY I

IN

90<5 (9%n (k) 9Tn()> 9Tm@y) + S (gyn(k)agyn(k)agym(k)))

v <S(an(k),gwn(k)79$m(k)) + S(gyn(k)7gyn(k)7gym(k))>
2

(3.21)

By the same way, we also have

® (S(gym(k)+17 GYm(k)+15 gyn(k)+1)>

= (5 (F Wiy Tmk))s F Wiy Tmi))s F Unii l’n(k)))>
1
2
v <5 (9Ymk)> 9Ym(k) > 9Yn(r)) + 5 (gmmw)vgfvm(k)’g%(k)))

< 90<5 (9Ym(k)> GYm(k) GYn()) + S (giﬂm(k),gxm(k),givn(k)))

2

(3.22)
Inserting (3:2I)) and (8:22)) in (3:20]), we have

@(rr) < ©(Onr) + Om)) + @(re) — 20 <%k)
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Letting k — oo and using (BI6) and BI9]), we get

#(e) < 9(0) + () =2 lim ¥ () = () =2 lim v (5) < (o),

Tp—00

this is a contradiction. This shows that {gx,} and {gy,} are Cauchy se-
quences.
Since X is a complete metric space, there exist x,y € X such that

lim F(z,,yn) = nh_}rrgo gr, =x and nh_)rgo F(yn,xn) = nh_}rrgo JYn = Y.

e (3.23)
Since F and g are compatible mappings, we have
lim S(g(F(2nyn)): 9(F @0y yn)) F (970 9yn) ) = 0 (3.24)
and
Tim S(g(F(yn, 20))> 9 (F Un> ), F (g0, gxn)) — 0. (3.25)

We now show that gr = F(x,y) and gy = F(y,z). Suppose that the
assumption (a) holds. For all n > 0, we have

S(gz, gz, F(gzn, gyn)) < S(9z, 92, 9(F (2n,yn)))
+S(Q(F(xnayn))vg(F(xnayn))vF(9$n,gyn))'

Taking the limit as n — oo, using B.2), (3.23), (8:24) and the fact that F
and g are continuous, we have S(gx, gz, F(x,y)) = 0.

Similarly, using (32)), 3:23), [B:25) and the fact that F and g are
continuous, we have S(gy, gy, F(y,z)) = 0.
Combining the above two results, we get

gr=F(z,y) and gy= F(y,x).

Finally, suppose that (b) holds. By (83)), (34) and (3:23]), we have {gx,,} is
a non-decreasing sequence, g, — x and {gy, } is a non-increasing sequence,

9yn — y as n — oo. Hence, by assumption (b), we have for all n > 0,
grn <z and gy, <y. (3.26)

Since F' and g are compatible mappings and ¢ is continuous, by (B3.24]) and

[3:25)), we have

lim g(gan) = gz = lim_g(F(zn,yn)) = lim F(gzn, gyn) (3.27)

n—o0 n—oo
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and
Jim g(gyn) = gy = lim g(F(yn,xn)) = lm Flgyn,gzs).  (3.28)
Now we have

S(gz, gz, F(x,y)) < S(92,92,9(92n11)) + S(9(92n41), 9(92n+1), F(2,9)).
Taking n — oo in the above inequality, using ([3.2]) and (3:20) we have,

S(gz, 97, F(x,y)) < lim S(gz, 92, g(9n+1))
+ lim S(g(F(n, yn)), 9(F (zn,yn)), F(2,y)) (3.29)
< lim S(F(g2n,gyn), F(92n, gyn), F(2,y)).
Using the property of ¢, we get
w(S(gw,gw,F(w,y)D < Jgn;ocp(S(F(gxmgyn)aF(gwn,gyn%F(fc,y)))-

Since the mapping g is monotone increasing, using ([3.1]), (8:26) and (3.29]),
we have for all n > 0,

1
o (S (9w, 92, F(.y)) ) < lim. 5@(5(99%99%956) + S (990> 90, 999) )

i (S (9920, 99Tn, gz) + S (gyn,gyn,ggy))

