Thai Journal of Mathematics Volume 15 (2017) Number 3 : 689–700

http://thaijmath.in.cmu.ac.th

G -Closed Sets and G -Clo

G_{μ} -Closed Sets and G_m -Closed Sets in GTMS Spaces

Tatsanee Wiangwiset, Chokchai Viriyapong 1 and Butsakorn Kong-ied

Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University Maha Sarakham 44150, Thailand e-mail: sosay_20@hotmail.com (T. Wiangwiset) chokchai.v@msu.ac.th (C. Viriyapong) kbutsakorn@gmail.com (B. Kong-ied)

Abstract : The main purpose of this article is to introduce the concepts of G_{μ} -closed sets and G_m -closed sets, which are a weak froms of closed sets in a generalized topology and minimal structure space. Some of their properties are studied. In particular, the characterizations of μm G-closed sets and μm G-closed sets are obtained using G_{μ} -closed and G_m -closed. Moreover, the notions of GT₁-GTMS spaces and GT₂-GTMS spaces are introduced.

Keywords : GTMS space; G_{μ}-closed set; G_m-closed set; GT₁-GTMS space; GT₂-GTMS space.

2010 Mathematics Subject Classification : 54A05; 54C10.

1 Introduction

Generalized topology and minimal structure, which were the generalizations of topology, were first studied by Császár [1] and Popa and Noiri [2], respectively. After that, Buadong et al. [3] introduced the concept of generalized topology and minimal structure space (briefly GTMS-space), which was a non-empty set with generalized topology and minimal structure on its. They studied closed sets,

This research has been funded by Mahasarakham University. ¹Corresponding author.

Copyright © 2017 by the Mathematical Association of Thailand. All rights reserved.

open stes and weak separation axioms, which were T₁-GTMS and T₂-GTMS, in a GTMS space. Later, Zakari [4] proposed the notions of μ mG-closed sets, μ mGclosed sets μ G-closed sets, and mG-closed sets in GTMS spaces. Moreover, lower separation axioms, which is T₀-GTMS and R₀-GTMS, were studied in a GTMS space. Also, μ m-continuity on GTMS spaces was inteoduced by Zakari [5].

In this paper, we introduce the concepts of G_{μ} -closed sets and G_m -closed sets in a GTMS space and study some properties of such sets. Moreover, we study some separation axioms in the GTMS space using G_{μ} -open and G_m -open.

2 Preliminaries

In this section, we shall begin by repeating the concepts of minimal structure, see in [2] or [6]. A subcollection m of subsets of a non-empty set X is called a *minimal structure* (briefly, *m-structure*) on X if $\emptyset \in m$ and $X \in m$. Each member of m is said to be *m-open* and the complement of an *m*-open set is said to be *m-closed*. For a minimal structure m on X and $A \subset X$, $c_m(A) = \bigcap \{F : A \subset F \text{ and } X \setminus F \in m\}$ and $i_m(A) = \bigcup \{U : U \subset A \text{ and } U \in m\}$. Clearly, $i_m(A) \subset A \subset c_m(A)$. If $A, B \subset X$ and m is a minimal structure on X, the following properties hold:

- 1. $c_m(X \setminus A) = X \setminus i_m(A)$ and $i_m(X \setminus A) = X \setminus c_m(A)$.
- 2. If $X \setminus A \in m$, then $c_m(A) = A$ and if $A \in m$, then $i_m(A) = A$.
- 3. If $A \subset B$, then $c_m(A) \subset c_m(B)$ and $i_m(A) \subset i_m(B)$.
- 4. $c_m(c_m(A)) = c_m(A)$ and $i_m(i_m(A)) = i_m(A)$.

Moreover, if $x \in X$ and $A \subset X$, then $x \in c_m(A)$ if and only if $U \cap A \neq \emptyset$ for every $U \in m$ containing x.

Next, we will recall the notions of generalized topology, see in [1] or [6]. A subfamily μ of subsets of a non-empty set X is called a *generalized topology* (briefly, GT) on X if $\emptyset \in \mu$ and any union of elements of μ belongs to μ . A subset A of X is called μ -open if $A \in \mu$. The complement of a μ -open set is called a μ -closed set. For a GT μ on X and $A \subset X$, $c_{\mu}(A)$ is the intersection of all μ -closed sets containing A, i.e., the smallest μ -closed set containing A, and $i_{\mu}(A)$ is the union of all μ -open sets contained in A, i.e., the largest μ -open set contained in A. Obviously, $i_{\mu}(A) \subset A \subset c_{\mu}(A)$. If $A, B \subset X$ and μ is a GT on X, then the following statements hold:

- 1. $c_{\mu}(X \setminus A) = X \setminus i_{\mu}(A)$. and $i_{\mu}(X \setminus A) = X \setminus c_{\mu}(A)$.
- 2. If $X \setminus A \in \mu$, then $c_{\mu}(A) = A$ and if $A \in \mu$, then $i_{\mu}(A) = A$.
- 3. If $A \subset B$, then $c_{\mu}(A) \subset c_{\mu}(B)$ and $i_{\mu}(A) \subset i_{\mu}(B)$.
- 4. $c_{\mu}(c_{\mu}(A)) = c_{\mu}(A)$ and $i_{\mu}(i_{\mu}(A)) = i_{\mu}(A)$.

