
Thai Journal of Mathematics
Special Issue (Annual Meeting in Mathematics, 2006) : 83–100

Sea Surface Elevation of
the Primitive Equation Oceanic Model

for the Gulf of Thailand

W. Wannawong, U. Humphries and A. Luadsong

Abstract : A sea surface elevation of the primitive equation oceanic model is
proposed by studying in the Gulf of Thailand (GoT) from 98.54oE to 105.54oE
in longitude and from 5.54oN to 14.54oN in latitude. The sea surface elevation
is the displacement of the oceanic surface of waves which affects to the energy
of the waves. In this paper, we study the sea surface elevation of motion of sea
water which consists of wave interaction terms. They were derived via the sigma
coordinate system by using the Princeton Oceanic Model (POM2k Version 2004)
with topography from DBDB5 data and initial data of temperature and salinity
from LEVITUS94 data.
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1 Introduction

The sea surface elevation is the displacement of the ocean surface of waves which
consists of the crest and trough. In this research, we study the Gulf of Thailand
which is the important natural resource in Thailand. It has many uses for Thai
people such as the marine fishery, crude oil processing to provide useful products,
and places to go on holiday; Pattaya, Koh Chang, Koh Samet, and Koh Samui.
The model of this study is the primitive equation model (Governing Equation)
which is the partial differential equation (PDE). It is the non-linear equation which
is very complicated and due to it being hard to solve the problem by an analytical
method, we solve the problem by using the numerical method and discretizate to
grid as Arakawa C-grid and also using the POM2k model [5] to find the answer of
unknown variables of a non-linear system. In this research, we study the maximum
of sea surface elevation and the area of the study covers from 98.54◦E to 105.54◦E
in longitude and from 5.54◦N to 14.54◦N in latitude, which is shown in Figure 1.
The POM2k model can predict the changing of the sea surface elevation for each
week by using the initial data in March, July and November. In addition, it can
specify the maximum of sea surface elevation in the GoT. The advantages of the
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sea surface elevation are to save the human lives of those who live on the beach
and to protect the important tourist places, as well as fishermen and oil rigs in
the GoT for the whole year.

Figure 1: The boundary specific of the Gulf covers from 98.54◦E to
105.54◦E in longitude and from 5.54◦N to 14.54◦N in latitude (The Hy-
drologic Department, Royal Thai Navy).

2 The Model Equation

The mathematical modeling of this research is based on the primitive equation,
which concerns with the basic equation as the equation of motion, the equation of
continuity, and the hydrostatic equation. The spherical coordinates are the easiest
to illustrate the principles of the equation, an advantage in using vector notation.
Let (u, v, w) be the fluid velocities in the zonal, meridional and locally vertical
direction respectively.

The horizontal equations of motion are
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where Am is the vertical eddy viscosity and Amv is the vertical eddy viscosity,
and the parameter f = 2Ω sin θ is the Coriolis parameter where Ω is the speed of
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angular rotation of the Earth by Ω = 7.2921× 10−5 rad · s−1.
The hydrostatic equation:

∂p

∂z
= −ρg, (3)

where p is the local pressure.
The continuity equation:

∂w

∂z
= − 1
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The temperature equation:
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where T is the potential temperature.
The salinity equation:
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where S is the potential salinity, Ahv is the vertical mixing coefficient and AH

is the horizontal mixing coefficient and the Laplacian operator is:
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The state equation of sea water:

ρ = ρ(T, S, z), (7)

where ρ is density.

Details of the primitive equations and the method of solution have been given
by Cox (1984) [2]. Finally, the equations are solved for u, v, w, T, S, ρ and p vari-
ables by using the leap-frog finite difference technique to explain the circulation
in the oceanic model (POM2k) for GoT.

3 The Numerical Method

From the POM2k, we use the assumption of fluid which is incompressible with
the approximation methods to drive the model (i.e. Thin-shell, Hydrostatic and
Boussinesq approximations).

