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1 Introduction

Let K be a nonempty subset of a real normed linear space X and let T : K →
K be a mapping. Denote by F (T ) the set of fixed points of T , that is, F (T ) =
{x ∈ K : Tx = x}. Throughout this paper, we always assume that F (T ) 6= ∅.
T : K → K is said to be nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ holds for all
x, y ∈ K. The mapping T : K → K is said to be asymptotically nonexpansive [1]
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if there exists a sequence {un} ⊂ [0,∞) , limn→∞ un = 0 such that

‖T nx− T ny‖ ≤ (1 + un) ‖x− y‖

for all x, y ∈ K and n ≥ 1. The mapping T : K → K is said to be uniformly
Lipschitz with a Lipschitzian constant L > 0 if ‖T nx− T ny‖ ≤ L ‖x− y‖ holds
for all x, y ∈ K and n ≥ 1.

Note that every asymptotically nonexpansive mapping is uniformly L-Lipschit-
zian with L = sup {1 + un : n ≥ 1}.

Recently, Temir [2, 3] introduced the following definitions which generalize
notion of asymptotically nonexpansive mapping:

Definition 1.1. Let T, I : K → K be two mappings. T is said to be I-
asymptotically nonexpansive [2, 3] if there exists a sequence {vn} ⊂ [0,∞) with
limn→∞ vn = 0 such that

‖T nx− T ny‖ ≤ (1 + vn) ‖I
nx− Iny‖ (1.1)

for all x, y ∈ K and n ≥ 1. T is said to be I-uniformly Lipschitz if there exists
Γ > 0 such that

‖T nx− T ny‖ ≤ Γ ‖Inx− Iny‖ , x, y ∈ K and n ≥ 1. (1.2)

It is obvious that, an I-asymptotically nonexpansive mapping is I-uniformly Lip-
schitz with Lipschitz constant Γ = sup {1 + vn : n ≥ 1} .

We know that Picard and Mann iteration processes for a mapping T : K → K

are defined as:
{

x1 = x ∈ K,

xn+1 = Txn, n ≥ 1
(1.3)

and
{

x1 = x ∈ K,

xn+1 = (1− αn)xn + αnTxn,
n ≥ 1, (1.4)

where {αn} is in (0, 1).

In 2007, Agarwal et al.[4] introduced the following iteration scheme:











x1 = x ∈ K,

xn+1 = (1 − αn)T
nxn + αnT

nyn,

yn = (1− βn)xn + βnT
nxn,

n ≥ 1, (1.5)

where {αn} and {βn} are in (0, 1). They showed that this scheme converges at
a rate same as that of Picard iteration. Khan and Kim [5] continued to work in
this direction and proved that this process also converges faster than Mann and
Ishikawa iteration process.
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Temir [2] introduced an iteration process for a finite family of I-asymptotically
nonexpansive mappings as follows:











x1 = x ∈ K,

xn+1 = (1− αn)xn + αnI
k(n)
i(n) yn,

yn = (1− βn)xn + βnT
k(n)
i(n) xn,

n ≥ 1, (1.6)

where {αn}, {βn} are two real sequences in [0, 1] and n = (k(n) − 1)N + i(n),
i(n) ∈ {1, 2, . . . , N} .

We introduce the following iteration scheme to compute the common fixed
points of a finite family of asymptotically I-nonexpansive mappings.

Let K be a nonempty subset of a Banach space X . Let {Ti}
N

i=1 be finite family

of Ii-asymptotically nonexpansive self-mappings and {Ii}
N

i=1 be finite family of
asymptotically nonexpansive self-mappings of K. Let {αn} and {βn} are two real
sequences in [0, 1]. Then the sequence {xn} is generated as follows:

{

xn+1 = (1− αn)I
n
i xn + αnT

n
i yn,

yn = (1− βn)xn + βnI
n
i xn,

n ≥ 1, (1.7)

where n = (k − 1)N + i, i = i(n) ∈ I0 := {1, 2, . . . , N} is a positive integer and
k(n) → ∞ as n → ∞. Thus, (1.7) can be expressed in the following form:

{

xn+1 = (1− αn)I
k(n)
i(n) xn + αnT

k(n)
i(n) yn,

yn = (1− βn)xn + βnI
k(n)
i(n) xn, n ≥ 1.

Our purpose in the rest of the paper is to use the scheme (1.7) to prove some weak
and strong convergence results for approximating common fixed points of a finite
family of I-asymptotically nonexpansive mappings.