2

n—oo

Using the above inequality, using (3.23]) and the property of v, we get
1/1<S(gx,gm,F(x,y))) = 0, thus S(gz,gz,F(z,y)) = 0. Hence gz =

F(z,y).
Similarly, we can show that gy = F(y,z). Thus we proved that F' and
g have a coupled coincidence point. O

Corollary 3.2. Let (X,<,S) be a partially ordered complete S-metric
space. Let F : X? — X is such that F has the mized monotone prop-
erty such that there exists xg,yo € X with

zo < F(xo,90) and yo > F(yo, o).
Suppose there exist ¢ € @ and Y € ¥ such that

o (S(Fle,y), Fla,y), Fluv))

Z,T,U v (3.30)
S%ﬂﬂmmw+5@ww»_w<ﬂ,,);S@w,»,

for all z,y,u,v € X with x > u and y < v. Suppose either
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(a) F is continuous or
(b) X has the following property:

(i) if a non-decreasing sequence {x,} — x, then x, < x, for all n,

(ii) if a non-increasing sequence {yn} — y, then y, >y , for all n.
Then there exists x,y € X such that
z=F(z,y) and y=F(y,z),
that is, F' has a coupled fixed point in X.

Corollary 3.3. Let (X,<,S) be a partially ordered complete S-metric
space. Let F : X?> — X is such that F has the mized monotone prop-
erty such that there exists xg,yo € X with

zo < F(z0,y0) and yo > F(yo, zo).
Suppose there exist ¥ € ¥ such that

S(F(x,y), F(z,y), F(u,v))
< S(x,z,u) + S(y,y,v) _ (S(m,x,u) +S(y,y,v)>7

= 2 2
(3.31)

for all x,y,u,v € X with x > v and y < v. Suppose either
(a) F is continuous or
(b) X has the following property:

(i) if a non-decreasing sequence {x,} — x, then x, < x, for all n,

(i) if a non-increasing sequence {y,} — vy, then y, >y , for all n.
Then there exists x,y € X such that
x=F(z,y) and y=F(y,x),
that is, F' has a coupled fized point in X.

Proof. Take ¢(t) =t in Corollary O
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Corollary 3.4. Let (X,<,S) be a partially ordered complete S-metric
space. Let F : X% — X is such that F has the mized monotone prop-
erty such that there exists xg,yo € X with

ro < F(xo,50) and yo > F(yo, xo).

Suppose there exists a real number k € [0,1) such that

S(F(x, y), F(z,y), F(u, v)) < g (S(x, xz,u) + S(y,vy, v)) , (3.32)
for all x,y,u,v € X with x > u and y < v. Suppose either
(a) F is continuous or
(b) X has the following property:

(i) if a non-decreasing sequence {x,} — x, then x, < x, for all n,

(ii) if @ non-increasing sequence {y,} — y, then y, >y , for all n.
Then there exists x,y € X such that
r=F(z,y) and y=F(y,z),
that is, F' has a coupled fized point in X.
Proof. Take 9(t) = (1 — k)t in Corollary B3] O

4 Uniqueness of Coupled Coincidence Point

In this section, we will prove the uniqueness of the coupled coincidence
point. Note that if (X;<) is a partially ordered set, then we endow the
product X2 with the following partial order relation, for all (z,v), (u,v) €
X2

(x,y) < (u,v) & z<u, y>v.

Theorem 4.1. In addition to hypotheses of Theorem [31], suppose that for
every (z,v), (z,t) in X2, if there exists a (u,v) in X2 that is comparable to
(z,y) and (z,t), then F has a unique coupled coincidence point.

Proof. From Theorem B.I] the set of coupled coincidence points of F' and ¢
is nonempty. Suppose (x,y) and (z,t) are coupled coincidence points of F
and g, that is gz = F(x,y),9y = F(y,x),9z = F(z,t) and gt = F(t,z). We
are going to show that gr = gz and gy = gt. By assumption, there exists
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(u,v) C X2 that is comparable to (x,y) and (2,t). We define sequences
{gun},{gvn} as follows,

u=u, v9=0v. Gupt1 = F(un,v,) and gu,y1 = F(vp,u,) for all n.