3.1 The Perturbed Thermodynamic Variables

There are four thermodynamic variables, i.e. p, ρ, T and S, in equations (1)-(7).
In order to minimize computational errors, the perturbed variables can be defined
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as:

ṕ ≡ p − p̃(λ, θ, z), ρ́ ≡ ρ − ρ̃(λ, θ, z),
T́ ≡ T − T̃ (λ, θ, z), Ś ≡ S − S̃(λ, θ, z),

where p̃(λ, θ, z), ρ̃(λ, θ, z), T̃ (λ, θ, z) and S̃(λ, θ, z) are the standard distributions
of pressure, density, temperature and salinity respectively. T̃ (λ, θ, z) and S̃(λ, θ, z)
can be determined by using observed data, and then according to

∂p̃(λ, θ, z)
∂z

= −ρ̃(λ, θ, z)g,

p̃(λ, θ, 0) = p̃as(λ, θ).

We derive the mean density by ρ̃(λ, θ, z) ≡ ρ(T̃ , S̃, z) and pressure by p̃(λ, θ, z)
= p̃as(λ, θ)+g

∫ 0

z ρ̃(λ, θ, t)dt, where p̃as(λ, θ) is the sea level air pressure computed,
based on the atmospheric data.

3.2 Sigma Coordinate

The sigma coordinate (pressure coordinate) is a function of density where the den-
sity is a function of temperature and salinity. In order to separate water in the
GoT in several layers, the vertical sigma coordinate is used. In the sigma coordi-
nate system, the primitive equations from z-coordinate (λ, θ, z, t) are transformed
to the vertical sigma coordinate (λ∗, θ∗, σ, t∗) with the relationships:

λ∗ = λ, θ∗ = θ, σ =
z − η

H + η
and t∗ = t

where H(λ, θ) is the bottom topography and η is the sea surface elevation. σ
ranges from σ = 0 at z = η to σ = −1 at z = −H(λ, θ).

3.3 Mode Splitting

It is desirable in terms of computer economy to separate out vertically integrated
equations (external mode) from the vertical structure equations (internal mode).
The horizontal currents are defined as:

u = ū + ú, v = v̄ + v́.

where (ū, v̄) are the vertically integrated mass flux:

ū =
∫ 0

−1

udσ, v̄ =
∫ 0

−1

vdσ

and (ú, v́) are in the baroclinic mode, and have no depth average.

3.4 Finite Difference Techniques

We use the perturbed thermodynamic variables, sigma coordinate and the stag-
gered C-grid, which are shown in Figure 2, where Ψ are Temperature (T ) and
Salinity (S), Sea Surface Elevation (η), and Bottom topography (H), etc [1].
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Figure 2: The staggered C-grid of variables in horizontal coordinates.

The kth box has thickness Δσk. The horizontal grid is C-grid. The relative
positions of the variables on the staggered grid are shown in Figure 3, where
k = 1, 2,...,k◦ and k◦ is the total number of vertical layers.

Figure 3: The locations of the variables on the finite difference grid.
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The finite difference operators and averaging operators are defined as:
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where G is the discrete variable. The operators with respect to latitude θ, vertical
coordinate σ and time t are similar to those above. By using these discrete op-
erators, the spatial finite difference to barotropic (vertically integrated) equations
can be written as:
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The spatial finite difference of fully baroclinic equations are taken to be:
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+ (fūθλ)i,j+ 1
2 ,k+ 1

2
+ (TB)i,j+ 1

2 ,k+ 1
2

(12)
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The spatial finite difference of temperature and salinity equations are:
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− (ūλ δλT

λ

a cos θΔλ
)i,j,k+ 1

2

(14)
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XX(F ) is the term which is generated by the Laplacian operator from z-
coordinate to σ-coordinate.