2 Preliminaries

Let X be a Banach space with its dimension greater than or equal to 2. The
modulus of X is the function δX(ε) : (0, 2] → [0, 1] defined by

δX(ε) = inf

{

1−

∥

∥

∥

∥

1

2
(x+ y)

∥

∥

∥

∥

: ‖x‖ = 1, ‖y‖ = 1, ε = ‖x− y‖

}

.

A Banach space X is uniformly convex if and only if δX(ε) > 0 for all ε ∈ (0, 2].
A Banach space X is said to have a Fréchet differentiable norm [6] if for all

x ∈ SX = {x ∈ X : ‖x‖ = 1} ,

lim
t→0

‖x+ ty‖ − ‖x‖

t

exists and is attained uniformly in y ∈ SX .
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A mapping T with domain D(T ) and range R(T ) in X is said to be demiclosed
at p if whenever {xn} is a sequence in D(T ) such that xn → x∗ ∈ D(T ) and
Txn ⇀ p then Tx∗ = p.

A mapping T : K → K is said to be semicompact if, for any bounded sequence
{xn} in K such that ‖xn − Txn‖ → 0 as n → ∞, there exists a subsequence say
{xnj

} of {xn} such that {xnj
} converges strongly to some x∗ in K.

A mapping T : K → K is said to be completely continuous if for every bounded
sequence {xn}, there exists a subsequence say {xnj

} of {xn} such that {Txnj
}

converges to some element of the range T .

Lemma 2.1 ([7]). Let {an}, {bn} and {δn} be sequences of nonnegative real num-
bers satisfying the inequality

an+1 ≤ (1 + δn)an + bn, n ≥ 1.

If
∑

∞

n=1 bn < ∞ and
∑

∞

n=1 δn < ∞, then lim
n→∞

an exists.

Lemma 2.2 ([8]). Suppose that X is a uniformly convex Banach space and
0 < p ≤ tn ≤ q < 1 for all n ≥ 1. Also, suppose that {xn} and {yn} are sequences
of X such that

lim sup
n→∞

‖xn‖ ≤ r, lim sup
n→∞

‖yn‖ ≤ r and lim
n→∞

‖tnxn + (1− tn) yn‖ = r

hold for some r ≥ 0. Then limn→∞ ‖xn − yn‖ = 0.

Lemma 2.3 ([9]). Let X be a real uniformly convex Banach space, K a nonempty
closed subset of X, and let T : K → K be an asymptotically nonexpansive mapping
with a sequence {kn} ⊂ [1,∞) and kn → 1 as n → ∞, then (E − T ) is demiclosed
at zero, where E is an identity mapping.

Lemma 2.4 ([10]). Let X be a uniformly convex Banach space and K a convex
subset of X. Then there exists a strictly increasing continuous convex function
γ : [0,∞) → [0,∞) with γ(0) = 0 such that for each S : K → K with Lipschitz
constant L,

‖αSx+ (1− α)Sy − S [αx+ (1− α)y]‖ ≤ Lγ−1

(

‖x− y‖+
1

L
‖Sx− Sy‖

)

for all x, y ∈ K and 0 < α < 1.

Let ωw {xn} =
{

x : ∃xnj
⇀ x

}

denote the weak limit set of {xn}.
A Banach space X is said to have the Kadec–Klee property if, for every se-

quence {xn} in X , xn ⇀ x and ‖xn‖ → ‖x‖ imply ‖xn − x‖ → 0. Every locally
uniformly convex space has the Kadec–Klee property. In particular, Lp spaces,
1 < p < ∞ have this property.
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Lemma 2.5 ([10]). Let X be a real reflexive Banach space such that its dual X has
Kadec–Klee property. Let {xn} be a bounded sequence in X and q1, q2 ∈ ωw {xn}.
Suppose limn→∞ ‖αxn + (1− α)q1 − q2‖ = 0 exists for all α ∈ [0, 1] . Then
q1 = q2.

