THAT JOURNAL OF MATHEMATICS /30,
S <
VOLUME 15 (2017) NUMBER 3 : 581606 #@s \‘y

\Z
http://thaijmath.in.cmu.ac.th & ac,/

ISSN 1686-0209

Linesearch Algorithms for Split Generalized
Equilibrium Problems and Two Families of
Strict Pseudo-Contraction Mappings

Kiattisak Rattanaseeha, Rattanaporn Wangkeeree@
and Rabian Wangkeeree

Department of Mathematics, Faculty of Science, Naresuan University
Phitsanulok 65000, Thailand
e-mail : kiattisakrat@live.com (K. Rattanaseeha)
rattanapornw@nu.ac.th (R. Wangkeeree)
rabianw@nu.ac.th (R. Wangkeeree)

Abstract : In this paper, we study linesearch algorithms finding a common solu-
tion of a split generalized equilibrium problems and two families of strict pseudo-
contraction mappings in Hilbert spaces. Weak and strong convergence theorems
for such algorithms are studied. Our results improve many known recent results
in the literature.

Keywords : split generalized equilibrium problem; strict pseudo-contraction;
linesearch rule; weak and strong convergence.
2010 Mathematics Subject Classification : 47H09; 47H10.

1 Introduction

Throughout this paper, let R denote the set of all real numbers, N denote the
set of all positive integer numbers. Let H; and Ha be two real Hilbert spaces with
inner product (-, -) and norm ||-||. Let C' and @ be nonempty closed convex subsets
of Hy and Hs, respectively, and A : H; — Ho be a bounded linear operator. The
split feasible problem (SFP) in the sense of Censor and Elfving [1] is to find 2* € C
such that Az* € Q. It turns out that SFP provides a unified framework for study
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of many sigificant real-world problems such as in signal processing, medical image
reconstruction, intensity-modulated radiation therapy, et cetera; see, for example,
[2]. To find a solution of SFP in finite-dimensional Hilbert spaces, a basic scheme
proposed by Byrne [3], called the CQ-algorithm, is defined as follows:

a* 1 = Po(ab + 4 AT (Pg — T)Az®),

where I is the identity, mapping, and P is projecttion mapping onto C. Xu [4]
investigated the SEP setting in infinite-dimensional Hilbert spaces. In this case,
the CQ-algorithm becomes

2t = Po(ab 4 yA* (P — 1) Ax®),

where A* is the adjoint operator of A.

The split feasibility problem when C or @ are fixed points of mappings or
common fixed points of mappings and solutions of variational inequality problems
was considered in some recent research papers; see, for instance, [5].

In 2011, Moudafi [6] introduced the following split equilibrium problem (SEP,
for short): Let g1 : C x C — R and g2 : @ x Q — R are two bifunctions;
A :Hy — Hs be a bounded linear operator, then the SEP is to find z* € C such
that

g1(z*,x) > 0,Vx € C, (1.1)

and such that
y* = Az* € @ solves go(y*,y) > 0,Vy € Q. (1.2)
When looked separately, (IT)) is the classical equilibrium problem EP and we
denoted its solution set by EP(C, ¢g1). The SEP (1)) and (IL2) constitutes a pair
of equilibrium problems which have to be solved so that the image y* = Ax* under
a given bounded linear operator A, of the solution x* of the EP (1)) in #; is the
solution of another EP(2)) in another space Ha, we denote the solution set of

EP(2) by EP(Q, g»).
The solution set of SEP (1)) and (2) is denoted by
2={peEP(C,91): Ap € EP(Q, 92)}.

See [7] for more detail on equilibrium problems.
In 2013, Kazmi and Rizvi [8] proposed the split generalized equilibrium prob-
lem (SGEP, for short): SGEP is the problem of finding 2* € C such that

g1(z*,z) + hi(z*,2) > 0,Vx € C, (1.3)
and such that
y* = Ax* € @Qsolves g2(y*,y) + ha(y*,y) > 0,Vy € Q. (1.4)

where g1,h1 : C x C — R and g2, he : Q X Q — R are nonlinear bifunctions and
A : Hy — H, is a bounded linear operator. We denote the solution set of SGEP
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([C3) and [@T4) by Sarp(C, g1, h1) and Scrp(Q, g2, ha), respectively. The solution
set of SGEP is denoted by

Sarp = {Z eC:ze€ SGEP(Cu g1, hl) such that Az € SGEP(Q,QQ, hg)}

If hy = 0 and hy = 0, then SGEP reduces to SEP. If h; = ho = 0 and g2 = 0, then
SGEP reduces to EP.

On the other hand, many researchers have been proposed numerical algorithms
for finding a common element of the set of solutions of monotone equilibrium
problems and the set of fixed points of nonexpansive mappings;, for example, [9],
[10] and the references therein.

Recently, Dinh, et al. [I1] studied the split equilibrium problem and nonexpan-
sive mapping involving pseudomonotone and monotone equilibrium bifunctions in
real Hilbert spaces, that is, let f : C' x C — R be a pseudomonotone bifunction
with respect to its solution set, g : @ X @ — R be a monotone bifunction, and
S:C — CandT:Q — @ be nonexpansive mappings. They stated problem as
follows (SEPNM(C, Q, A, f,g,S,T)) or SEPNM for short):

Find z* € C such that 2™ € Sgp(C, f) N Fix(S) and Az* € Spp(Q, g) N Fix(T),

where Fix(S) and Fix(T) are the fixed points of the mappings S and T, respec-
tively. They combined the extragradient method incorporated with the Armijo
linesearch rule for solving equilibrium problem and the Mann method for finding a
fixed point of an nonexpansive mapping. In addition, they combined the proposed
algorithm with hybrid cutting technique to get a strong convergence algorithm for
SEPNM.