 $\mathsf{G}_{\mu}\text{-}\mathsf{Closed}$ sets and $\mathsf{G}_m\text{-}\mathsf{Closed}$ sets in GTMS Spaces

In [7], $x \in c_{\mu}(A)$ if and only if $x \in V \in \mu$ implies $V \cap A \neq \emptyset$.

Next, we will recall some concepts of GTMS spaces in [3] and [4]. A nonempty set X equipped with a GT μ and a minimal structure m on its is called a generalized topology and minimal structure space or simply a GTMS space, is denoted by (X, μ, m) . For a GTMS space (X, μ, m) , a subset A of X is said to be μ m-closed (resp. $m\mu$ -closed) [3] if $c_{\mu}(c_m(A)) = A$ (resp. $c_m(c_{\mu}(A)) = A$). The complement of a μ m-closed (resp. $m\mu$ -closed) set is said to be μ m-open (resp. $m\mu$ -open) [3]. Then the following are equivalent:

- 1. A is μm -closed.
- 2. $c_{\mu}(A) = A$ and $c_{m}(A) = A$.
- 3. A is $m\mu$ -closed.

In a GTMS space (X, μ, m) , a subset A of X is said to be *closed* (resp. *s-closed*, *c-closed*) [3] if A is μ m-closed (resp. $c_{\mu}(A) = c_m(A)$, $c_{\mu}(c_m(A)) = c_m(c_{\mu}(A))$). The complement of a closed (resp. *s-closed*, *c-closed*) set is said to be *open* (resp. *s-open*, *c-open*) [3]. Clearly, A is open in a GTMS space (X, μ, m) if and only if $i_{\mu}(A) = A$ and $i_m(A) = A$. A subset A of X is said to be μ mG-closed (resp. $m\mu G$ -closed, μG -closed, mG-closed) [4] in a GTMS space (X, μ, m) if $c_{\mu}(c_m(A)) \subset U$ (resp. $c_m(c_{\mu}(A)) \subset U$, $c_m(c_{\mu}(A)) \subset U$, $c_{\mu}(c_m(A)) \subset U$) whenever $A \subset U$ and U is open (resp. U is open, U is μ -open, U is m-open). Also, a subset A of X is said to be G-closed (resp. G^* -closed) [4] in a GTMS space (X, μ, m) if A is $m\mu$ G-closed and μ mG-closed (resp. μ G-closed (resp. μ G-closed) [4] in a GTMS space (X, μ, m) if A is $m\mu$ G-closed and μ mG-closed (resp. μ G-closed (resp. μ G-closed) [4] in a GTMS space (X, μ, m) if A is $m\mu$ G-closed and μ mG-closed (resp. μ G-closed (resp. μ G-closed) [4] in a GTMS space (X, μ, m) if A is $m\mu$ G-closed and μ mG-closed (resp. μ G-closed (resp. μ G-closed (resp. μ G-closed (resp. μ G-closed) [4] in a GTMS space (X, μ, m) if A is $m\mu$ G-closed and μ G-closed (resp. μ G-closed (res

Now, we recall some separation axioms in a GTMS space.

Definition 2.1 ([4]). A GTMS space (X, μ, m) is called a T_0 -GTMS space if for any pair of distinct points x and y in X, there exist a subset U which is either μ -open or m-open such that $x \in U$, $y \notin U$ or $y \in U$, $x \notin U$.

Definition 2.2 ([3]). A GTMS space (X, μ, m) is called a T_1 -GTMS space if for any pair of distinct points x and y in X, there exist a μ -open set U and a m-open set V such that $x \in U, y \notin U$ and $y \in V, x \notin V$.

Definition 2.3 ([3]). A GTMS space (X, μ, m) is called a T_2 -GTMS space if for any pair of distinct points x and y in X, there exist a μ -open set U and a m-open set V such that $x \in U, y \in V$ and $U \cap V = \emptyset$.

Definition 2.4 ([4]). A GTMS space (X, μ, m) is called a R_0 -GTMS space if $\{x\}$ is G^{*}-closed set for each $x \in X$.

Theorem 2.5 ([4]). Let (X, μ, m) be a GTMS space. Then the following are equivalent:

- 1. X is a T_1 -GTMS space.
- 2. X is a T_0 -GTMS space and R_0 -GTMS space.

3 G_{μ} -Closed Sets and G_m -Closed Sets

In this section, we shall start by introducing the notion of G_{μ} -closed sets and investigate some of their properties.

Definition 3.1. A subset A of a GTMS space (X, μ, m) is said to a G_{μ} -closed set if $c_{\mu}(A) \subset U$ whenever $A \subset U$ and U is open. The complement of a G_{μ} -closed set is called a G_{μ} -open set.

Proposition 3.2. Let (X, μ, m) be a GTMS space and $A \subset X$. If A is a μmG -closed set, then A is a G_{μ} -closed set.