The mapping T : K → K with F (T ) 6= ∅ is said to satisfy Condition (A) [11]
if there is a nondecreasing function f : [0,∞) → [0,∞) with f (0) = 0, f (t) > 0
for all t ∈ (0,∞) such that ‖x− Tx‖ ≥ f (d (x, F (T ))) for all n ≥ 1. Senter and
Dotson [11] pointed out that every continuous and semi-compact mapping must
satisfy Condition (A). Khan and Fukharuddin [12] modified the Condition (A)
for two mappings as follows: Two mappings T1, T2 : K → K are said to satisfy
Condition (A′) [12] if there is a nondecreasing function f : [0,∞) → [0,∞) with
f (0) = 0, f (t) > 0 for all t ∈ (0,∞) such that

either max ‖x− T1x‖ ≥ f (d(x, F )) or max ‖x− T2x‖ ≥ f (d (x, F ))

for all x ∈ K, where d (x, F ) = inf {‖x− p‖ : p ∈ F := F (T1) ∩ F (T2)}.

Let {Ti : i ∈ I0} and {Ii : i ∈ I0} be two family of mappings ofK with nonempty
fixed points set F . These families are said to satisfy Condition (B) if there is a non-
decreasing function f : [0,∞) → [0,∞) with f (0) = 0, f (t) > 0 for all t ∈ (0,∞)
such that

either max
i∈I0

‖x− Tix‖ ≥ f (d(x, F )) or max
i∈I0

‖x− Iix‖ ≥ f (d(x, F )) .

3 Main Results

Lemma 3.1. Let X be a real Banach space, K be a nonempty closed convex subset
of X, {Ti : i ∈ I0} be N Ii-asymptotically nonexpansive mappings with sequences
{

l
(i)
n

}

⊂ [0,∞) and {Ii : i ∈ I0} be N asymptotically nonexpansive self-mappings

of K with sequences
{

k
(i)
n

}

⊂ [0,∞) such that F =
N
⋂

i=1

F (Ti)∩F (Ii) 6= ∅. Suppose

that for any given x1 ∈ K, the sequence {xn} is generated by (1.7) satisfying the
conditions:

1)
∞
∑

n=1
ln < ∞ and

∞
∑

n=1
kn < ∞, where ln = max{l

(i)
n : i ∈ I0}, kn = max{k

(i)
n :

i ∈ I0};

2) there exist constants τ1, τ2 ∈ (0, 1) such that τ1 ≤ (1 − αn), (1 − βn) ≤ τ2,

∀n ≥ 1.

Then

i) limn→∞ ‖xn − p‖ exists for each p ∈ F ;

ii) limn→∞ d (xn, F ) exists for p ∈ F , where d (xn, F ) = infp∈F ‖xn − p‖ .
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Proof. Let p ∈ F . From (1.7), we have

‖yn − p‖ = ‖(1− βn)xn + βnI
n
i xn − p‖ ≤ (1 − βn) ‖xn − p‖+ βn ‖I

n
i xn − p‖

≤ (1− βn) ‖xn − p‖+ βn(1 + kn) ‖xn − p‖

≤ ‖xn − p‖+ βnkn ‖xn − p‖

≤ (1 + βnkn) ‖xn − p‖ (3.1)

By (1.7) and (3.1), we obtain

‖xn+1 − p‖ = ‖(1− αn)I
n
i xn + αnT

n
i yn − p‖

≤ (1− αn) ‖I
n
i xn − p‖+ αn ‖T n

i yn − p‖

≤ (1− αn)(1 + kn) ‖xn − p‖+ αn(1 + ln) ‖I
n
i yn − p‖

≤ (1− αn)(1 + kn) ‖xn − p‖+ αn(1 + ln)(1 + kn) ‖yn − p‖

≤ (1 + kn) [(1− αn) ‖xn − p‖+ αn(1 + ln) (1 + βnkn) ‖xn − p‖]

≤ (1 + kn) [(1 + αnln + αnβnkn + αnβnknln) ‖xn − p‖]

≤ (1 + δn) ‖xn − p‖ , (3.2)

where δn =
{

kn + αnβnkn + αnln + (αnβn + αn) knln + αnβnk
2
n + αnβnk

2
nln
}

.

Since
∞
∑

n=1
ln < ∞ and

∞
∑

n=1
kn < ∞, we obtain

∞
∑

n=1
δn < ∞. Thus by Lemma

2.1, limn→∞ ‖xn − p‖ exists. Taking the infimum over all p ∈ F in the inequalities
(3.2), we get

d (xn+1, F ) ≤ (1 + δn) d (xn, F ) (3.3)

Now applying Lemma 2.1 to (3.3) we get the existence of the limit limn→∞ d (xn, F ).
This completes the proof of Lemma.

We first prove a strong convergence theorem of the sequence {xn} which de-
fined by (1.7) in a real Banach space.

