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1 Introduction

By ω, we shall denote the space of all real or complex valued sequences. Any
vector subspace of ω is called a sequence space. We shall write ℓ∞, c0 and c for
the spaces of all bounded, null and convergent sequences respectively. Also by bs,
cs for the spaces of all sequences associated with bounded and convergent series.
A sequence space is called an FK−space if it is a complete metrizable locally
convex space (F−space) with the property that convergence implies coordinatewise
convergence (K−space). A normable FK−space is called a BK−space. The
sequence spaces ℓ∞, c and c0 are BK−spaces with the usual sup-norm given by
‖x‖ℓ∞ = supk |xk|, where the supremum is taken over all k ∈ N, where N =
{0, 1, 2, . . .}.

Let µ and γ be two sequence spaces and A = (ank) be an infinite matrix of real
or complex numbers ank, where n, k ∈ N. Then, we say that A defines a matrix
mapping from µ into γ and we denote it by writing A : µ → γ, if for every sequence
x = (xk) ∈ µ the sequence Ax = {(Ax)n}, the A−transform of x is in γ; where

(Ax)n =
∑

k

ankxk (n ∈ N). (1.1)

The notation (µ : γ) denotes the class of all matrices A such that A : µ → γ. Thus,
A ∈ (µ : γ) if and only if the series on the right hand side of (1.1) converges for
each n ∈ N and every x ∈ µ and we have Ax = {(Ax)n}n∈N ∈ γ for all x ∈ µ. A
sequence x said to be A−summable to α if Ax converges to α which called as the
A−limit of x. If (µ : γ) are equipped with limits µ− lim and γ− lim, respectively,
A ∈ (µ : γ) and γ − limn(Ax)n = µ − limk xk for all x ∈ µ, then we say that A
regularly maps µ in to γ and we write A ∈ (µ : γ)reg. The matrix domain µA of
an infinite matrix A in a sequence space µ is defined by

µA = {x = (xk) ∈ ω : Ax ∈ µ}. (1.2)

A linear topological space X over the real field R is said to be a paranormed space
if there exists subadditive function g : X −→ R such that g(θ) = 0, g(−x) = g(x)
and scalar multiplication is continuous, i.e., |αn − α| −→ 0 and g(xn − x) −→ 0
imply g(αnxn − αx) −→ 0 for all α’s in R and all x’s in X , where θ is the zero
vector in the linear space X .

Assume here and after that p = (pk) be a bounded sequence of strictly positive
real numbers with sup pk = H and M = max{1, H}. Then, the linear spaces
ℓ∞(p), c0(p) and c(p) were defined and studied by Maddox, Simons and Nakano
[1, 2, 3] as follows:

ℓ∞(p) =

{

x = (xk) ∈ ω : sup
k∈N

|xk|
pk < ∞

}

,

c0(p) =

{

x = (xk) ∈ ω : lim
k→∞

|xk|
pk = 0

}

,

c(p) =

{

x = (xk) ∈ ω : lim
k→∞

|xk − l|pk = 0 for some l ∈ R

}

.
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which are the complete paranormed by

g(x) = sup
k∈N

|xk|
pk/M .

Throughout the article by F and Nk, respectively, we denote the collection of all
subsets of N and the set of all n ∈ N such that n ≥ k. In the literature, by using
the matrix domain over the paranormed spaces, many authors have defined new
sequence spaces (see[4, 5, 6, 7, 8]).

Let x = (xk) be a sequence in C, the set of all complex numbers and Rk

be the least convex closed region of complex plane containing xk, xk+1, xk+2, . . ..
The Knopp Core (or K − core) of x is defined by the intersection of Rk for all
(k = 1, 2, . . .), (see [9, pp.137]). In [10], it is shown that

K − core(x) =
⋂

z∈C

Bx(z)

for any x ∈ ℓ∞, where Bx(z) = {w ∈ C : |w − z| ≤ lim supk |xk − z|}.