We recall that a mapping S : C — C is said to be L-strict pseudo-contractive
(in the sense of Browder-Petryshyn) if there exists L € [0, 1) such that

1S(z) = S@I* < llz = yl* + LI(I = 8)(z) = (I = S)»)|*, Y2,y € C, (1.5)

where [ is the identity mapping on H. Note that the class of strict pseudo-
contractions includes the class of nonexpansive mappings, which are mappings S
on C such that

15(z) = Sl < llz —yl,Vz,y € C.

The problem of finding fixed points of nonexpansive mappings via Mann’s algo-
rithm [I2] has been widely investigated in the literature (see e.g. [13]). Mann’s
algorithm generates, on initializing with an arbitrary z; € C, a sequence according
to the recursive formula

21 € C,xpy1 = antp + (1 — ap)Sx,,Vn > 1,

where {ap}nen C (0,1). Furthermore, iterative algorithms for strict pseudo-
contractions are still less developed than those for nonexpansive mappings, despite
the pioneering work of Browder and Petryshyn [14] dating from 1967. However,
strict pseudo-contractions have many applications, due to their ties with inverse
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stronglymonotone operators. Indeed, if A is a strongly monotone operator, then
S =1— A is a strict pseudo-contraction, and so we can redraft a problem of zeros
for A in a fixed point problem for S (see e.g. [I5], [16]).

This paper, we propose on a split generalized equilibrium problems and two
families of strict pseudo-contraction mappings in Hilbert spaces. In detail,let f :
C x C — R be a pseudomonotone bifunction with respect to its solution set,
g,h : @ x @ — R be a monotone bifunction, and S; and T} are L; and L;-—strict
pseudo-contractions for some 0 < L; < 1 and 0 < L;- < 1, respectively, where for
each i € {1,2,...,p} and j € {1,2,...,p'}. The problem considered in this paper
can be stated as follows:

Find z € C such that z € Sgp(C, f) N (NI_, Fix(S;, C))

and
Az € SGEP(Qu 9, h) N ( ﬁ?:1 FiX(Tju Q))7

where Fix(S;, C) is the set of the fixed points set of the mapping S;(i = 1,...,p)
and Fix(Tj, Q) is the set of the fixed points set of the mapping T;(j = 1,...,p').

In this paper, motivated and inspired by the work of Dinh, et al. [II] and
by research going on this area, we shall introduce a linesearch algorithms for split
generalized equilibrium problems and two families of strict pseudo-contraction
mappings in Hilbert space. Weak and strong convergence theorems for such al-
gorithms are studied. Our results complement many known recent results in the
literature.

2 Preliminaries

Let C be a nonempty convex subset of a Hilbert space H. We write z* — x
to indicate that the sequence {z*} converges weakly to = as k — oo, and 2% — x
to indicate that the sequence {z*} converges strongly to = as k — oo. Since C
is closed, convex, for any x € H, there exists an uniquely point in C, denoted by
Po(z) satistying
|z — Pe ()|l < llz —yl,Vy € C.

P¢ is called the metric projection of H to C.

Lemma 2.1. Suppose that C' is a nonempty closed convexr subset in H. Then Pg
has the following properties:

(a) z = Po(x)if and only if (x — z,y — z) < 0,Vy € C;
(b) (z —y, Pc(x) — Po(y)) > | Pe(z) — Pe()|I?, Yo,y € H;
(¢) {(x — Po(z),Pc(z) —y) >0, Ve e H,yeC;

)

@) = —yl? >l = Po(@)|* + |y — Pe(@)l?, YozeH,yeC.
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Lemma 2.2. Let H be a real Hilbert space. Then, for all z,y € H and « € [0, 1],
we have

laz + (1 = a)yl* = aflz]* + (1 = ) lyl* — a(l = a) [z — y]*.

Lemma 2.3 (Opial’s condition). For any sequence {z*} C H with ¥ — z, we
have the inequality

liminf ||z% — z| < liminf ||z* — y||

k—~+o0 k——+oo

hold for all y € H such that y # x.

The concept of strict pseudo-contraction is considered in [I7], which defined
as follows.

Definition 2.4. We say that an operator S : H — H is demiclosed at 0 if, for any
sequence {z*} such that ¥ — x and Sz* — 0 as k — 0o, we have Sz = 0.

The following proposition lists some useful properties of a strict pseudo-contraction
mapping.

Proposition 2.5. [I7] Let C be a nonempty closed convex subset of a real Hilbert
space H , S : C — C be a L-strict pseudo-contraction and for eachi=1,--- p,S;:
C — C is a L; -strict pseudo-contraction for some 0 < L; < 1. Then:

1. S satisfies the following Lipschitz condition:

1+L
1-L

15(z) = Sl < lz —yll, Vz,y € C;

2. I — 8 is demiclosed at 0. That is, if the sequence {x*} contains in C such
that % — z and (I — S)(z*) = 0 then (I — S)(T) = 0;

3. The set of fized points Fix(S) is closed and conver;

4. Ifni >0(i=1,--- ,p) and Y30, mi =1 then Y0, 1;S; is a L-strict pseudo-
contraction with L := max{L; : 1 <i < p};

5. If n; is chosen as in (iv) and {S; :i=1,...,p} has a common fized point
then:
P P
i=1 i=1

Lemma 2.6. [I8] Suppose that {ay} and {Bi} are two sequences of nonnegative
real numbers such that

o1 Lo+ By, k>0,

where Y po o B < co. Then the sequence {ay} is convergent.
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Now, we assume that the equilibrium bifunction f, g and h satisfy the follow-
ing assumptions I, IT and III, respectively.