Theorem 3.2. Let X be a real Banach space, K be a nonempty closed convex
subset of X, {Ti : i ∈ I0} be N Ii-asymptotically nonexpansive mappings with se-

quences
{

l
(i)
n

}

⊂ [0,∞) and {Ii : i ∈ I0} be N asymptotically nonexpansive self-

mappings of K with sequences
{

k
(i)
n

}

⊂ [0,∞) such that F =
N
⋂

i=1

F (Ti)∩F (Ii) 6=

∅. Suppose that for any given x1 ∈ K, the sequence {xn} is generated by (1.7)
satisfying the conditions:

1)
∞
∑

n=1
ln < ∞ and

∞
∑

n=1
kn < ∞, where ln = max{l

(i)
n : i ∈ I0}, kn = max{k

(i)
n :

i ∈ I0};
2) there exist constants τ1, τ2 ∈ (0, 1) such that τ1 ≤ (1 − αn), (1 − βn) ≤ τ2,

∀n ≥ 1.
Then {xn} converges strongly to a common fixed point of {Ti : i ∈ I0} and

{Ii : i ∈ I0} if and only if lim infn→∞ d(xn, F ) = 0.
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Proof. The necessity is obvious.
Now we prove the sufficiency of Theorem. By Lemma 3.1, limn→∞ d(xn, F )

exists. It follows from lim infn→∞ d(xn, F ) = 0 that limn→∞ d(xn, F ) = 0. Next,

we prove that the sequence {xn} is a Cauchy sequence in K. In fact, since
∞
∑

n=1
δn <

∞, 1 + t ≤ exp {t} for all t > 0, and (3.3), therefore we have

‖xn+1 − p‖ ≤ exp {δn} ‖xn − p‖ . (3.4)

Hence, for any positive integers n,m, from (3.4) it follows that

‖xn+m − p‖ ≤ exp {δn+m−1} ‖xn+m−1 − p‖

≤ exp {δn+m−1} [exp {δn+m−2} ‖xn+m−2 − p‖]

= exp {δn+m−1 + δn+m−2} ‖xn+m−2 − p‖ ≤ · · ·

≤ exp







n+m−1
∑

j=n

δj







‖xn − p‖ ≤ M ‖xn − p‖ ,

where M =
∞
∑

j=1

δj < ∞.

Since limn→∞ d(xn, F ) = 0, for any given ε > 0, there exists a positive integer
n0 such that d(xn, F ) < ε

1+M
, ∀n ≥ n0. Therefore there exists p1 ∈ F such that

d(xn, p1) <
ε

1+M
, ∀n ≥ n0.

Consequently, for any n ≥ n0 and for all m ≥ 1 we have

‖xn+m−xn‖ ≤ ‖xn+m−p1‖+ ‖xn−p1‖ ≤ (1+M)‖xn−p‖ ≤ (1+M)
ε

1 +M
= ε.

This implies that {xn} is a Cauchy sequence in K. Thus, the completeness of X
implies that {xn} is convergent. Assume that limn→∞ xn = x∗. Then x∗ ∈ K,
because K is closed subset of X and limn→∞ d(xn, F ) = 0 implies that d(x∗, F ) =
0. F is closed, thus xn → x∗. This completes the proof.

Lemma 3.3. Let X be a real uniformly convex Banach space, K be a nonempty
closed convex subset of X, {Ti : i ∈ I0} be N Ii-asymptotically nonexpansive map-

pings with sequences
{

l
(i)
n

}

⊂ [0,∞) and {Ii : i ∈ I0} be N asymptotically non-

expansive self-mappings of K with sequences
{

k
(i)
n

}

⊂ [0,∞) such that F =

N
⋂

i=1

F (Ti) ∩ F (Ii) 6= ∅. Suppose that for any given x1 ∈ K, the sequence {xn}

is generated by (1.7) satisfying the conditions:

1)
∞
∑

n=1
ln < ∞ and

∞
∑

n=1
kn < ∞, where ln = max{l

(i)
n : i ∈ I0}, kn = max{k

(i)
n :

i ∈ I0};
2) there exist constants τ1, τ2 ∈ (0, 1) such that τ1 ≤ (1 − αn), (1 − βn) ≤ τ2,

∀n ≥ 1.
Then limn→∞ ‖xn − Tixn‖ = 0 and limn→∞ ‖xn − Iixn‖ = 0 for all i ∈ I0.
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Proof. For any p ∈ F , by Lemma 3.1, we know that limn→∞ ‖xn − p‖ exists.
Assume limn→∞ ‖xn − p‖ = d for some d ≥ 0. By (3.1), we have

‖yn − p‖ ≤ (1 + βnkn) ‖xn − p‖ .