The primitive equations are in the partial differential equation form.
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4 Computational Details

To start the model computation, current should be defined at the initial stage. The
model starts computation assuming the water velocity is zero everywhere. The
model requires initial conditions of temperature, salinity and bottom topography
from observations at each grid point for running the model. We assume that
within the condition of the adiabatic process about the closed system and the
closed boundary and also neglect the problem about the motion of sea water,
which is a cause of wind stress at the sea surface (the motion of the circulation is
moved by the nature of oceanography) and neglect the friction force at the bottom
topography. The model bathymetry is driven from DBDB5 dataset (U.S. Naval
Oceanographic Office, 1983) [6] which provides ocean depths every 5

′
of latitude

and longitude directions which is shown in Figure 4 and the temperature [3] and
salinity [4] fields are initialized from Levitus94 dataset (Levitus, 1994) which are
shown in Figure 5 to Figure 7. The resolution of the LEVITUS94 data file is 1◦×1◦

degree in longitude and latitude directions. From the numerical method, we solve
the the system of equations by using the POM2k (version 2004) and consider only
the sea surface elevation in the external mode. Therefore, we use the initial data
at the sea surface.

Figure 4: The Initial Data of Topography (m).
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(a) (b)

Figure 5: The Initial Data of (a) Temperature (◦C) and (b) Salinity (ppt)
at the surface in March 1993.

(a) (b)

Figure 6: The Initial Data of (a) Temperature (◦C) and (b) Salinity (ppt)
at the surface in July 1993.

(a) (b)

Figure 7: The Initial Data of (a) Temperature (◦C) and (b) Salinity (ppt)
at the surface in November 1993.
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It’s collected in different resolutions and is not available at the model grid.
In order to produce grided fields of data for using in the model, the interpolation
methods are used. The data in the interior grid points are interpolated by bilinear
interpolation and the boundary grid points interpolated by cubic spline interpo-
lation and applied to the GoT. Figure 8 shows the topography and Figure 9 to
Figure 11 show the temperature and salinity at the sea surface in March, July and
November 1993 by using the interpolations.

Figure 8: The Initial Data of Topography (m) by using the interpolation.

(a) (b)

Figure 9: The Initial Data of (a) Temperature (◦C) and (b) Salinity (ppt)
by using the interpolation in March.
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(a) (b)

Figure 10: The Initial Data of (a) Temperature (◦C) and (b) Salinity (ppt)
by using the interpolation in July.

(a) (b)

Figure 11: The Initial Data of (a) Temperature (◦C) and (b) Salinity (ppt)
by using the interpolation in November.
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The POM2k model has been set up with 37×97 grid points in the horizontal
and 10 sigma vertical levels for the GoT. Since the GoT connects to the South
China Sea, so we can use the South China Sea as a open boundary for the GoT. The
rectangular grid is shown in Figure 12(a). It is taken for the domain of the model.
In this research, the GoT is the curvilinear grid and is shown in Figure 12(b). Each
of the curvilinear grid angles is almost 90◦ thus we can consider that it seems like
the rectangular grid, which is shown in Figure 13(a). The west (99.0◦E) and east
(105.54◦E) boundaries are places through U -points, whereas south (5.54◦N) and
the north (13.54◦N) boundaries are through V -points. Let the west, east, north
and south boundaries of the model be a rigid wall, i.e. u 1

2 ,j=0, vI− 1
2 ,j=0, vi, 1

2
=0

and vi,J− 1
2
=0 are shown in Figure 13(b).

(a) (b)

Figure 12: (a) The rectangular grid and (b) the curvilinear grid are the
closed boundary specific of the Gulf covers from 99.0◦E to 105.54◦E in
longitude and from 5.54◦N to 13.54◦N in latitude.

Finally for our model, the program had the following steps: generated the
horizontal and vertical grid; read bottom topography and interpolate to the grid;
read temperature and salinity and interpolate to the grid; wrote grid and initial
conditions for model; wrote the initial data and use it to drive the POM2k; and,
last of all, wrote the results for the Matlab plot. In calculating, the horizontal grid
sizes of the model are chosen to be Δλ ≤ 55 km and Δφ ≤ 45 km. The time step
sizes are chosen as Δti = 900 s in the internal mode, Δte = 30 s in the external
mode and α= 0.2250 (weak filter) for the development and stability process.
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(a) (b)

Figure 13: (a) The curvilinear grid and (b) the rectangular grid with stag-
gered C-grid, where the west, east, north and south boundaries are a rigid
wall.