Assumption I : Assume that f: C x C — R, let us assume that f satisfies the
following conditions:

(A1) f is pseudomonotone on C, that is, if f(x,y) > 0 implies f(y,z) < 0 for
all z,y € C;

(A2) f(z,-) is convex and subdifferentiable on C for all x € C;

(A3) f is jointly weakly continuous on C' x C' in the sense that, if x,y € C and
{z*} and {y*} C C converge weakly to x and y, respectively, then f(z*,y*) —
f(z,y) as k — oo.

Assumption IT : Assume that g : Q x Q — R, let us assume that g satisfies the
following conditions:

(B1) g(z,z) =0 for all z € Q;

(B2) g is monotone, i.e, g(x,y) + g(y,x) <0 for all z,y € Q;

(B3) for each x,y,z € Q, limy—, ¢ g(tz + (1 — t)z,y) < g(z,y);

(B4) for each z € Q, y — g(z,y) is convex and lower semicontinuous.
Assumption III : Let the bifunction h: Q x @ — R be satisfied

(C1) h(z,z) > 0,Vz € Q,

(C2) For each y € @ fixed, the function x — h(z,y) is upper semicontinuous,

(C3) For each z € @ fixed, the function y — h(x,y) is convex and lower
semicontinuous,

Assumption IV : For fixed r > 0 and z € C, there exists a nonempty compact
convex subset K of H and = € C'N K such that

1
f(z,y) + h(y,z) + Sy —wr—2) <0y e C\K.

Let f be an equilibrium bifunction defined on C x C'. For z,y € C, we denote
by 0f(z,y) the subgradient of the convex function f(z,-) at y, that is,

Of (w,y):=={t€H: f(x,2) > fz,y) + (I, z —y), forall z € C}.
In particular,
Of (w,z) == {teH: f(z,2) > (t,z—y), forall z € C}.

Let A be an open convex set containing C'. The next lemma can be considered
as infinite-dimentional version of Theorem 24.5 in [19].

Lemma 2.7. [20] Let f : A x A — R be an equilibrium bifunction satisfiying
condition (B2) on A and (B4) on C. Let z,y € A, and let {z*}, {y*} be two
sequences in A converging weakly to T,q, respectively. Then, for any e > 0, there
exist n > 0 and ke € N such that

of(a*,y*) cof (z,y) + %B

for every k > k., where B denotes the closed unit ball in H.
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Lemma 2.8. [I1] Let the equilibrium bifunction f satisfy assumptions (B2) on A
and (B4) on C, and {z*} C C,0 < p' < p",{px} C [0, p"]. Consider the sequence
{y*} defined as

. 1
y* = argmm{f(xk,y) + ﬂHy—:rkH2 VRS C}.

If {z*} is bounded, then {y*} is also bounded.

Lemma 2.9. [21] Let g satisfy Assumtion II. Then, foe all v > 0 and u € H,
there exists w € Q such that

1
gw,v) + —(v —w,w —u) >0,Yv € Q.
a

Lemma 2.10. [22] Assume that the bifunctions g, h : Q x Q — R satisfy Assump-
twn 11, Assumption III, respectively. For a > 0 and x € H, define a mapping

g R TN Q as follows:

T (@) = {2 € Q: g(z0) 4 hley) + {y— 22— a) 20, e Q).

Then, the following hold:
(i) 7™ (2) £ 0.
(ii) {9 is single-valued.

(iii) T s firmly nonexpansive, i.e., for any x,y € H,

1T e = Ty |? < (TEM e — TNy, x —y).

(iv) Fix(T¥") = Sare(Q, 9, ).
(v) Seep(Q, g, h) is compact and convet.
Lemma 2.11. [23] Let g : Q x Q@ — R be a bifunction satisfying Assumption

1T hold and let TO™ be defined as in Lemma [Z10 with o, 8 > 0. Then, for any
z,y € H and

h B— h
TP =Ty < o=yl + | =5 |75 — 2]

Lemma 2.12. [23] Let g: Q X Q = R be a bzfunctwn satisfying Assumption II
and Tég’h),Tég’h) be defined as in Lemma 210 with o, 8 > 0. Then the following
holds:

| TL9M) g — Tég’h):ch2 < aT_B<Ta:C —Tgx, Tz — )
forall x € H.

Lemma 2.13. [24] Let C be a convex subset of a real Hilbert space H and g :
C — R be subdifferentiable on C. Then x* is a solution to the following convex
problem:

min{g(z) : z € C}
if and only if 0 € Og(x*) + N¢(z*), where Og(-) denotes the subdifferential of g
and Ne(x*) is the (outward) normal cone of C at z* € C.
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3 Main Results

3.1 A Weak Converegence Algorithm
Algorithm I : Initialization.

e Pick 2° € C and choose the parameters 8,7,0 € (0,1), 0 < p' < p",{pr} C

0", 0 < <" <2, {m} € [V1"], 0 <o, {ar} C [a,00), p €
1

e For each i = 1,2,...,p, {mk,:} is a real sequence of nonnegative numbers
satisfying > % mp; =1 for all k > 1.

e Foreachie {1,2,...,p}andje{1,2,...,p'},S;:C - Cand T;: Q — Q
are L; and L;—strict pseudo-contractions for some 0 < L; < 1 and 0 < L;- <
1, respectively.

o {Bx}isa nonnegative real sequence satisfying 0 < L < B <1and B — %
as k — oo, where L := max{L; : i = 1,2,...,p} and L' := max{L} : j =
1,2,...,p'}.

For each k, (k = 0,1,2,...), the sequence {z} is generated by the following steps:

Step I : Solve the strongly convex program :

. 1
yr = argmm{f(:v’“’y) + ﬂlly —aF|? iy e C}

to obtain its unique solution y*. If y* = 2* then set u* = 2* and go to Step III.
Otherwise, go to Step II.