Taking limsup on both sides in the above inequality, we obtain

lim sup
n→∞

‖yn − p‖ ≤ d. (3.5)

Also
‖Ini xn − p‖ ≤ (1 + kn) ‖xn − p‖

for all n = 1, 2, . . . , so
lim sup

n→∞

‖Ini xn − p‖ ≤ d. (3.6)

Next,

‖T n
i yn − p‖ ≤ (1 + ln) ‖I

n
i yn − p‖ ≤ (1 + ln) (1 + kn) ‖yn − p‖

gives by (3.5) that
lim sup

n→∞

‖T n
i yn − p‖ ≤ d. (3.7)

Moreover, we have

d = lim
n→∞

‖xn+1 − p‖ = lim
n→∞

‖(1− αn) (I
n
i xn − p) + αn (T

n
i yn − p)‖ .

This together with (3.6), (3.7) and Lemma 2.2 imply that

lim
n→∞

‖Ini xn − T n
i yn‖ = 0. (3.8)

Now

‖xn+1 − p‖ = ‖(1 − αn)I
n
i xn + αnT

n
i yn − p‖

= ‖(Ini xn − p) + αn (T n
i yn − Ini xn)‖

≤ ‖Ini xn − p‖+ αn ‖T n
i yn − Ini xn‖

yields that
d ≤ lim inf

n→∞

‖Ini xn − p‖ . (3.9)

Combining (3.6) and (3.9), we obtain

lim
n→∞

‖Ini xn − p‖ = d.

Observe that

‖Ini xn − p‖ ≤ ‖Ini xn − T n
i yn‖+ ‖T n

i yn − p‖

≤ ‖Ini xn − T n
i yn‖+ (1 + ln) ‖I

n
i yn − p‖

≤ ‖Ini xn − T n
i yn‖+ (1 + ln) (1 + kn) ‖yn − p‖ .
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Hence, we have
d ≤ lim inf

n→∞

‖yn − p‖ . (3.10)

By (3.5) and (3.10), we obtain

lim
n→∞

‖yn − p‖ = d. (3.11)

On the other hand, ‖Ini xn − p‖ ≤ (1 + kn) ‖xn − p‖ gives that

lim sup
n→∞

‖Ini xn − p‖ ≤ d.

Thus d = limn→∞ ‖yn − p‖ = limn→∞ ‖(1− βn) (xn − p) + βn (I
n
i xn − p)‖ gives

by Lemma 2.2 that
lim
n→∞

‖Ini xn − xn‖ = 0. (3.12)

Next,
‖yn − xn‖ = βn ‖xn − Ini xn‖

gives by (3.12) that
lim
n→∞

‖yn − xn‖ = 0. (3.13)

From (3.8) and (3.12), we have

‖xn+1 − xn‖ = ‖(1− αn)I
n
i xn + αnT

n
i yn − xn‖

≤ ‖Ini xn − xn‖+ αn ‖I
n
i xn − T n

i yn‖ (3.14)

→ 0, n → ∞.

Thus from ‖xn+1 − yn‖ ≤ ‖xn+1 − xn‖+ ‖xn − yn‖ , we get

lim
n→∞

‖xn+1 − yn‖ = 0. (3.15)

Furthermore, we have

‖xn − T n
i yn‖ ≤ ‖xn − Ini xn‖+ ‖Ini xn − T n

i yn‖ → 0 as n → ∞. (3.16)

By the triangle inequality,

‖xn+1 − T n
i yn‖ ≤ ‖xn+1 − xn‖+ ‖xn − T n

i yn‖ .