Since (u,v) is comparable with (z,y), we may assume that (z,y) > (u,v) =
(ug,vp). Using the mathematical induction, it is easy to prove that

(z,9) > (Up,vy) for all n. (4.1)
Using (B.1)) and (4.1]), we have

@ (892,92, guns1) ) = (S (Flw,y), F(w,9), F(un, vn)))

< %so(S(gx,gw,gun) + S(9y, 9y, gvn))
Ly <S(9$,g:ﬂ,gun);S(Qy,gy,gvn)>' (4.2)
Similarly,
w(S(gvnH,gy,gy)) = w(S(F(vmun),F(y,:v) F(y,w)))
< %w(S(gvn,gy,gy) + 5(gun,gx,gw)>

_ 4 (5(9%,9@/,9@/) J; 5(9“n’9x’9x)> . (43)

Using ([@2), @3) and the property of ¢, we have
w(S(gw,gw,gunH) + S(gvn+1, 9y, gy))
< cp(S(gw,gw,gunH)) + w(S(gvnH,gy,gy))
< cp(S(gw,gw,gun) + S(gy,gy,gvn)>

which implies, using the definition of 1,

90(5 (92, 92, gunt1) + S (gvn+1,gy,gy))

< ¢<S(gaz, gz, gun)) + cp(S(gUn, 9y, gy)>.
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Thus, using the definition of ¢,

S(9z, 9%, gunt1) + S(gvnt1, 9y, 9y) < S(92, 9, gun) + S(gvn, 9y, 9y).

That is the sequence {S (gz, gz, gun)+S(g9y, gy, gvn)} is decreasing. There-
fore, there exists o > 0 such that

lim (S(gw,gw,gun) - S(gy,gy,gvn)> = a. (4.5)

n—oo

We will show that o = 0. Suppose to the contrary that o > 0. Taking the
limit as n — oo in ([@4]), we have, using the property of 1,

ola) < p(a) —2 lim

n—o0

(S(gx,gx,gun);S(gy,gy,gvn)> < (),

this is a contradiction. Thus a = 0, that is,

lim <S(9w,gw,gun) + S(gy,gy,gvn)) =0.
It implies

nh_}ngo S(gw,gw,gun) = nh_}ngo S(gy,gy,gvn) =0. (4.6)

Similarly, we show that

lim S(gz,gz,gun) = lim S(gt,gt,gvn) = 0. (4.7)
n—o0 n—oo
Using (4.6) and ([@7]), we have gx = gz and gy = gt. O

Corollary 4.2. In addition to hypotheses of Corollary[3.2, suppose that for
every (z,v), (z,t) in X2, if there exists a (u,v) in X2 that is comparable to
(z,y) and (z,t), then F has a unique coupled fixed point.

5 Example

Example 5.1. Let X = [0,1]. Then (X, <) is a partially ordered set with
the natural ordering of real numbers. Let
_lr—yltlz— 2ty — 2|

S(z,y,z) = 5 for z,y,z € [0,1].

Then S(z,x,y) = |r — y| and (X, 5) is a complete S-metric space.
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Let g: X — X be defined as:

gr =22, foralzeX,

and let F : X2 — X be defined as:

22 — 12

F(z,y) = 3 7
0, if x <y.

ifx>y;

F obeys the mixed g-monotone property. Let ¢ : [0,00) — [0, 00) be defined
as:

o(t) = Zt , fortel0,00),

and let ¢ : [0,00) — [0,00) be defined as:
1
P(t) = Zt , forte|0,00).

Let {z,,} and {y,} be two sequences in X such that li_)m F(zn,yn) = a,
n o0

lim gz, = a, lim F(y,,z,) =band lim gy, = b Then obviously, a = 0
n—oo n—oo n—o0

and b = 0. Now, for all n > 0,

, if @y > yp;
9T =25, GYn =Y Fan,yn) = 3 n = n
0, if T, < Yn,
and
| > T
F(ynyxn) = 3 Yn = In
0, if yp < xp.