Step II : (Armijo linesearch rule) Find my as the smallest positive integer
number m such that

{Zk)m = (L—n™)z" + "y,

" m (3.1)
FUm, k) = F(Rm k) > S — g2,

Set ny, = n™k, 2k = Zkme,
k k
Step III : Take t* € 0f(2*,2F), o), = %, and denote
ub = Pc(xk — %Uktk),
oF = Brub + (1= ) o0y nk,aSi(u®),
wh = To(ti"h)Avk,
P = Po(ob 4 AN (S Ty () — Ab))
and go to iteration k with k replaced by k + 1.

Applying Lemma 4.1, Lemma 4.2 and Lemma 4.3 obtained in [25], we obtain
the following Lemma immediately.

Lemma 3.1. Suppose that p € EP(C, f), f(x,-) is convex subdifferentiable on C
for all x € C and that f is pseudomonotone on C. Then, we have:
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(a) The Armijo linesearch rule (3] is well defined;
(b) f(z*,2%) > 0;

(c) 0¢ 32f(2 *);

(d) flu* = plI? < [l2* = pl2 = (2 = 1) (nllEH]])

Now, we are in a position to state and prove the main weak convergence
theorem for the given iterative scheme.

Theorem 3.2. Let Hi,Hs be two real Hilbert spaces and C C Hi1,Q C Hao be
nonempty closed convex subsets. For each i € {1,2,...,p} and j € {1,2,...,p'},
Si:C—=CandT;:Q — Q are L; and L; -strict pseudo-contractions for some
0<L;<land0 < L;- < 1, respectively. Let the bifunctions f,g and h satisfy
Assumptions I, II and III, respectively. Let A : H1 — Ho be a bounded linear
operator with its adjoint A*. If

Q.= {3: € Sep(C, )N (ﬂFlX Sl,C')) Az* € Sarp(Q, g, h (ﬁ Fix(T}, )}

is nonempty set, then the sequences {x*}, {u*} and {v*} generated by Algorithm
I converge weakly to an element T € Q, and {w*} converges weakly to AZ.

Proof. Let z* € Q. Then 2* € Sgp(C, f) N (N!_, Fix(S;, C)) and

Ax* € Scep(Q,9,h) N ( 2?/:1 Fix(T},Q)). From Lemma BI(d), we have

* * 2 *
laf =22 < fla* — 2" ? = @ = ) (oullt*)? < l* — 2" (3.2)

For each k > 1, let the mapping S be given by

p
Sk == Z Mk,i Si-
i—1

By Proposition 2.5 we see that Sy, is a L-strict pseudocontraction on C. Then,
for all £ > 1, we have

1Bk + (1 = Br) Sk (u*) — 2*|?

181 (uF = 2%) + (1 = Bi) (S (u¥) — %)

= Belu® —2*|? + (1 = Be)l|Sk (u*) — 2*||?
—Br(1 = Bi) || Sk (u*) — u¥||?

Bellu® — (| + (1 = Bi) [ Sk (u*) — Sk (z*)|?
—Br(1 = Br) ||k (u*) — u*|?

Brlu® — =

+(1 = ) (Ila* = 2|2+ LI = So)wh) = (2 = Si) ("))

lv* — ||

IN
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—Be(1 = Br) ISk (u*) — u||?

= Jlu* =27
+(1 - Bk)(i”gk(uk) — uk||2) _ Bk(l _ ﬁk)”s_k(uk) _ ukHz
= [l = |2+ (1= B (L — B | Sw(u®) || (3.3)

Since 0 < L < B < 1, it follows from (B3] that
lvF =2 < flu® — 2 ||* < [|la* — 2|, (3.4)
By Lemma 210 we have
e vt — 4z = g At - TP are |
(T (oM Avk — T@M Az™, Avh — Az*)
= < (g’h)Avk — Az*, Avk — Ax*)

IN

[HTW b AP 4 [ Aok — Aa®|]
HT(yh Sy
Hence,
L [ e e R T T I

For each k > 1, let T}, be a mapping defined by
— p/

Te =Y ;T
j=1

By Proposition 2.5, we see that T}, is a L-strict pseudo-contraction on Q and the
sequence {z*} generated by Algorithm 1 can be rewritten as

Pc(U —l—uA*(Tkw — AvF )) vk > 1.

Then, for all £ > 1, we have

||Tkwk - Aa:*”2 ||Tkwk - TkA:L“*H2

< wh - Aa:*||2 + L||(I = Tp)(w®) = (I = Tp)(Az™)|)?
= [Jwb — Az*|® + L||T(w") — w*|

< |jw* —Ax*H2+ | T (w”) — w”||?

= HTo(t-Z’h)Avk — A;E*H2 + | Tk (w) — w”|?

<Ak — Azt |P — || T Ak —

+ (| Te (w*) — w2 (3.5)
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Using (3.3]), we have
(A(WF — 2*), Tpwh — Av%)

= (A@W* = 2") 4 Tpw* — Ak — (Tpw® — Av®), Tpw® — Avk)
= (Tpw" — Az*, Tyw® — Av®) — || Thw® — Av"||?

—~

= %HTkw — Ax* || —|—HTkw —Aka ||Avk—A3:*||2}

| Tt — a0k

- 5[ ot = o) = it — ot
N AT 2 K 2
- 5( vk~ o)

Ik — Auk?
5 (ITi0) — upP - 7"

—;wmﬂ—AwW

IN

1 -
= SITw) — b — ST Ak — vk
1, _
—§HTkw —Aka . (3.6)

By the definition of 2**! we have

Ja* Tt =P = [[Po(oh + pA" (T — A%)) = Po(a")|?

< " = 27) + pAT (Trw — Av%)|?

= |JoF —2*|? + [|pA* (Trw® — Av¥)|?
+2u<vk — ", A*(Tkwk — Avk)>

<P = a2 P AP Thw® — Av|?