Therefore, by (3.14) and (3.16), we obtain

lim
n→∞

‖xn+1 − T n
i yn‖ = 0. (3.17)

We shall now make use of the fact that every asymptotically nonexpansive mapping
is uniformly L-Lipschitzian. Then

‖xn+1 − Iixn+1‖ ≤
∥

∥xn+1 − In+1
i xn+1

∥

∥+
∥

∥In+1
i xn+1 − In+1

i xn

∥

∥

+
∥

∥In+1
i xn − Iixn+1

∥

∥

≤
∥

∥xn+1 − In+1
i xn+1

∥

∥+ L ‖xn+1 − xn‖+ L ‖Ini xn − xn+1‖

=
∥

∥xn+1 − In+1
i xn+1

∥

∥+ L ‖xn+1 − xn‖

+Lαn ‖I
n
i xn − T n

i yn‖ ,
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yields
lim
n→∞

‖xn − Iixn‖ = 0. (3.18)

From (3.13), (3.14) and (3.17) we have

‖xn − T n
i xn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − T n

i yn‖+ ‖T n
i yn − T n

i xn‖

≤ ‖xn − xn+1‖+ ‖xn+1 − T n
i yn‖+ (1 + ln) (1 + kn) ‖yn − xn‖

and so
lim
n→∞

‖xn − T n
i xn‖ = 0. (3.19)

Finally, from

‖xn+1 − Tixn+1‖ ≤
∥

∥xn+1 − T n+1
i xn+1

∥

∥+
∥

∥T n+1
i xn+1 − Tixn+1

∥

∥

≤
∥

∥xn+1 − T n+1
i xn+1

∥

∥+ Γ
∥

∥In+1
i xn+1 − Iixn+1

∥

∥

≤
∥

∥xn+1 − T n+1
i xn+1

∥

∥+ ΓL ‖Ini xn+1 − xn+1‖

≤
∥

∥xn+1 − T n+1
i xn+1

∥

∥

+ΓL (‖Ini xn+1 − Ini xn‖+ ‖Ini xn − xn+1‖)

≤
∥

∥xn+1 − T n+1
i xn+1

∥

∥+ ΓL2 ‖xn+1 − xn‖

+ΓLαn ‖I
n
i xn − T n

i yn‖ ,

with (3.8), (3.14) and (3.19), we obtain

lim
n→∞

‖xn − Tixn‖ = 0. (3.20)

This completes the proof.

Applying Theorem 3.2, we obtain a strong convergence of the scheme (1.7)
under the Condition (B) as follows.

Theorem 3.4. Let X be a real uniformly convex Banach space, K be a nonempty
closed convex subset of X, {Ti : i ∈ I0} be N Ii-asymptotically nonexpansive map-

pings with sequences
{

l
(i)
n

}

⊂ [0,∞) and {Ii : i ∈ I0} be N asymptotically non-

expansive self-mappings of K with sequences
{

k
(i)
n

}

⊂ [0,∞) such that F =

N
⋂

i=1

F (Ti) ∩ F (Ii) 6= ∅. Suppose that for any given x1 ∈ K, the sequence {xn}

is generated by (1.7) satisfying the conditions:

1)
∞
∑

n=1
ln < ∞ and

∞
∑

n=1
kn < ∞, where ln = max{l

(i)
n : i ∈ I0}, kn = max{k

(i)
n :

i ∈ I0};
2) there exist constants τ1, τ2 ∈ (0, 1) such that τ1 ≤ (1 − αn), (1 − βn) ≤ τ2,

∀n ≥ 1.
If {Ti : i ∈ I0} and {Ii : i ∈ I0} satisfy Condition (B) then {xn} converges

strongly to a common fixed point of {Ti : i ∈ I0} and {Ii : i ∈ I0}.
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Proof. From Lemma 3.3, we know that

lim
n→∞

‖xn − Tixn‖ = 0 and lim
n→∞

‖xn − Iixn‖ = 0

for all i ∈ I0.

Since {Ti : i ∈ I0} and {Ii : i ∈ I0} satisfy Condition (B), we get that

either f (d(xn, F )) ≤ max
i∈I0

‖xn − Tixn‖ or f (d(xn, F )) ≤ max
i∈I0

‖xn − Iixn‖ .

In both cases, we get limn→∞ f (d(xn, F )) = 0. Since f : [0,∞) → [0,∞) is a
nondecreasing function satisfying f (0) = 0, f (t) > 0 for all t ∈ (0,∞), therefore
we have limn→∞ d (xn, F ) = 0.

Now all the conditions of Theorem 3.2 are satisfied, therefore by its conclusion
{xn} converges strongly to a point of F . This completes the proof.

Next, we prove a weak convergence of the iteration (1.7) in a uniformly convex
Banach space X whose dual X∗ has the Kadec–Klee property. Most weak conver-
gence theorems are proved in a uniformly convex Banach space and the presence
of Opial’s condition or the Fréchet differentiability of the norm.