5 Results and Discussion

The initial data of bottom topography, temperature and salinity after driving the
model for 53 weeks (one year) can classify for three seasons such as Summer, Rainy
season and Winter. There are three months that are the example of each seasons:
March in Summer; July in Rainy season and November in Winter. After input
of the initial data of the bottom topography, temperature and salinity by using
the interpolation of the monthly mean, the POM2k model is driven for a week in
each of those months (i.e. March, July and November) so that we can consider
the affect of the depth of topography, temperature and salinity to the sea surface
elevation in those months of each of those seasons. The results after driving the
model at the 1st and 53rd weeks are shown in Figure 14 and Figure 15 respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 14: Sea Surface Elevation; Contour lines of Sea Surface Elevation
after driving the model at the 1st week in (a),(b) March; (c),(d) July; and
(e),(f) November.
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(a) (b)

(c) (d)

(e) (f)

Figure 15: Sea Surface Elevation; Contour lines of Sea Surface Elevation
after driving the model at the 53rd week in (a),(b) March; (c),(d) July; and
(e),(f) November.
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After driving the model, we find that the maximum amplitude of the sea
surface elevation is in the upper part of the GoT, which is the basin area. The sea
surface elevation in the positive is called the crest and the sea surface elevation
in the negative is called the trough. The connection between the crest and the
trough is balance, which affects to the sea surface elevation and goes to zero. The
sea surface elevations in the upper part of the GoT are positive, in the lower part
of the GoT are negative and in the middle part of the GoT, including the land,
are zero. From the calculation by using the POM2k model, the results of contour
lines in March, July and November are shown in Figure 14(b), 14(d), 14(f), 15(b),
15(d) and 15(f) respectively. The maximum amplitude of the sea surface elevation
at the 1st week is different from the 53rd week, which is shown in Table 1.

Run time days
Maximum of Sea Surface Elevation (m)

Mar Jul Nov

1. At the 1st week 0.02689 0.01481 0.02171
2. At the 53rd week 0.03056 0.01103 0.02889

From Table 1, in March, we find that the maximum amplitude of the sea
surface elevation at the 53rd week is higher than the 1st week, thus the height
of wave at the 53rd week is higher than at the 1st week. Otherwise, in July, the
maximum of the sea surface elevation at the 53rd week is less than at the 1st

week, and that make the heights of waves at the 53rd week less than another one.
Finally, in November, the maximum amplitude of the sea surface elevation at the
53rd week is higher than at the 1st week, thus the height of wave at the 53rd

week is higher than at the 1st week. Many factors (i.e. pressure field and wind
field) affect to the sea surface elevation. In this research, we concentrate on the
behavior of the sea surface elevation from the topography with the initial data of
temperature and salinity. From the POM2k Model, we find that the motion of sea
water flows from the lower part of the GoT through the deep water channel and
finally to the upper part of the GoT. Furthermore, the advantage of the model is
that it can predict the sea surface elevation for many years later.
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6 Conclusions

The model can indicate the meteorological situation from rapid change of the
depth mean current and sea surface elevation. According to Zeng et al. [7]. It has
been shown that the major characteristics of the model are as follows:

1. The model is defined by a typical non-negative operator equation, so the
computational stability is guaranteed.

2. The staggered C-grid is adopted for saving computer storage and time. The
C-grid is also conveniently applied to the problem with irregular boundary.

3. According to the properties of the physical process, the schemes can be split
into three systems, which are solved one by one for saving computer time.

4. The structure of the scheme is very simple. It conserves the energy prop-
erties of original partial differential equations and is very convenient for
writing a computational program.

For the validation of the model results very limited observations on sea level
were available during the period of sea surface elevation. It may be seen from
the plots in Figure 14 to Figure 15 (POM2k Model) that computed sea surface
elevations are in fairly good agreement at the time of landfall with available time
series observations at three coastal stations close to landfall. However, high sea
surface elevation after the landfall, as seen in observations, could not be produced
by the model.
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