Let K be a subset of N. The natural density δ(K) of K ⊆ N is limn n
−1|{k ≤

n : k ∈ K}| provided it exists, where |E| denotes the cardinality of a set E. A
sequence x = (xk) is called statistically convergent (st−convergent) to the number
l, denoted st − limx, if every ǫ > 0, δ({k : |xk − l| ≥ ǫ}) = 0, [11]. We write st
and st0 to denote the sets of all statistically convergent sequences and statistically
null sequences. In [12], the notion of the statistical core (or st-core) of a complex
valued sequence has been introduced by Fridy and Orhan and it is shown for a
statistically bounded sequence x that

st− core(x) =
⋂

t∈C

Cx(t)

for any x ∈ ℓ∞, where Cx(t) = {v ∈ C : |v − t| ≤ st− lim supk |xk − t|}.

2 The Paranormed Sequence Spaces ℓ∞(p), c0(p)

and c(p)

In this section, we define the sequence space µ(p), where µ ∈ {ℓ∞, c0, c} and
prove that this sequence space according to its paranorm is complete paranormed
linear space. In [13], Mursaleen and Noman defined the matrix A(r, s, t) = (ank)
defined by

ank =

{

sn−ktk/rn, 0 ≤ k ≤ n,
0, k > n.

Throughout this paper rk 6= 0, tk 6= 0 and s0 6= 0 for all k ∈ N.
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Now, we introduce the new sequence spaces ℓ∞(p), c0(p) and c(p) as follows:

ℓ∞(p) =

{

x = (xk) ∈ ω : sup
n∈N

∣

∣

∣

∣

∣

1

rn

n
∑

k=0

sn−ktkxk

∣

∣

∣

∣

∣

pn

< ∞

}

,

c0(p) =

{

x = (xk) ∈ ω : lim
n→∞

∣

∣

∣

∣

∣

1

rn

n
∑

k=0

sn−ktkxk

∣

∣

∣

∣

∣

pn

= 0

}

,

c(p) =

{

x = (xk) ∈ ω : lim
n→∞

∣

∣

∣

∣

∣

1

rn

n
∑

k=0

sn−ktkxk

∣

∣

∣

∣

∣

pn

= l for some l ∈ R

}

.

By the notation of (1.2), we can redefine the space µ(p) as follows:

µ(p) = [µ(p)]A(r,s,t).

Then, we have the following special cases.
(i) If rn =

∑n
k=0 sn−ktk 6= 0 for all n, then A(r, s, t) reduces to the matrix

(N, r, s, t) of generalized Nörlund means [14, 15]. If t = e, then A(r, s, t) reduces
of the famous matrix (N, s) of Nörlund means [16, 17].
(ii) If s = e, tn > 0 and rn =

∑n
k=0 tk 6= 0 for all n, then ℓ∞(p) = rt∞(p),

c0(p) = rt0(p) and c(p) = rtc(p) [18].
(iii) If s = e, rn = 1/vn and tk = vk, then ℓ∞(p) = ℓ∞(u, v; p), c0(p) = c0(u, v; p)
and c(p) = c(u, v; p) [19].
(iv) If s = e, rn = λn and tk = λk −λk−1, then ℓ∞(p) = ℓ∞(λ; p), c0(p) = c0(λ; p)
and c(p) = c(λ; p) [20].
(v) If 0 < α < 1, s = e, tk = 1 + αk and rn = n+ 1, then A(r, s, t) reduces to the
matrix Aα [21, 22, 23].
(vi) If r = t = e and s = (r′, s′, t′, 0, 0, · · · ), then ℓ∞(p) = ℓ∞(B; p), c0(p) =
c0(B; p) and c(p) = c(B; p) [24].
(vii) If 0 < α < 1 and rn = 1/k!, sk = (1 − α)k/k! and tk = αk/k! then, A(r, s, t)
reduces to the matrix (E,α) [25, 26].