Proof. Assume that A is μm G-closed and let U be open such that $A \subset U$. Then $c_{\mu}(c_m(A)) \subset U$. From $c_{\mu}(A) \subset c_{\mu}(c_m(A))$, we have $c_{\mu}(A) \subset U$. Therefore, A is G_{μ} -closed.

Proposition 3.3. Let (X, μ, m) be a GTMS space and $A \subset X$. If A is a $m\mu G$ -closed set, then A is a G_{μ} -closed set.

Proof. The proof is similar to the proof of Proposition 3.2.

Proposition 3.4. Let (X, μ, m) be a GTMS space and $A \subset X$. If A is a μ -closed set, then A is a G_{μ} -closed set.

Proof. It follows from the fact that if A is a μ -closed set, then $c_{\mu}(A) = A$.

Remark 3.5. The converse of Proposition 3.2, 3.3 and 3.4 may not be true as the following example.

Example 3.6. Consider the GTMS space (X, μ, m) , where $X = \{1, 2, 3, 4\}$,

 $\mu = \{\emptyset, \{3, 4\}, \{1, 2, 3\}, X\}$ and $m = \{\emptyset, \{2, 4\}, \{1, 2, 3\}, X\}.$

Then {2} is G_{μ} -closed but it is not μm G-closed, $m\mu$ G-closed and μ -closed. Moreover, {1,3,4} is G_{μ} -open.

Proposition 3.7. Let (X, μ, m) be a GTMS space and $A \subset X$. If A is open and G_{μ} -closed, then A is μ -closed.

Proof. Assume that A is open and G_{μ} -closed. Then $c_{\mu}(A) \subset A$. This implies $c_{\mu}(A) = A$. Thus A is μ -closed.

Proposition 3.8. Let (X, μ, m) be a GTMS space and $A \subset X$. If A is G_{μ} -closed, then $c_{\mu}(A) \setminus A$ does not contain any nonempty closed set.

Proof. Assume that A is G_{μ} -closed. Suppose to the contrary that $c_{\mu}(A) \setminus A$ contains a nonempty closed set, say F. Then $F \subset c_{\mu}(A) \setminus A = c_{\mu}(A) \cap (X \setminus A)$. Thus $A \subset X \setminus F$. Since A is G_{μ} -closed and $X \setminus F$ is open, $c_{\mu}(A) \subset X \setminus F$. This implies $F \subset X \setminus c_{\mu}(A)$. From $F \subset c_{\mu}(A)$, $F = \emptyset$ which contradicts with $F \neq \emptyset$. \Box

692

Theorem 3.9. Let (X, μ, m) be a GTMS space with $X \notin \mu$ and $A, B \subset X$. If A is G_{μ} -closed and $A \subset B$, then B is G_{μ} -closed.

Proof. Assume that A is G_{μ} -closed and $A \subset B$. Suppose B is not G_{μ} -closed. Thus there exists an open set U such that $B \subset U$ and $c_{\mu}(B) \not\subset U$. Since A is G_{μ} -closed, $c_{\mu}(A) \subset U$, and so $X \setminus U \subset X \setminus c_{\mu}(A)$. This implies $X = (X \setminus c_{\mu}(A)) \cup U$ is μ -open which contradicts with $X \notin \mu$. Thus B is G_{μ} -closed. \Box

Theorem 3.10. Let (X, μ, m) be a GTMS space and $A \subset X$. Then A is G_{μ} -open if and only if $F \subset i_{\mu}(A)$ whenever F is closed and $F \subset A$.

Proof. (\Rightarrow) Let F be closed such that $F \subset A$. Then $X \setminus F$ is open and $X \setminus A \subset X \setminus F$. By assumption, we obtain that $X \setminus A$ is G_{μ} -closed, and so $c_{\mu}(X \setminus A) \subset X \setminus F$. Since $X \setminus i_{\mu}(A) = c_{\mu}(X \setminus A), F \subset i_{\mu}(A)$.

 (\Leftarrow) Let U be open such that $X \setminus A \subset U$. Then $X \setminus U$ is closed and $X \setminus U \subset A$. By assumption, $X \setminus U \subset i_{\mu}(A)$. Thus $X \setminus i_{\mu}(A) \subset U$, and so $c_{\mu}(X \setminus A) \subset U$. Hence $X \setminus A$ is G_{μ} -closed, and so A is G_{μ} -open.

Proposition 3.11. Let (X, μ, m) be a GTMS space and $A \subset X$. If A is G_{μ} -closed, then $c_{\mu}(A) \setminus A$ is G_{μ} -open.

Proof. Assume that A is G_{μ} -closed. Suppose to the contrary that $c_{\mu}(A) \setminus A$ is not G_{μ} -open. By Theorem 3.10, there exists a closed set F such that $F \subset c_{\mu}(A) \setminus A$ and $F \not\subset i_{\mu}(c_{\mu}(A) \setminus A)$. This implies $\emptyset \neq F \subset c_{\mu}(A) \setminus A$. It is a contradiction with Proposition 3.8. Hence $c_{\mu}(A) \setminus A$ is G_{μ} -open.