+2u(AWF — 2%, Trw® — Av®).
In combination with B.6) and (B4, the last inequality becomes

Jeb — a2 < ok — a2 — 2 AP T — AvF|?
Tl Tiwh) — w)? = | Tiaw® — Av¥|2
TP At — Ak
= o =@ (L — AT Tt — AF 2
Tl Tiwk) — M = gl — Aok
¥ — a2 = (1 — pl| A [2)| T — AvF|2
| Ti(w¥) = ]| = gl — Aok (3.7)

IN
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1
From (34), 1), and p € (0, W), we get

"+ — 2| < [Jo* — 2*|| < [lu* — 2| < [|l2* — 2| (3.8)
and
p(1 = pl| AP [ Trw® — Av*|1? + pllw® — Ao*|[* — p| Ti(w®) — w®|?

<la? =) = [l — 2|2, (3.9)

Therefore, limg_, 1 o ||2% — 2*|| exists, and we get from ([B.8) and () that

lim ||z —2*|| = lim [v* —2*|| = lim |ju* —2*| and
k—+4o0 k—+o00 k—+o0
lim || Tpw® — Av*|| = lim |w® — Av%|| = 0. (3.10)
k—+oo k—+oo

From (3I0) and the inequality
|1 Tiw® — w"|| < | Tew" — Av®| + [lw” — Ao*],
we get

. 5ok k|
kll)r-‘,r-loo"Tkw w”|| = 0. (3.11)

Besides, Lemma [B1(d) implies
* * 2
luf = 2*|* < fla® = 2*)|* — i (2 = i) (orllE]])
Hence,

(2 =) (on[[t51D)? < lla* — 2 |* = fu* - 2*|?

= (la* — 2|l = llu* = 2* D (lla" = 27| + [lu® = 2*[)).
In view of BI0), we get
lim o|[t"]| = 0. (3.12)
k— o0

Moreover, by the definition of u*u* = Po(2F — y,04tF). We have
[u* = a* || < yrowl|t*]].
So, we get from (B.I12) that

lim |ju* — 2%|| = 0. (3.13)
k— o0
From B3], we get
2

o = 2| < k= |2+ (1= B (L - Bl Sk -t 319)
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Therefore,
(1= Br) (B = L) S —a¥||* < flu® —a*||* — o* — 27|,
Combining the last inequality with (3.10) , we obtain that
i | Spu® —u*| = 0. (3.15)
Moreover,
e I N R A

189" + (1 = B)Spu® —u|l + u* — ¥
= (1= BlSku” —u®|| +[lu* —2"|

Thus, we get from (BI3) and (BIH) that

li F—af| =o0. 1
S ot — a2t =0 (3.16)

Since limy_, o ||2¥—2*|| exists, {z*} is bounded. By Lemma[Z8], {y*} is bounded,
and consequently {z*} is bounded. By Lemma 27 {t*} is bounded. Step III and

B.12) yield
lim f(z*,2%) = lim [o|[t*]][1£*]] = 0. (3.17)
— 00

k— o0

We have
0= f(z"2%) = f(z", (1= me)a® + ™) < (L= me) £(&5, 2 + e f (25, 05),
so,we obtain
Nk [f(zkv'rk) - f(zkvyk)] < f(zkv'rk)
Thus, we get from (B34]) that

0
2—pk77k||$k =y IIP < m[ (5 ") = FF M) < F(EaR).

Combining this with (BI7), we have

lim g |lz* — %)% = 0. (3.18)
k—o0

Suppose that Z is a weak accumulation point of {z*}, that is, there exists a
subsequence {x%i} of {x*} such that {27} converges weakly to z € C as j — +o0.
Then, it follows from (I3) and ([BI6) that u* — z, v — z, and Avk — Az.
Since limg_ 4 oo |w* — Av¥|| = 0, we deduce that wki — Az. Because {w*} C Q
and @ is closed and convex, we have that AZ € Q. From (B.I8]), we get

lim 7, [l —y* > = 0. (3.19)
i—»00
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We now consider two distinct cases.

Case I. limsup;_,., nk, > 0. In this case, there exist 7 > 0 and a subsequence
of {ng, }, denoted again by {n, }, such that, for some iy > 0, n, > 7 for all i > .
Using this fact and [BI9]), we have

ki

= 0. (3.20)

lim ||a:k1 —y
71— 00

Recall that z* — Z, together with ([3.20), implies that y* — Z as i — oco. By
the definition of y*:,

1
2pki

k

yF = argmin{f(z",y) + —|ly — 2™ |* : y € C},

so, we have

0 € Df (e, y™) + — (5 — ™) + Ne(y™).

Pk;
Thus, there exists £ € 0f(x*, y*") such that
. 1
(g —y") + =yt ety =yt z 0 Wy e O

Combining this with

f(xkl7y) - f(xkluykl) 2 <£ki7y_yki>7vy € Cu

yields
. v . 1 . . .
fa®y) = fa™, gk + p—k<y’“ — a2k y—yFy >0,y e (3.21)
Since
(" — a2y — oyt < Iyt - 2Ny — v,

from B2I) we get that
. ks 1 : . :
Faty) = fa® ™) + 2=yt =2ty ot = 0. (3.22)

Letting ¢ — oo, by the weak continuity of f and [B20), from ([3.22) we obtain in
the limit that

8l

f(z,y) — f(z,2) = 0.
Thus,

f(Z,y) >0,vy € C.

Hence, Z is a solution of EP(C, f).