In [13], it is point out that there exist uniformly convex Banach spaces which
have neither a Fréchet differentiable norm nor the Opial property but their duals
do have the Kadec–Klee property. And the duals of reflexive Banach spaces with
Fréchet differentiable norms or the Opial property have the Kadec–Klee property.

The following lemma is our main tool for proving the weak convergence theo-
rem.

Lemma 3.5. Let X be a real uniformly convex Banach space, K be a nonempty
closed convex subset of X, {Ti : i ∈ I0} be N Ii-asymptotically nonexpansive map-

pings with sequences
{

l
(i)
n

}

⊂ [0,∞) and {Ii : i ∈ I0} be N asymptotically non-

expansive self-mappings of K with sequences
{

k
(i)
n

}

⊂ [0,∞) such that F =

N
⋂

i=1

F (Ti) ∩ F (Ii) 6= ∅. Suppose that for any given x1 ∈ K, the sequence {xn}

is generated by (1.7) satisfying the conditions:

1)
∞
∑

n=1

ln < ∞ and
∞
∑

n=1

kn < ∞, where ln = max{l
(i)
n : i ∈ I0}, kn = max{k

(i)
n :

i ∈ I0};
2) there exist constants τ1, τ2 ∈ (0, 1) such that τ1 ≤ (1 − αn), (1 − βn) ≤ τ2,

∀n ≥ 1.
Then limn→∞ ‖txn + (1− t) p1 − p2‖ exists for all t ∈ [0, 1] and p1, p2 ∈ F .

Proof. Setting an (t) = ‖txn + (1− t) p1 − p2‖. Then

lim
n→∞

an (0) = lim
n→∞

‖p1 − p2‖ ,



684 Thai J. Math. 15 (2017)/ B. Gunduz and S. Akbulut

and by Lemma 3.1, limn→∞ an (t) = limn→∞ ‖xn − p2‖ exists. Let t ∈ (0, 1).
Define the mapping An, Bn : K → K by

{

Anx = (1 − βn)x+ βnI
n
i x,

Bnx = (1 − αn)I
n
i x+ αnT

n
i Anx,

n ≥ 1, (3.21)

for all x ∈ K. Then Bnxn = xn+1, Bnp = p for all p ∈ F . We have

‖Anx− Any‖ ≤ ‖((1− βn)x+ βnI
n
i x)− ((1− βn)y + βnI

n
i y)‖

≤ ‖(1 − βn) (x− y) + βn (I
n
i x− Ini y)‖

≤ (1− βn) ‖x− y‖+ βn (1 + kn) ‖x− y‖

≤ (1 + kn) ‖x− y‖ . (3.22)

for all x, y ∈ K. By (3.22), we obtain

‖Bnx−Bny‖ ≤ ‖((1 − αn)I
n
i x+ αnT

n
i Anx) − ((1− αn)I

n
i y + αnT

n
i Any)‖

= ‖(1− αn) (I
n
i x− Ini y) + αn (T

n
i Anx− T n

i Any)‖

≤(1− αn) ‖I
n
i x− Ini y‖+ αn ‖T

n
i Anx− T n

i Any‖

≤(1− αn) (1 + kn) ‖x− y‖+ αn (1 + ln) (1 + kn) ‖Anx− Any‖

≤(1− αn) (1 + kn) ‖x− y‖+ αn (1 + ln) (1 + kn) (1 + kn) ‖x− y‖

=(1+kn) [1+αnkn + αnln + αnlnkn] ‖x− y‖

≤ (1 + kn) [1 + kn + ln + lnkn] ‖x− y‖

=(1 + kn)
2
(1 + ln) ‖x− y‖ . (3.23)

For the sake of simplicity, set hn = max{kn, ln}, then obviously limn→∞ hn = 0.
Thus we have

‖Bnx−Bny‖ ≤ (1 + hn)
3 ‖x− y‖ .

This implies that Bn : K → K is Lipschitz with the Lipschitz constant (1 + hn)
3

and xn+1 = Bnxn. Setting

Hn =

∞
∏

j=n

(1 + hj)
3
, Rn,m = Bn+m−1Bn+m−2 · · ·Bn, n,m ≥ 1,

then Hn → 1 (as n → ∞) and Rn,m : K → K is Lipschitz with the Lipschitz
constant Hn. Moreover, Rn,mxn = xn+m and Rn,mp = p for each p ∈ F .