Proposition 3.12. Let (X, μ, m) be a GTMS space and $A, B \subset X$. If A is G_{μ} open and $i_{\mu}(A) \subset B \subset A$, then B is G_{μ} -open.

Proof. It follows from Theorem 3.10 and the fact that if $B \subset A \subset X$, then $i_{\mu}(B) \subset i_{\mu}(A)$ and $i_{\mu}(i_{\mu}(A)) \subset i_{\mu}(A)$.

Next, we will introduce the concept of G_m -closed sets and investigate some of their properties.

Definition 3.13. A subset A of a GTMS space (X, μ, m) is said to a G_m -closed set if $c_m(A) \subset U$ whenever $A \subset U$ and U is open. The complement of a G_m -closed set is called a G_m -open set.

Proposition 3.14. Let (X, μ, m) be a GTMS space and $A \subset X$. If A is a μmG -closed set, then A is a G_m -closed set.

Proof. The proof is similar to the proof of Proposition 3.2.

Proposition 3.15. Let (X, μ, m) be a GTMS space and $A \subset X$. If A is a $m\mu G$ -closed set, then A is a G_m -closed set.

Proof. The proof is similar to the proof of Proposition 3.2. \Box

Proposition 3.16. Let (X, μ, m) be a GTMS space and $A \subset X$. If A is a m-closed set, then A is a G_m -closed set.

Proof. It follows from the fact that if A is a m-closed set, then $c_m(A) = A$.

Remark 3.17. The converse of Proposition 3.14, 3.15 and 3.16 may not be true as the following example.

Example 3.18. In Example 3.6, we see that $\{3\}$ is G_m -closed but it is not μmG -closed, $m\mu G$ -closed and m-closed. Moreover, $\{1, 2, 4\}$ is G_m -open.

Proposition 3.19. Let (X, μ, m) be a GTMS space and $A \subset X$. If A is open and G_m -closed, then $c_m(A) = A$.

Proof. Assume that A is open and G_m -closed. Then $c_m(A) \subset A$. This implies $c_m(A) = A$.

Proposition 3.20. Let (X, μ, m) be a GTMS space and $A \subset X$. If A is G_m -closed, then $c_m(A) \setminus A$ does not contain any nonempty closed set.

Proof. The proof is similar to the proof of Proposition 3.8. \Box

Theorem 3.21. Let (X, μ, m) be a GTMS space and $A \subset X$. Then A is G_m -open if and only if $F \subset i_m(A)$ whenever F is closed and $F \subset A$.

Proof. The proof is similar to the proof of Theorem 3.10.

Theorem 3.22. Let (X, μ, m) be a GTMS space and $A \subset X$. If A is G_m -closed, then $c_m(A) \setminus A$ is G_m -open.

Proof. It follows from Theorem 3.21 and Proposition 3.20. \Box

Proposition 3.23. Let (X, μ, m) be a GTMS space and $A, B \subset X$. If A is G_m -open and $i_m(A) \subset B \subset A$, then B is G_m -open.

Proof. It follows from Theorem 3.21 and the fact that if $B \subset A \subset X$, then $i_m(B) \subset i_m(A)$ and $i_m(i_m(A)) \subset i_m(A)$.

Now, we will give a characterization of $m\mu G$ -closed sets and μmG -closed sets using G_{μ} -closed sets and G_{m} -closed sets.

Theorem 3.24. Let (X, μ, m) be a GTMS space and $A \subset X$. Then A is $m\mu G$ closed if and only if A is G_{μ} -closed and $c_{\mu}(A)$ is G_m -closed.

Proof. (\Rightarrow) Assume that A is $m\mu$ G-closed. By Proposition 3.3, we have A is G_{μ} -closed. Next, we shall prove that $c_{\mu}(A)$ is G_m -closed. Let U be an open set such that $c_{\mu}(A) \subset U$. Then $A \subset U$. Since A is $m\mu$ G-closed, $c_m(c_{\mu}(A)) \subset U$. Then $c_{\mu}(A)$ is G_m -closed.

(⇐) Assume that A is G_{μ} -closed and $c_{\mu}(A)$ is G_m -closed. To show that A is $m\mu$ G-closed, let U be an open set such that $A \subset U$. Since A is G_{μ} -closed, $c_{\mu}(A) \subset U$. Since $c_{\mu}(A)$ is G_m -closed, $c_m(c_{\mu}(A)) \subset U$. Then A is $m\mu$ G-closed. \square

694

Theorem 3.25. Let (X, μ, m) be a GTMS space and $A \subset X$. Then A is μmG closed if and only if A is G_m -closed and $c_m(A)$ is G_μ -closed.

Proof. The proof is similar to the proof of Theorem 3.24.

Finally, we will discuss a relation of G_{μ} -closed sets and G_m -closed sets under some conditions.

Theorem 3.26. Let (X, μ, m) be a GTMS space such that $X \notin \mu$ and $A \subset X$. If A is G_{μ} -closed, then A is G_m -closed.