Define the sequence y = (yk), which will be frequently used, as theA−transform
of a sequence x = (xk), i.e.,

yk =
1

rk

k
∑

j=0

sk−jtjxj . (2.1)

Theorem 2.1. We have the following

(a) µ(p) is the complete linear metric space paranormed by h, defined by

h(x) = sup
n

∣

∣

∣

∣

∣

1

rn

n
∑

k=0

sn−ktkxk

∣

∣

∣

∣

∣

pn
M

,

where 0 < pn ≤ H < ∞ for all n ∈ N.
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(b) Then, µ(p) is BK−space with the norm ‖x‖µ(p) = ‖A(r, s, t)x‖ℓ∞ . That is,

‖x‖µ(p) = sup
n

|
(

A(r, s, t)x
)

n
|. (2.2)

Proof. (a) Since this can be shown by a routine verification, we omit the detail.
(b) Since the sequence space µ endowed with the norm ‖.‖∞ are BK-spaces

(see[27, Example 7.3.2(b),(c)]) and the matrix A(r, s, t) is triangle, Theorem 4.3.2
of Wilansky [28, p.61] gives the fact that the spaces µ(p) is BK-spaces with the
norm in (2.2).

Theorem 2.2. The sequence spaces ℓ∞(p), c0(p) and c(p) of none-absolute type
is linearly isomorphic to the spaces ℓ∞(p), c0(p) and c(p), respectively, where 0 <
pk ≤ H < ∞.

Proof. To prove the fact that c0(p) ∼= c0(p) we should show the existence of a
linear bijection between the spaces c0(p) and c0(p), where 0 < pk ≤ H < ∞.
Consider the transformation T defined with the notation of (1.2) from c0(p) to
c0(p) by x 7→ y = Tx = A(r, s, t)x. The linearity of T is trivial. Further, it is clear
that x = θ whenever Tx = θ and hence T is injective.

Let y = (yk) ∈ c0(p) and define the sequence x = (xk) by

xk =
1

tk

k
∑

j=0

(−1)k−jDs
k−jrjyj for each k ∈ N, (2.3)

where

Ds
n =

1

sn+1
0















s1 s0 0 0 · · · 0
s2 s1 s0 0 · · · 0
...

...
...

...
sn−1 sn−2 sn−3 sn−4 · · · s0
sn sn−1 sn−2 sn−3 · · · s1















for n = (1, 2, 3, . . .) and Ds
0 = 1/s0. Then, we have

h(x) = sup
n

∣

∣[A(r, s, t)x]n
∣

∣

pn
M = sup

n
|yn|

pn
M = g(y).

Thus, we have that x ∈ c0(p). As a result, T is surjective. Hence, T is linear
bijection and this tells us the spaces c0(p) and c0(p) are linearly isomorphic, for
0 < p ≤ H < ∞ as desired. This completes the proof.

3 The Alpha-, Beta- and Gamma-Duals of the

Space µ(p)

In this section, we give the theorems determining the α−, β− and γ−duals of
the spaces µ(p) for µ ∈ {ℓ∞, c0, c}. We start with the definition of the alpha, beta
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and gamma duals. If x and y are sequences and X and Y are subsets of ω, then
we write x · y = (xkyk)

∞
k=0, x

−1 ∗ Y = {a ∈ ω : a · x ∈ Y } and

M(X,Y ) =
⋂

x∈X

x−1 ∗ Y = {a : a · x ∈ Y for all x ∈ X}.

The α−, β−and γ−duals of a sequence space, which are respectively denoted by
Xα, Xβ and Xγ are defined by

Xα = M(X, ℓ1), Xβ = M(X, cs) and Xγ = M(X, bs).

Theorem 3.1. Let us define the matrix T = (tnk) by

tnk =







an

tn
(−1)n−kDs

n−krk, 0 ≤ k ≤ n,

0, k > n.
(3.1)

Then,

{µ(p)}α = {a = (ak) ∈ w : T ∈ (µ(p) : ℓ1)}.