Then it follows that,

lim S(g(F(:L'n,yn)),g(F(xn,yn)),F(gxn,gyn)) =0

n—o0

and
nh—>n;o S(g(F(yn, mn)) ) g(F(yn, xn)) s F'(gyn, gmn)) = 0.

Hence, the mappings F' and g are compatible in X. Also, g = 0 and
yo = ¢ (> 0) are two points in X such that

gro = g(0) = 0= F(0,c) = F(x0,50) and
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gyo = g(c) = > 25 = F(c,0) = F(yo, o).

We next verify the contraction [B.I). We take z,y,u,v € X such that
gz > gu and gy < gv, that is, 22 > «? and y? < v2.

We consider the following cases:

Case 1. z > y,u > v. Then

o (S(F(a.y). F(e.y), F(u,v)))

3
= 2(S(F(e,y). Fla.y), F(u,v)))
3 S 22— g2 22— g2 u?— 2
= 1 3 ) 3 5 3
B § (3:2 _ y2) _ (u2 _ 1)2)
=3 .
§ ’x2_u2‘ ‘y2 ,02’
=5 .
_ 1 (5(933 ) 9%, gu)+5 9Y, 9y, gv >
2
_ 3 (S(gz, g2, gu) +S (9y,9v,9v)\ 1 (S(gz,gz,9u) + S(gy, 9y, 9v)
4 4 5
3 1 z,gx, gu +S ; , gu
= < (Stgz. gz, gu) +S(gy,gy,gv)> - Soz,97,9 )2 9y, 9,9 )>
1 S(gz, gz, gu) + S(gy, gy, gv
— 5(,p(S(g:E,g:n,gu) +S(9y,gy,gv)> _7/)< (gz, g, gu) > (9y,9v,9 )>

Case 2. z > y,u < v. Then

o8 (F (), Fay), F(w,0) ) = 2 (S(F (), o), Fu,0)
22— 22— 2

e )
x° — u? + 2% — y? — u?
Z\ 3y! 4(! + 3y !>
[ .Z' 2—U2
<3 (ool
3
=1

_ <|<v2—y2>;<u2—:c2>|>




EN |
—_
(03]
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<§<Iu2—w2l+|y2 v2|>
<4 .
:1<5(99€ , 92, QU)+S 9y, 9y, gv >
2
:§ S(gx, gz, gu)+Sgy 9y, gv) _1 S(gz, gz, gu) +S(gy 9y, gv)
4 4
3 1 z x u S Y bl v
:§(S(gx’gx7gu)+5(9y7gy,gv _Z< (92,9, 9 (9y gyg)>
1 S z, 9%, gu +5 ) , gu
:§¢<S(gxgxgu)+5(gygygv)> w( (97,9 9)2 (gygyg))

Case 3. ¢ < y,u > v. Then,

@(S(F(x,y), F(m,y),F(u,v)))

3 u? —v?
“i(s (o))
3 (|u?+ 22 —v? — 22|
3 _Z< 3 )
v

<1u2+y2— 2 x2]>
3

(5(996 , 9T, gu) +5 (9y, 9y, gv)

w
=
)
|
[
>

IN

S(gz, gz, QU) + S(gy, 9y, gv > < (gz, g, gu) S(Qy,gywv))

1
(S(Qw,gﬂc,gw + S(Qy,gy,gv 1

N = 00l W x|l W N W =W &

1
4
( (9z, gz, gu) S(Qy,gy,gv)>
(0

90(5(996 gz, gu) + S(9y, 9y, gv))

< (g7, g, gu) ;rS(gy . 9Ys gv))

Case 4. x < yand u < v with 22 < u? and y? > v Then, F(z,y) =0
and F'(u,v) = 0, that is,

cp(S(F(x,y),F(ac,y),F(u,v))) = cp(S(0,0,0)) = (0) = 0.

Therefore all conditions of Theorem [3.1] are satisfied. Thus the conclusion
follows. 0
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