Proof. Assume that A is G_{μ} -closed. Suppose to the contrary that A is not G_m -closed. Then there exists an open set U such that $A \subset U$ and $c_m(A) \not\subset U$. Since A is G_{μ} -closed, $c_{\mu}(A) \subset U$. From $c_{\mu}(A)$ is μ -closed, $X \setminus c_{\mu}(A)$ is μ -open. Since U is open, U is μ -open. This implies $X = (X \setminus c_{\mu}(A)) \cup U$ is μ -open. Thus $X \in \mu$ which contradicts with $X \notin \mu$. Thus A is G_m -closed. \Box

Corollary 3.27. Let (X, μ, m) be a GTMS space such that $X \notin \mu$ and $A \subset X$. If A is G_{μ} -open, then A is G_m -open.

Proof. It follows from Theorem 3.26.

4 GT₁-GTMS Spaces and GT₂-GTMS Spaces

In this section, we shall introduce the notions of GT_1 -GTMS spaces and GT_2 -GTMS spaces and investigate some of their characterization. We start by defining the G_{μ} -closure and G_m -closure of a set in GTMS spaces.

Definition 4.1. Let (X, μ, m) be a GTMS space and $A \subset X$. Defined the G_{μ} closure and G_m -closure of A as follows:

$$c_{\mathcal{G}_{\mu}}(A) = \bigcap \{ K : K \text{ is } \mathcal{G}_{\mu} \text{-closed and } A \subset K \}$$

and

$$c_{\mathcal{G}_m}(A) = \bigcap \{ K : K \text{ is } \mathcal{G}_m \text{-closed and } A \subset K \},\$$

respectively.

Lemma 4.2. Let (X, μ, m) be a GTMS space and $A \subset X$. Then $x \in c_{G_{\mu}}(A)$ if and only if $A \cap U \neq \emptyset$ for all G_{μ} -open U containing x.

Proof. (\Rightarrow) Assume that there exists a G_{μ} -open set U containing x such that $A \cap U = \emptyset$. Then $X \setminus U$ is G_{μ} -closed and $A \subset X \setminus U$. Since $x \notin X \setminus U, x \notin c_{G_{\mu}}(A)$.

(⇐) Assume that $x \notin c_{\mathcal{G}_{\mu}}(A)$. Then there exists a \mathcal{G}_{μ} -closed set K such that $A \subset K$ and $x \notin K$. Thus $X \setminus K$ is \mathcal{G}_{μ} -open and $x \in X \setminus K$. Moreover, $A \cap (X \setminus K) = \emptyset$.

Lemma 4.3. Let (X, μ, m) be a GTMS space and $A \subset X$. Then $x \in c_{G_m}(A)$ if and only if $A \cap U \neq \emptyset$ for all G_m -open U containing x.

Proof. The proof is similar to the proof of Lemma 4.2.

Now, we shall give definition of GT_1 -GTMS spaces.

Definition 4.4. A GTMS space (X, μ, m) is said to be GT_1 -GTMS if for pair of distinct points x and y in X, there exist a G_{μ} -open set U and a G_m -open set V such that $x \in U, y \notin U$ and $y \in V, x \notin V$.

Proposition 4.5. If (X, μ, m) is T_1 -GTMS, then (X, μ, m) is GT_1 -GTMS.

Proof. It follows from the fact that every μ -open set is G_{μ} -open and every m-open set is G_m -open.

Remark 4.6. The converse of Proposition 4.5 may not be true as the following example.

Example 4.7. Consider the GTMS space (X, μ, m) , where $X = \{1, 2, 3\}$,

$$\mu = \{\emptyset, \{1, 2\}, \{1, 3\}, X\} \text{ and } m = \{\emptyset, X\}.$$

Then (X, μ, m) is GT₁-GTMS but it is not T₁-GTMS.

Now, we will give a characterization of GT_1 -GTMS spaces.

Theorem 4.8. Let (X, μ, m) be a GTMS space. Then the following are equivalent:

- 1. (X, μ, m) is GT_1 -GTMS.
- 2. $c_{G_{\mu}}(\{x\}) = \{x\}$ and $c_{G_{m}}(\{x\}) = \{x\}$ for all $x \in X$.

Proof. (1) \Rightarrow (2) Assume that X is GT_1 -GTMS. We will show that $c_{G_{\mu}}(\{x\}) = \{x\}$ and $c_{G_m}(\{x\}) = \{x\}$ for all $x \in X$. Let $x \in X$. It is clear that $\{x\} \subset c_{G_{\mu}}(\{x\})$. Let $y \in X$ be such that $y \neq x$. By assumption, there exists a G_{μ} -open set U such that $y \in U$ but $x \notin U$. Then $U \cap \{x\} = \emptyset$. Thus $y \notin c_{G_{\mu}}(\{x\})$. Hence $c_{G_{\mu}}(\{x\}) \subset \{x\}$. Then $c_{G_{\mu}}(\{x\}) = \{x\}$. Similarly, we can prove that $c_{G_m}(\{x\}) = \{x\}$.