Proof. Let a = (an) ∈ w. Then by using (2.3), we immediately derive for every
n ∈ N that

anxn =
1

tn

n
∑

k=0

(−1)n−kDs
n−kykrkan = Tn(y). (3.2)

Thus, we observe that by (3.2) ax = (anxn) ∈ ℓ1 whenever x = (xk) ∈ µ(p) if and
only if Ty ∈ ℓ1 whenever y = (yk) ∈ µ(p). This means that a = (ak) ∈ {µ(p)}α if
and only if T ∈ (µ(p) : ℓ1).

The result of the theorem above corresponds to the special case qn = 1 for all
n ∈ N in [29, Theorem 5.1 (1-3)].

As direct consequence of Theorem 3.1, we have following.

Corollary 3.2. Let K∗ = K ∩ {n ∈ N : n− 1 ≤ k ≤ n} for K ⊂ F and M ∈ N2.
Define the sets w1(p), w2(p), w3(p) as follows:

w1(p) :=
⋂

M>1

{

a = (ak) ∈ ω : sup
K∈F

∑

n

∣

∣

∣

∣

∣

∑

k∈K∗

tnkM
1/pk

∣

∣

∣

∣

∣

< ∞

}

,

w2(p) :=
⋃

M>1

{

a = (ak) ∈ ω :
∑

n

∣

∣

∣

∣

∣

∑

k

tnk

∣

∣

∣

∣

∣

< ∞

}

,

w3(p) :=
⋃

M>1

{

a = (ak) ∈ ω : sup
K∈F

∑

n

∣

∣

∣

∣

∣

∑

k∈K∗

tnkM
−1/pk

∣

∣

∣

∣

∣

< ∞

}

.

Then, {ℓ∞(p)}α = w1(p), {c0(p)}
α = w3(p) and {c(p)}α = w2(p) ∩ w3(p).
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Theorem 3.3. The matrix H = (hnk) is defined via the sequence a = (an) ∈ w
by

hnk =

{ ∑n
j=k

aj

tj
Ds

j−k(−1)j−krk, 0 ≤ k ≤ n,

0, k > n.
(3.3)

for all n, k ∈ N. Then, we have

{µ(p)}β = {a = (ak) ∈ w : H ∈ (µ(p) : c)},

{µ(p)}γ = {a = (ak) ∈ w : H ∈ (µ(p) : ℓ∞)}.

Proof. Let us consider the following equation

n
∑

k=0

akxk =
n
∑

k=0





1

tk

k
∑

j=0

(−1)k−jDs
k−jrjyj



 ak

=
n
∑

k=0





n
∑

j=k

aj
tj
(−1)j−kDs

j−k



 rkyk

=
n
∑

k=0

hnkyk

= H(y) for all k ∈ N, (3.4)

where H = (hnk) defined by (3.3). We obtain from (3.4) that ax = (anxn) ∈ cs
or bs whenever x = (xk) ∈ µ(p) if and only if Hy ∈ c or ℓ∞ whenever y = (yk) ∈
µ(p). This means that a = (ak) ∈ {µ(p)}β or a = (ak) ∈ {µ(p)}γ if and only if
H ∈ (µ(p) : c) or H ∈ (µ(p) : ℓ∞) . This completes the proof.

As direct consequence of Theorem 3.3, we have following.

Corollary 3.4. Define the sets t1(p), t2(p), t3(p), t4(p) and t5(p) as follows:

t1(p) =







a = (ak) ∈ ω :







∞
∑

j=k

aj
tj
Ds

j−k(−1)j−krk







∈ cs







,

t2(p) =







a = (ak) ∈ ω :