Case II. lim; oo 7k, = 0. From the boundedness of {y*'}, without loss of
generality, we may assume that y* — 7 as i — oo. Replacing y by z* in (322,
we get

Cn 1 . :
Flah,yh) < ——Jyh — 2™

2, 3.23
Pk; ( )
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On the other hand, by the Armijo linesearch rule (834]), for my, — 1, we have

0
f(zki,mkifl7xki) _ f(zki,mkifljyki) < 2 ||yk1 _ xki 2-
Pk;

7

Combining this with (8:23)), we get
1 2
Fa ) € =l =R P < G ) = e a). (324

According to the algorithm, we have zFimri =1 = (1 — pmes —Lyghs 4 pmw—Lyks,
Since ™+ ~1 — 0,{2*} converges weakly to z, and {y*} converges weakly to

1

7, this implies that zF#™%~1 —~ 7 as i — oco. Beside that, {—Hykl — :Eki||2} is
Pk;

bounded, so without loss of generality we may assume that lim; o, —|/y* —

7

x¥i||? exists. Hence, in the limit, from (3:24)) we get that

<

f(@,9).

SR

- N
< — _ i i
f(@,9) < - lim . [y — =

1
Therefore, f(Z,7) = 0 and lim; o —||y* — 2¥||> = 0. By Case I we get
Pk;

7 € Sgp(f). Next, we prove that any weakly cluster point of the sequence {z*}
is a common fixed point of L;-strict pseudocontraction, for each ¢ = 1,2,...,p.

P

Inparticular, z € ﬂ Fix(S;,C). Let § be any weakly cluster point of {x*} and let
i=1

{z*m} be a subsequence of {z¥} C C weakly converging to 7. By convexity and

the closedness of C, C' is weakly closed. Thus, 57 € C. We first show that

lim [|z*m — S(zF=)|| = 0. (3.25)

m— 00

Since, B B
18k (u*) — 2®|| < [[Sh(u®) = || + [Ju® — 2"

Then, by (B15) and (BI3) we obtain
- 5k k|| —
k:EI—ir-loo [|Sku® — 2| = 0. (3.26)
Since, - - - -
18k (2*) — 2®|| < 1Sk (2*) — Sk (u®)] + 1|8k (u®) — 2.
Then, by Proprositon 2.5(i) , we obtain

- 1+L -
1Sk (@) — 2l < T—F " = w*ll + Sk (") — 2",
So, from BI3) and ([B:20), we obtain

lim ||Sk(z) — z*|| = 0. (3.27)
k— o0
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;} converges to 7; as m — oo such

mst

For each i = 1,2,...,p, we suppose that {n
P

that Zm— = 1. Then, for each 1,2,...,p and z € C, we have
i=1

P P
= Z My, Si(X) — ZmSi(x) =95(x) as m — oo. (3.28)
m=1 i=1

It follows from B.27) that
lz* = S < l|la™ = Sk, (") + 1Sk, (") = S|

p p
Z My i Si () = miSi(2"
: i=1
Z Nk i B 1( km)

= [lz* = Sk, (") +

= lla** = S, (&) +

< |z = Sy, ()| + Z e ,i = 1l S (). (3.29)
So, we get
lim 2P — S(zF=)| = 0. (3.30)

By Proprosition [Z5ii), we have

It follows from 25(v), we have

p
g € () Fix(S;, C).

=1

In particular, we conclude that z € N!_, Fix(S;, C). Hence,

z € Spp(C, f)N ﬂ Fix(S;, C)). (3.31)
i=1
Next, we need to show that AZ € Sgrp(Q,g,h)N ( 1;7/:1 Fix (T}, Q)) Indeed,
we have Sqrp(Q,g,h) = Fix(Tég’h)). So, if Tég’h)Ai #+ AZ, then, using Opial’s
condition, we have
liminf |Av% — AZ|| < liminf ||Av* — Tég’h)A:fH
j—+oo Jj—+oo

= liminf||Av" —wh +wh Tég’h)A:fH

Jj—+o0

IN

lim inf (|| Ao — w® || + [[whs — T3 Az])).
Jj—+oo
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So it follows from ([B.I2)) and Lamma Bl that

liminf |Av* — AZ|| < liminf ||T I Az — ki I
J—+oo

j—rFoo

= liminf ||T oM Az — q’h)Av |

Jj—+oo
|lax;, — B
Qe

< liminf {||Aka — Az|| + —/———

Jj—+o0

1T q’h)Av AkaH}

o v, m N
= liminf { || Avh — Az + S b - b}

= liminf ||Av% — Az,
Jj—+oo

a contradiction. Thus, AZ €Fix(TEM) = Scep(Q, g, h). Moreover, (LI imply
that (I — Ty)(w*) — 0 and we have wki — Ap, then by pr0p031t1on 25(ii) we

get (I —Ty)(Az) — 0 is demiclosed at 0, so we obtain that Az € =1 Fix(T}, Q).
Therefore,

P
Az € Sapp(Q.g.h) N ([ Fix(T}, Q). (3.32)
j=1
From B31)) and ([B32)) we obtain that € Q. To complete the proof, we must
show that the whole sequence {z*} converges weakly to Z. Indeed, if there exists
a subsequence {z'i} of {z¥} such that z!i — ¢ with ¢ # Z, then we have ¢ € Q.
By Opial’s condition this yields

A

liminf ||z} — Z||

lim inf [z — g
1——+00 1——+00

= liminf ||zF — Z||
Jj—+o0

= liminf ||z — Z||
Jj—+oo

< liminf ||z% — ¢||
J—+o00

= liminf ||z" — ¢]|. (3.33)
1— 400

This is a contradiction. Hence, {z*} converges weakly to . Combining this with
@BI3), it is immediate that {u*}, {v*} also converge weakly to # and wki — Az €

SGEP(Qvgvh’) N ( ?lzl FIX(TJ7Q)) .