 $(2) \Rightarrow (1)$ Assume that $c_{G_{\mu}}(\{x\}) = \{x\}$ and $c_{G_{m}}(\{x\}) = \{x\}$ for all $x \in X$. To show that X is GT_1 -GTMS, let $x, y \in X$ with $x \neq y$. By assumption, $c_{G_{m}}(\{x\}) = \{x\}$ and $c_{G_{\mu}}(\{y\}) = \{y\}$. Thus $x \notin c_{G_{\mu}}(\{y\})$ and $y \notin c_{G_{m}}(\{x\})$. Then there exist a G_{μ} -open set U and G_{m} -open set V such that $x \in U, \{y\} \cap U = \emptyset$ and $y \in V, \{x\} \cap V = \emptyset$. Hence X is GT_1 -GTMS.

Theorem 4.9. Let (X, μ, m) be a GTMS space such that X has at least two elements and $X \notin \mu$. Then X is GT_1 -GTMS if and only if $\{a\}$ is G_{μ} -open in X for all $a \in X$.

Proof. (\Rightarrow) Assume that X is GT₁-GTMS. To show that {a} is G_µ-open in X for all $a \in X$, let $a \in X$. Suppose {a} is not G_µ-open. Then there exists a closed set F such that $F \subset \{a\}$ and $F \not\subset i_{\mu}(\{a\})$. This implies {a} = F is closed. Thus $X \setminus \{a\}$ is open. Since X has a least two elements, $X \setminus \{a\} \neq \emptyset$, say $b \in X \setminus \{a\}$. By assumption, there exist a G_µ-open set U and a G_m-open set V such that $a \in U, b \notin U$ and $b \in V, a \notin V$. Since U is G_µ-open and {a} is closed such that $\{a\} \subset U, \{a\} \subset i_{\mu}(U)$. Then $X = (X \setminus \{a\}) \cup i_{\mu}(U) \in \mu$ which contradicts with $X \notin \mu$. Hence {a} is G_µ-open.

(\Leftarrow) Assume that $\{a\}$ is GT_{μ} -open in X for all $a \in X$. To show that X is GT_1 -GTMS, let $x, y \in X$ be such that $x \neq y$. By assumption, $\{x\}$ and $\{y\}$ is G_{μ} -open. Since $X \notin \mu$, by Corollary 3.27, $\{y\}$ is G_m -open. Set $U = \{x\}$ and $V = \{y\}$. Then U is G_{μ} -open and V is G_m -open. Moreover, $x \in U, y \notin U$ and $y \in V, x \notin V$. Hence X is GT_1 -GTMS.

Next, we will introduce the concepts of $\mathrm{GT}_0\text{-}\mathrm{GTMS}$ spaces and $\mathrm{GR}_0\text{-}\mathrm{GTMS}$ spaces.

Definition 4.10. A GTMS space (X, μ, m) is called GT_0 -GTMS if for any pair of distinct points x and y in X, there exists a subset U of X which is G_{μ} -open or G_m -open such that $x \in U, y \notin U$ or $y \in U, x \notin U$.

Lemma 4.11. If (X, μ, m) is GT_1 -GTMS, then (X, μ, m) is GT_0 -GTMS.

Proof. Assume that (X, μ, m) is GT_1 -GTMS. To show that (X, μ, m) is GT_0 -GTMS, let $x, y \in X$ with $x \neq y$. Since (X, μ, m) is GT_1 -GTMS, there exist a G_{μ} -open set U and a G_m -open set V such that $x \in U, y \notin U$ and $y \in V, x \notin V$. Hence (X, μ, m) is GT_0 -GTMS.

Remark 4.12. The converse of the previous Lemma 4.11 need not be true as the following example.

Example 4.13. Consider the GTMS space (X, μ, m) , where $X = \{1, 2, 3\}$,

 $\mu = \{\emptyset, \{1, 2\}\}$ and $m = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, X\}.$

Then (X, μ, m) is GT_0 -GTMS but it is not GT_1 -GTMS.

Definition 4.14. A GTMS space (X, μ, m) is said to be GR_0 -GTMS if for each $x, y \in X$ if $x \in c_{\mathbf{G}_{\mu}}(c_{\mathbf{G}_m}(\{y\}))$, then $y \in c_{\mathbf{G}_{\mu}}(\{x\})$ and if $x \in c_{\mathbf{G}_m}(c_{\mathbf{G}_{\mu}}(\{y\}))$, then $y \in c_{\mathbf{G}_m}(\{x\})$.

Example 4.15. Consider the GTMS space (X, μ, m) , where $X = \{1, 2, 3\}$,

$$\mu = \{\emptyset, \{1, 2\}, \{1, 3\}, \{2, 3\}, X\} = m.$$

Then (X, μ, m) is GR₀-GTMS.

Lemma 4.16. If (X, μ, m) is GT_1 -GTMS, then (X, μ, m) is GR_0 -GTMS.