∞
∑

j=k

aj
tj
Ds

j−k(−1)j−krk







∈ bs







,

t3(p) =
⋃

B>1







a = (ak) ∈ ω :
∑

k

∣

∣

∣

∣

∣

∣

n
∑

j=k

aj
tj
Ds

j−k(−1)j−krk

∣

∣

∣

∣

∣

∣

B−1/pk < ∞







,
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t4(p) =
⋂

B>1







a = (ak) ∈ ω :
∑

k

∣

∣

∣

∣

∣

∣

n
∑

j=k

aj

tj
Ds

j−k(−1)j−krk

∣

∣

∣

∣

∣

∣

B1/pk

convergent uniformly in n},

t5(p) =
⋂

B>1







a = (ak) ∈ ω :
∑

k

∣

∣

∣

∣

∣

∣

n
∑

j=k

aj
tj
Ds

j−k(−1)j−krk

∣

∣

∣

∣

∣

∣

B1/pk < ∞







.

Then, we have {ℓ∞(p)}β = t4(p), {c0(p)}
β = {c0(p)}

γ = t3(p), {c(p)}
β = t3(p) ∩

t1(p), {c(p)}
γ = t3(p) ∩ t2(p) and {ℓ∞(p)}γ = t5(p).

4 A(r, s, t)− Core

Following Knopp, a core theorem is characterized by a class of matrices for
which the core of the transformed sequence is included by the core of the original
sequence. In the present section, we introduce a new type core, A(r, s, t)−core of
complex sequence and also determine the necessary and sufficient conditions on
matrix A for which A(r, s, t)−core(Ax) ⊆ K−core(x) and A(r, s, t)−core(Ax) ⊆
st− core(x) for all x ∈ ℓ∞.

Now, let us write

fn(x) = {A(r, s, t)x}n =
1

rn

n
∑

k=0

sn−ktkxk; (n, k ∈ N).

Then, we can define A(r, s, t)−core of complex sequence as follows:

Definition 4.1. Let Gn be the least closed convex hull containing fn(x), fn+1(x),

fn+2(x), . . .. Then, A(r, s, t)−core of x is the intersection of all Gn, that is,

A(r, s, t)− core(x) =
∞
⋂

n=1

Gn.

Then, we have following special cases.
(i) If s = e, tn > 0 and rn =

∑n
k=0 tk 6= 0 for all n, then A(r, s, t)− core reduces

to Kq − core (see [30]).
(ii) If s = e, rn = 1/vn and tk = vk, then A(r, s, t)− core reduces to Z − core (see
[31]).
(iii) If 0 < α < 1, s = e, tk = 1+αk and rn = n+1, then A(r, s, t)− core reduces
to Kr − core (see [32]).

In fact, we define A(r, s, t)−core of x by the K−core of the sequence (fn(x)).
Therefore, we can establish the following theorem which is an analogue of K−core,
[10].
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Theorem 4.2. For any z ∈ C, let

Hx(z) = {w ∈ C : |w − z| ≤ lim sup
n

|fn(x) − z|}.

Then for any x ∈ ℓ∞,

A(r, s, t)− core(x) =
⋂

z∈C

Hx(z).

Now, we prove some lemmas which will be need to the main results of this
section. We define the matrix C = (cnk) by

cnk =
1

rn

n
∑

k=0

sn−ktkank; (n, k ∈ N). (4.1)

Lemma 4.3. C ∈ (ℓ∞ : c) if and only if

‖C‖ = sup
n

∑

k

|cnk| < ∞, (4.2)

lim
n→∞

cnk = αk, (4.3)

lim
n

∑

k

|cnk − αk| = 0, (4.4)

where c is defined in [13].

Lemma 4.4. C ∈ (c : c)reg if and only if the conditions (4.2) and (4.3) of the
Lemma 4.3 hold with αk = 0 for all k ∈ N and

lim
n

∑

k

cnk = 1. (4.5)

Proof. This may be obtained in the similar way as mentioned in the proof of
Lemma 4.3. So we omit details.

Theorem 4.5. C ∈ (st ∩ ℓ∞ : c)reg if and only if C ∈ (c : c)reg hold and

lim
n

∑

k∈E

cnk = 0 (4.6)

for every E ⊂ N with δ(E) = 0.