Corollary 3.3. Let Hy,Hsz be two real Hilbert spaces and C' C Hy,Q C Ha be
nonempty closed conver subsets. Let S : C — C and T : Q@ — @ are L and
L'-strict pseudo-contractions, respectively, . Let the bifunctions f,g and h satisfy
Assumptions I, II and III, respectively. Let A : Hi — Ho be a bounded linear
operator with its adjoint A*. If

Oy :={z" € Sgp(C, f)N Fiz (S,C) : Az* € Sarp(Q,g,h) N Fiz (T, Q)} # 0.
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Let the sequences {x*}, {uF} and {v*} be generated by the following :
Step I : Solve the strongly convex program :

, 1
yr = argmln{f(:vk7y) + ﬂlly —a¥? iy e C}

to obtain its unique solution y*. If y* = ¥ then set u* = z* and go to Step III.
Otherwise, go to Step II.

Step II : (Armijo linesearch rule) Find my as the smallest positive integer
number m such that

{Zk)m = (L =n™)z" + 9"y,

N o (3.34)
F(hm ) = f(Fm k) > S lak — 2.

Set mp, = n™k, 2k = Zme,

Step III : Take t* € Of (2%, 2%), o) = %, and denote
uF = Po (2% — ypopth),
v* = Brut + (1= Br)S(u"),
wh =T Avk,
okt = Po(vF + pA*(T(w®) — Av*))
and go to iteration k with k replaced by k + 1.

Then, {z*}, {u*} and {v*} converge weakly to an element T € Qy, and {w*}
converges weakly to AT.

3.2 A Strong Converegence Algorithm
Algorithm IT : Initialization.

e Pick 29 € Cy = C and choose the parameters 3,7,0 € (0,1), 0 < p’ <
p" {pr} c o', p"], 0 <y <" <2, {wm} Cc[V,7"], 0 <o, {ou} C [, 00),
€ (0, W)'

e For each i = 1,2,...,p, {mk,:} is a real sequence of nonnegative numbers
satisfying > % m; =1 for all k > 1.

e Foreachie {1,2,...,p}and j€{1,2,...,0'},S;:C - Cand T; : Q —» Q
are L; and L;-strict pseudo-contractions for some 0 < L; < 1 and 0 < L; <
1, respectively.

e {Bk} is a nonnegative real sequence satisfying 0 < L < Br<1and Bp — %
as k — oo, where L :=max{L;:i=1,2,...,p}.

Iteration : k,(k=0,1,2,...). Having z*. do the following steps:
Step I : Solve the strongly convex program :

. 1
Yy = argmln{f(:vk7y) + ﬂlly —a¥? iy e C}
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to obtain its unique solution y*.
If y* = 2% then set u* = z* and go to Step III. Otherwise, go to Step II.
Step II : (Armijo linesearch rule) Find my as the smallest positive integer
number m such that

{Zk)m = (L=n™)z" +9"y",

FERm k) — f(Pmyh) > 5o |lah — |2

(3.35)

Set mp = n™k, 2k = ZFme,

Step III : Take t* € 9f(2*,z*) and compute o} = %, and denote

uF = Po (2% — ypopt?),

ok = Brub + (1= Be) o0y neaSa(u®),

wh = T Avk,

d* = Po(v* + pA* (37 g, Ti(w") — Av®)),

Cri1={z € Cp : [lz = d*|| < [lo = o¥|| < [|lz — ¥},

ah = P, (29)

and go to iteration k with k replaced by k + 1.

Now, we are in a position to state and prove the main strong convergence

theorem for the given iterative scheme. Throughout this section, we suppose the
following :

Theorem 3.4. Let Hi,Hs be two real Hilbert spaces and C C H1,Q C Hao be
nonempty closed convex subsets. For each i € {1,2,...,p} and j € {1,2,...,p},
S; and T; are L; and L;-—strict pseudo-contractions for some 0 < L; < 1 and
0 < L% < 1, respectively. Let the bifunctions f,g and h satisfy Assumptions I,
IT and III, respectively. Let A : Hi — Ha be a bounded linear operator with its
adjoint A*. If

Q. {x € Sup(C. f)m( ﬁ Fix(Sl-,C')) L Az* € SGEP(Q,g,h)ﬂ( ﬁ Fix(Tj,Q))}

is nonempty set, then the sequences {x*}, {u*} and {v*} generated by Algorithm
II converge strongly to an element T € €, and {w*} converges strongly to Az €

SGEP(Q7 g, h) N ( ;;:1 FiX(ij Q))
Proof. First, we observe that the linesearch rule [B.33]) is well defined. Let z* € ).

From (31) ,3I4), and [B.2]) we have

ld° =™ < o =2 = u(1 = pll AP Tew” — A0®)? — pflw® — Av®|J?

<t =2+ (= B (L = )| i (u*) — |
—p(1 = pl| AP Trw® — Av* |1 — pllw® — Av®|?
< ot =+ (= B (L — )|k (u®) — uF||?

=1 = pllAIP) | Tow® — Av™ || — plw® — Av*|2. (3.36)
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_ 1
Since 0 < L < B, < 1 and p € (0, W) , (B36) implies that
ld* —2*|| < o* = 2| < [lu* = 2| < [la* — 2", V. (3.37)

Since z* € Cy, from [B37) we get by induction that z* € Cy, for all £ € N and,
consequently, 2 C Cy, for all k. By setting

Dy ={zeM |z —d"|<|z—o"| <|lz—2"|},keN,

it is clear that D, is closed and convex for all k. In addition, Cy = C is also closed
and convex, and Cy41 = Cf N Dy. Hence, C}, is closed and convex for all k. From
the definition of 2¥*! we have z**! € Cj41 C C}, and 2F = P, (29), so

la* — 9| < [|lz"*! - 29]], Vk.
Since z* € C**1, this implies that
[+t — 29| < fla* — 2.

Thus,
2% — 29| < [la**t — 29| < ||2* — 29|, VE.