Letting

bn,m = ‖tRn,mxn + (1− t)Rn,mp1 −Rn,m (txn + (1− t) p1)‖ (3.24)
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From (3.24) and Lemma 2.4, we have

bn,m ≤
n+m−1
∏

j=n

(1 + hj)
3
γ−1

(

‖xn − p1‖

−





n+m−1
∏

j=n

(1 + hj)
3





−1

‖Rn,mxn −Rn,mp1‖







≤
∞
∏

j=n

(1+hj)
3
γ−1






‖xn−p1‖ −





∞
∏

j=n

(1+hj)
3





−1

‖Rn,mxn−Rn,mp1‖







=Hnγ
−1
(

‖xn − p1‖ −H−1
n ‖xn+m − p1‖

)

.

It follows from Lemma 3.1 and limn→∞ Hn = 1 that limn→∞ bn,m = 0 uniformly
for all m. Observe that

an+m (t) ≤ ‖txn+m + (1− t) p1 − p2

+ (Rn,m (txn + (1− t) p1)− tRn,mxn − (1− t)Rn,mp1)‖

+ ‖− (Rn,m (txn + (1− t) p1)− tRn,mxn − (1− t)Rn,mp1)‖

= ‖Rn,m (txn + (1− t) p1)− p2‖+ bn,m

= ‖Rn,m (txn + (1− t) p1)−Rn,mp2‖+ bn,m

≤
n+m−1
∏

j=n

(1 + hj)
3 ‖txn + (1− t) p1 − p2‖+ bn,m

≤
∞
∏

j=n

(1 + hj)
3 ‖txn + (1− t) p1 − p2‖+ bn,m = Hnan (t) + bn,m.

Consequently, lim supn→∞
an (t) ≤ lim infn→∞ an (t) . That is

lim
n→∞

‖txn + (1− t) p1 − p2‖

exists for all t ∈ (0, 1). This completes the proof.

Theorem 3.6. Let X be a real uniformly convex Banach space such that its
dual X∗ has the Kadec–Klee property, K be a nonempty closed convex subset
of X, {Ti : i ∈ I0} be N Ii-asymptotically nonexpansive mappings with sequences
{

l
(i)
n

}

⊂ [0,∞) and {Ii : i ∈ I0} be N asymptotically nonexpansive self-mappings

of K with sequences
{

k
(i)
n

}

⊂ [0,∞) such that F =
N
⋂

i=1

F (Ti)∩F (Ii) 6= ∅. Suppose

that for any given x1 ∈ K, the sequence {xn} is generated by (1.7) satisfying the
conditions:
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1)
∞
∑

n=1
ln < ∞ and

∞
∑

n=1
kn < ∞, where ln = max{l

(i)
n : i ∈ I0}, kn = max{k

(i)
n :

i ∈ I0};
2) there exist constants τ1, τ2 ∈ (0, 1) such that τ1 ≤ (1 − αn), (1 − βn) ≤ τ2,

∀n ≥ 1.
Then {xn} converges weakly to a common fixed point of {Ti : i ∈ I0} and

{Ii : i ∈ I0}.

Proof. Let p ∈ F . Then limn→∞ ‖xn − p‖ exists from Lemma 3.1 and so {xn}
is bounded. We prove that {xn} has a unique weak subsequential limit in F .
For, let u and v be weak limits of the subsequences {xni

} and
{

xnj

}

of {xn},
respectively. By Lemma 3.3, limn→∞ ‖xn − Tixn‖ = 0 and limn→∞ ‖xn − Iixn‖ =
0 for all i ∈ I0. Lemma 2.3 guarantees that Iiu = u and Tiu = u. Again in the
same fashion, we can prove that v ∈ F . Next, we prove the uniqueness. Since
limn→∞ ‖txn + (1− t)u− v‖ exists for all t ∈ [0, 1] by Lemma 3.5, therefore u = v

by Lemma 2.5. Consequently, {xn} converges weakly to a point of F and this
completes the proof.

Remark 3.7. Since iteration scheme (1.5) converges faster than Ishikawa iteration
process, therefore our results improve and generalize corresponding results of Temir
[2] and many other in the contemporary literature.

Remark 3.8. If we choose Ii = E for all i ∈ I0, we obtain related results of the
previously known results for Mann İteration in this area.

Remark 3.9. Under suitable conditions, the sequence {xn} defined by (1.7) can
also be generalized to the iterative sequences with errors. That is, if the error terms
are added in (1.7) and assumed to be bounded, then the results of this paper still
hold.

Acknowledgements : I would like to thank the referees for their comments and
suggestions on the manuscript.
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