Proof. Because of c ⊂ st ∩ ℓ∞, C ∈ (c : c)reg. Now, for every x ∈ ℓ∞ and set
E ⊂ N with δ(E) = 0. Now define sequence s = (sk) for all x ∈ ℓ∞ as

sk =

{

xk, k ∈ E,
0, k /∈ E.
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Then, since s ∈ st0, Cs ∈ c0, where c0 is the space of sequences which defined [13].
Then, since

∑

k

cnksk =
∑

k∈E

cnkxk,

the matrix E = (enk) defined by

enk =

{

cnk, k ∈ E,
0, k /∈ E

for all n, must belong to the class (ℓ∞ : c). Hence, the necessity of (4.6) follows
from Lemma 4.3.

Conversely, let x = (xk) ∈ st ∩ ℓ∞ with st − limx = p. Then, the set E is
defined by E = {k : |xk − p| ≥ ε} has density zero and |xk − p| ≤ ε if k /∈ E. Now,
we can write

∑

k

cnkxk =
∑

k

cnk(xk − p) + p
∑

k

cnk. (4.7)

Since
∣

∣

∣

∣

∣

∑

k

cnkxk

∣

∣

∣

∣

∣

= ‖x‖
∑

k∈E

cnkxk + ε‖C‖, (4.8)

letting n −→ ∞ in (4.7) and using (4.5), (4.6) we have

lim
n

∑

k

cnkxk = p. (4.9)

This implies that C ∈ (st ∩ ℓ∞ : c)reg and this step completes the proof.

Now, we may begin with quoting the following lemma (see[33]) which is needed
for proving our main theorem.

Lemma 4.6. Let A = (ank) be an infinite matrix satisfying
∑

k |ank| < ∞ and
limn ank = 0. Then, there exists y ∈ ℓ∞ with ‖y‖ ≤ 1 such that

lim sup
n

∑

k

ankyk = lim sup
n

∑

k

|ank|.

Theorem 4.7. Let C = (cnk) ∈ (c : c)reg. Then, A(r, s, t) − core(Cx) ⊆ K −
core(x) for all x ∈ ℓ∞ if and only if

lim
n

∑

k

|cnk| = 1. (4.10)

Proof. Let C ∈ (c : c)reg. The matrix C = (cnk) satisfies the condition of Lemma
4.6, since by the condition of regularity, there exists a y ∈ ℓ∞ with ‖y‖ ≤ 1 and
lim supn(Cy)n = lim supn

∑

k |cnk| (see [34]). Hence,

{

v ∈ C : |v| ≤ lim sup
n

∑

k

cnkyk

}

=

{

v ∈ C : |v| ≤ lim sup
n

∑

k

|cnk|

}

.
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However, since K − core(x) ⊆ B1(0), by the definition of K − core,

{

v ∈ C : |v| ≤ lim sup
n

∑

k

|cnk|

}

⊆ B1(0) = {v ∈ C : |v| ≤ 1}.

This implies (4.10).
Conversely, let v ∈ A(r, s, t) − core(Cx). Then, for any given t ∈ C, we can

write

|v − t| = lim sup
n

|fn(Ax) − t|

= lim sup
n

∣

∣

∣

∣

∣

t−
∑

k

cnkxk

∣

∣

∣

∣

∣

≤ lim sup
n

∣

∣

∣

∣

∣

∑

k

cnk(t− xk)

∣

∣

∣

∣

∣

+ lim sup
n

|t|

∣

∣

∣

∣

∣

1−
∑

k

cnk

∣

∣

∣

∣

∣

= lim sup
n

∣

∣

∣

∣

∣

∑

k

cnk(t− xk)

∣

∣

∣

∣

∣

. (4.11)

Now, let lim supk |xk − t| = s. Then, for any ε > 0, |xk − t| ≤ s + ε whenever
k ≥ k0. Hence,