Proof. Assume that (X, μ, m) is GT_1 -GTMS. To show that (X, μ, m) is GR_0 -GTMS, let $x, y \in X$ with $x \in c_{\mathrm{G}_{\mu}}(c_{\mathrm{G}_m}(\{y\}))$. Since X is GT_1 -GTMS, we obtain that $c_{\mathrm{G}_{\mu}}(c_{\mathrm{G}_m}(\{y\})) = c_{\mathrm{G}_{\mu}}(\{y\}) = \{y\}$. Then $x \in \{y\}$, and so x = y. Hence $y \in c_{\mathrm{G}_{\mu}}(\{x\})$. Similarly, we can prove that if $x \in c_{\mathrm{G}_m}(c_{\mathrm{G}_{\mu}}(\{y\}))$, then $y \in c_{\mathrm{G}_m}(\{x\})$. Therefore, (X, μ, m) is GR₀-GTMS.

Theorem 4.17. (X, μ, m) is GT_1 -GTMS if and only if (X, μ, m) is GT_0 -GTMS and GR_0 -GTMS.

Proof. (\Rightarrow) It follows from Lemma 4.11 and 4.16.

(⇐) Assume that (X, μ, m) is GT₀-GTMS and GR₀-GTMS. To show that (X, μ, m) is GT₁-GTMS, fix $x \in X$. Let $y \in X$ with $y \neq x$. Since X is GT₀-GTMS, there exists a subset U of X which is G_µ-open or G_m-open such that $x \in U, y \notin U$ or $y \in U, x \notin U$. Without loss of generality, we assume that U is G_µ-open. If $x \in U$ and $y \notin U$, then $x \notin c_{G_{\mu}}(\{y\})$. Since X is GR₀-GTMS, $y \notin c_{G_{\mu}}(c_{G_{m}}(\{x\}))$, and so $y \notin c_{G_{\mu}}(\{x\})$ and $y \notin c_{G_{m}}(\{x\})$. On the other hand, if $y \in U$ and $x \notin U$, then $y \notin c_{G_{\mu}}(\{x\})$. Since X is GR₀-GTMS, $x \notin c_{G_{\mu}}(c_{G_{m}}(\{y\}))$. Then $x \notin c_{G_{\mu}}(\{y\})$. Since X is GR₀-GTMS, $x \notin c_{G_{\mu}}(c_{G_{m}}(\{y\}))$. Then $x \notin c_{G_{\mu}}(\{y\})$, and so $y \notin c_{G_{\mu}}(\{x\})$ and $y \notin c_{G_{m}}(\{x\})$. This implies $c_{G_{\mu}}(\{x\}) = \{x\}$ and $c_{G_{m}}(\{x\}) = \{x\}$. Therefore, (X, μ, m) is GT₁-GTMS.

Now, we will introduce the notion of GT₂-GTMS spaces.

Definition 4.18. A GTMS space (X, μ, m) is is said to be GT_2 -GTMS if for any pair of distinct points x and y in X, there exist a G_{μ} -open set U and a G_m -open set V such that $x \in U, y \in V$ and $U \cap V = \emptyset$.

Proposition 4.19. If (X, μ, m) is T_2 -GTMS, then (X, μ, m) is GT_2 -GTMS.

Proof. Assume that (X, μ, m) is T₂-GTMS. To show that (X, μ, m) is GT₂-GTMS, let $x, y \in X$ be such that $x \neq y$. Since X is T₂-GTMS, there exist μ -open U and m-open V such that $x \in U, y \in V$ and $U \cap V = \emptyset$. By Proposition 3.4 and 3.16, U is G_{μ}-open and V is G_m-open. Therefore (X, μ, m) is GT₂-GTMS.

Example 4.20. Consider the GTMS space (X, μ, m) , where $X = \{1, 2, 3\}$,

$$\mu = \{\emptyset\}$$
 and $m = \{\emptyset, X\}.$

Then (X, μ, m) is GT₂-GTMS but it is not T₂-GTMS.

Lemma 4.21. If (X, μ, m) is GT_2 -GTMS, then (X, μ, m) is GT_1 -GTMS.

Proof. Assume that (X, μ, m) is GT_2 -GTMS. To show that (X, μ, m) is GT_1 -GTMS, let $x, y \in X$ be such that $x \neq y$. Since X is GT_2 -GTMS, there exist G_{μ} -open U and G_m -open V such that $x \in U, y \in V$ and $U \cap V = \emptyset$. Then $x \in U, y \notin U$ and $y \in V, x \notin V$. Hence X is GT_1 -GTMS.

Remark 4.22. The converse of Lemma 4.21 need not be true as the following example.

Example 4.23. In Example 4.15, we see that (X, μ, m) is GT_1 -GTMS but it is not GT_2 -GTMS.

Next, we will introduce the concept of GR₁-GTMS spaces.

Definition 4.24. A GTMS space (X, μ, m) is is said to be GR_1 -GTMS if for all $x, y \in X$ with $x \neq y$ if $c_{G_{\mu}}(\{x\}) \neq c_{G_m}(\{y\})$, then there exist disjoint a G_{μ} -open set U and a G_m -open set V such that $c_{G_{\mu}}(\{x\}) \subset U$ and $c_{G_m}(\{y\}) \subset V$.