∣

∣

∣

∣

∣

∑

k

cnk(t− xk)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

k<k0

cnk(t− xk) +
∑

k≥k0

cnk(t− xk)

∣

∣

∣

∣

∣

∣

≤ sup
k

|xk − t|
∑

k<k0

|cnk|+ (s+ ε)
∑

k≥k0

|cnk|

≤ sup
k

|xk − t|
∑

k<k0

|cnk|+ (s+ ε)
∑

k

|cnk|. (4.12)

Whence, applying lim supn to the (4.12) with combining (4.11) and using the
hypothesis, we have

|v − t| ≤ lim sup
n

∣

∣

∣

∣

∣

∑

k

cnk(t− xk)

∣

∣

∣

∣

∣

≤ s+ ε

which means that v ∈ K − core(x). This completes the proof.

Theorem 4.8. Let C ∈ (st∩ℓ∞ : c)reg. Then, A(r, s, t)−core(Cx) ⊆ st−core(x)
for all x ∈ ℓ∞ if and only if (4.10) holds.

Proof. Because of st − core(x) ⊆ K − core(x) for every sequence x ∈ ℓ∞, the
necessity of the condition (4.10) holds by Theorem 4.7.
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Conversely, let v ∈ A(r, s, t) − core(Cx). If st − lim sup |xk − t| = l, then for
any ε, the set E is defined by E = {k : |xk − t| > l + ε} has density zero.

Now, we can again write (4.11)

∣

∣

∣

∣

∣

∑

k

cnk(t− xk)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

k∈E

cnk(t− xk) +
∑

k/∈E

cnk(t− xk)

∣

∣

∣

∣

∣

≤ sup
k

|xk − t|
∑

k∈E

|cnk|+ (l + ε)
∑

k/∈E

|cnk|

≤ sup
k

|xk − t|
∑

k∈E

|cnk|+ (l + ε)
∑

k

|cnk|.

Whence, applying lim supn to the above inequality and using conditions (4.5) and
(4.6), we have

lim sup
n

∣

∣

∣

∣

∣

∑

k

cnk(t− xk)

∣

∣

∣

∣

∣

≤ l + ε. (4.13)

If we combine (4.11) and (4.13), we have

|v − t| ≤ st− lim sup
k

|xk − t|

which means that v ∈ st− core(x). This completes the proof.
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[8] F. Başar, A. Karaisa, Some new generalized difference spaces of nonabsolute
type derived from the spaces ℓp and ℓ∞, The Scientific World Journal 2013
(2013) 1–15 doi:10.1155/2013/349346.

[9] R.G. Cooke, Infinite Matrices and Sequence Spaces, Mcmillan, New York,
1950.

[10] A.A. Shcherbakov, Kernels of sequences of complex numbers and their regular
transformations. Math. Notes 22 (1977) 948-953.

[11] J.A. Fridy, C. Orhan, Statistical limit superior and limit inferior, Proc. Am.
Soc. 125 (1997) 3625–3631.

[12] J.A. Fridy, C. Orhan Statistical core theorems, J. Math. Anal. Appl. 208
(1997) 520-527.

[13] M. Mursaleen, A.K. Noman, On generalized means and some related sequence
spaces, Comput. Math. Appl. 61 (2011) 988-999.
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[26] F. Başar, B. Altay, M. Mursaleen, On the Euler sequence spaces which include
the spaces ℓ∞ and ℓp I, Inform. Sci. 176 (2006) 1450–1462.

[27] J. Boos, Oxford University Press Inc, New York, Classical and Modern Meth-
ods in Summability, Oxford University Press Inc, New York, 2000.

[28] A. Wilansky, Summability through Functional Analysis, North-Holland
Mathematics Studies 85, Amsterdam-Newyork-Oxford, 1984.

[29] K.-G. Grosse-Erdmann, Matrix transformations between the sequence spaces
of Maddox, J. Math. Anal. Appl. 180 (1993) 223–238.
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