Example 4.25. Consider the GTMS space (X, μ, m) , where $X = \{1, 2\}$,

$$\mu = \{\emptyset, \{1\}, \{2\}, X\} = m.$$

Then (X, μ, m) is GR₁-GTMS.

Lemma 4.26. If (X, μ, m) is GR_1 -GTMS, then (X, μ, m) is GR_0 -GTMS.

Proof. Assume that (X, μ, m) is GR₁-GTMS. To show that (X, μ, m) is GR₀-GTMS, let $x, y \in X$ with $y \notin c_{G_{\mu}}(\{x\})$. It is clear that $x \neq y$ and $c_{G_{\mu}}(\{x\}) \neq c_{G_{m}}(\{y\})$. By assumption, there exist disjoint a G_µ-open set U and a G_m-open set V such that $c_{G_{\mu}}(\{x\}) \subset U$ and $c_{G_{m}}(\{y\}) \subset V$. Hence $c_{G_{m}}(\{y\}) \cap U = \emptyset$. Thus $x \notin c_{G_{\mu}}(c_{G_{m}}(\{y\}))$. Similarly, we can prove that if $y \notin c_{G_{m}}(\{x\})$, then $x \notin c_{G_{m}}(c_{G_{\mu}}(\{y\}))$. Therefore, (X, μ, m) is GR₀-GTMS.

Remark 4.27. The converse of Lemma 4.26 may not be true as the following example.

Example 4.28. In Example 4.15, we see that (X, μ, m) is GR₀-GTMS but it is not GR₁-GTMS.

Lemma 4.29. If (X, μ, m) is GT_2 -GTMS, then (X, μ, m) is GR_1 -GTMS.

Proof. Assume that (X, μ, m) is GT_2 -GTMS. To show that (X, μ, m) is GR_1 -GTMS, let $x, y \in X$ with $x \neq y$ and $c_{\operatorname{G}_{\mu}}(\{x\}) \neq c_{\operatorname{G}_m}(\{y\})$. By assumption and Lemma 4.21, (X, μ, m) is GT_1 -GTMS. Then $c_{\operatorname{G}_{\mu}}(\{x\}) = \{x\}$ and $c_{\operatorname{G}_m}(\{y\}) = \{y\}$. Since (X, μ, m) is GT_2 -GTMS, there exist disjoint G_{μ} -open U and G_m -open V such that $c_{\operatorname{G}_{\mu}}(\{x\}) = \{x\} \subset U$ and $c_{\operatorname{G}_m}(\{y\}) = \{y\} \subset V$. Therefore, (X, μ, m) is GR_1 -GTMS.

Theorem 4.30. (X, μ, m) is GT_2 -GTMS if and only if (X, μ, m) is GT_0 -GTMS and GR_1 -GTMS.

Proof. (\Rightarrow) It follows from Lemma 4.21, 4.11 and 4.29.

(⇐) Assume that (X, μ, m) is GT₀-GTMS and GR₁-GTMS. By Lemma 4.26 and Theorem 4.17, (X, μ, m) is GT₁-GTMS. To show that (X, μ, m) is GT₂-GTMS, let $x, y \in X$ with $x \neq y$. Since X is GT₁-GTMS, thus $c_{G\mu}(\{x\}) =$ $\{x\} \neq \{y\} = c_{G_m}(\{y\})$. Since X is GR₁-GTMS, there exist disjoint a G_µ-open set U and a G_m-open set V such that $c_{G_{\mu}}(\{x\}) = \{x\} \subset U$ and $c_{G_m}(\{y\}) = \{y\} \subset V$. Therefore, (X, μ, m) is GT₂-GTMS. **Acknowledgements :** The authors would like to thank the referees for helpful comments and suggestions on the manuscript. The authors also would like to thank Mahasarakham University for the financial support.

References

- A. Császár, Generalized topology, generalized continuity, Acta Math. Hungar. 96 (4) (2002) 351-357.
- [2] T. Noir, V. Popa, On upper and lower M-continuous multifunctions, Filomat 14 (2000) 73-86.
- [3] S. Buadong, C. Viriyapong, C. Boonpok, On generalized topology and minimal structure spaces, Int. Journal of Math. Analysis 5 (31) (2011) 1507-1516.
- [4] A.H. ZaKari, Some Generlizations on Generalized Topology and Minimal Structure spaces, Int. Journal of Math. Analysis 7 (55) (2013) 2697-2708.
- [5] A.H. ZaKari, gm-continuity on generalized topology and minimal structure spaces, JAAUBAS 20 (2016) 78-83.
- [6] K. Wanwongsa, C. Viriyapong, C. Boonpok, Some characterizations of (m, μ) -Precontinuous Functions, Thai J. Math. 14 (2) (2016) 443–451.
- [7] Á. Császár, δ- and θ-modifications of generalized topologies, Acta Math. Hungar. 120 (3) (2008) 275-279.

(Received 5 February 2017) (Accepted 25 September 2017)

 $\mathbf{T}\mathrm{HAI}\ \mathbf{J.}\ \mathbf{M}\mathrm{ATH}.$ Online @ http://thaijmath.in.cmu.ac.th