Consequently, {||z* — 29|/} is nondecreasing and bounded, so lim_ o [|2* — 29|
does exist. Combining this with ([3.37), we obtain that {d*} and {v*} are also
bounded. For all m > n, we have that 2™ € C,, C C, and z" = Pc, (z9).
Combining this fact with Lemma 21| we get

la™ =2 < fla™ = 2?)? — [la" - 2|

(=™ = 29| = fl=" = 2?[)([[2™ = 2] + [[2" — 27)).

Since limg_ 4o [|2% — 29| exists, this implies that lim, ;oo |2 — 27| = 0.
Therefore, {z*} is a Cauchy sequence, so

lim z* = z. (3.38)

k—o0

By Step IIT we get

”dk _ xk-ﬁ-lH < Hvk _ xk-ﬁ-lH < ka _ ;Ek+l||.

Therefore,
dF —2F < |ldF = 2R 4 2Pt — 2
|
< ka _ xk-‘rlH + ||$k _ xk-i-l”
= 2|2k — | (3.39)
and
T [T o TR [P
|
< ||:Ek _ :Ek-l-l” + ||:Ek _ $k+1||

2|z* — L. (3.40)
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So, from ([B.39), (B40), and (B38) we get that
lim [|d* —z%|| = lim ||o* —2*| = 0. (3.41)
k—o0 k—o0

In view of (3.30) and ([B.41]), we have B
(1= Br)(Br — L)IISku® —uP||* + p(1 — pl| AI?) | Tew® — Av*|? + pl|w — Av*|?

lz* — ™| = [ld* — 2|

(a* =¥+ [|d" — 2*[)) (lla* = 2*[| = ||a* — =*])
< 2F =@ (]a" — 2| + |dF — 2¥])) = 0 ask — . (3.42)
_ 1
Since 0 < L < fBp <1land pu € (O, m), we deduce from (B3:42)) that

lim || Spu® —uf|| =0, lim ||Thw® — Av*|| =0, and lim |Jw* — Av"|| = 0.
k——+oo k——+oo k—+oo

(3.43)
In addition, from the inequality
|1 Tiw® — w*|| < | Tew" — Av®|[lw® — Av¥]],
combined with (343), we get
. 5ok k|

kll)r-lr-loo | Tw” — w®|| = 0. (3.44)
Besides, (3.16), (3.40), and limj,_, y oo #¥ = T it imply

lim «* =2z, lim o*=2z. (3.45)

k—~+o00 k——+oo
Since
1Sk — 2| < 1Sk = Siu||* + [|Sku® — u®|* + Ju* — 2]
< (la® = a|” + LI = Se)(®) = (I = Sk)(=")]1?)

+[|Sku® — ¥ + [lu* — z|
2||1/’C —Z|?+ (L + 1)||S’_;€uk — uk||2,

from [B43) and (40) we get that ||Siz — z|| = 0, that is, # € Fix(Sk). From

BI]) we have

: k_ k|2
Jm 7gllz® = g7 = 0. (3.46)

We now consider two distinct cases.
Case I. limsup,_,..nx > 0. Then there exist 7 > 0 and a subsequence
{nk;} C {mk} such that ny, > 7 for all . So we get from (3.40]) that

ki ki = 0. (3.47)

lim ||
k—+oo
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Since z* — #, (3.47) implies that y* — Z as i — oo. For each y € C, we get from

(322) that
_ T _
f@ky) — f(ah, k) + Elly’“ — 2Fi||ly — y*|| > 0. (3.48)

Letting i — oo, by the continuity of f, since ¥ — Z and y* — Z, in the limit,
from ([B48) we obtain that f(z,y) — f(Z,Z) > 0. Hence, f(Z,y) >0,Vy € C,s0 T
is a solution of

EP(C, /).

Case II. limg_ o 7 = 0. From the boundedness of {y*}, we deduce that
there exists {y*} C {y*} such that y* — 7 as i — oo. Replacing y by y* in
B2T), we get

Pk, g4+ — kP < 0. (3.49)
On the other hand, by the Armijo linesearch rule [B:35), for my, — 1, there exists
Zkimk; =1 guch that

Flahomes g — f(aoms ) < Dy - g2
Pk;
Combining this with (8:49), we get
R , R , 0 : , 2 ok
FltomaThyt) = fERm T 2R > gyt -t 2 G (). (3.50)

According to the algorithm, we have zFimri =1 = (1 — pmri —Lyghe 4 g —Lyki
Since ™+ 1 — 0, 2% converges weakly to Z, and y* converges weakly to 7, this

1
implies that z%™* 1 —~ F as i — co. Beside that, {—”ykl — ki ||2} is bounded,
Pk;

ki||2 exists.

1
so without loss of generality, we may assume that lim; . — ||y* —2

i

Hence, we obtain in the limit (B350) that

fE.5) > ~2 lm — [y — |2 > 0f(z. 7).

1—~+00 Pk,
1
Therefore, f(Z,7) = 0 and lim; s o —||y* — 2%]|2 = 0. By Case I we get
7 € NP_, Fix(S:, C). So l
p
z € Sep(f) N (ﬂ Fix(S;, C)). (3.51)

i=1
We get, from ([3.45) that limy_, 1o Av¥ = AZ. Combining this with (3.43) yields

lim w® = Az. (3.52)

k— o0
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Since,
|ThAZ — AZ|| < ||TxAZ — Trw®|| + | Tew® — w”|| + [|w" — AZ||.

Then, by Proprositon 2.5(i), we obtain

. 1+L _
ITeAz — Azl| < 51147 —w®|| + | Tiw® — o] + w* - Az|
1+ L
= (14 17F) Iw* — Az + | T — w|.

So, from [B52) and (344) we get that

|Tx Az — AZz|| = 0, for each j € {1,2,...,p}.
Hence for each j € {1,2,...,p'}, we get AZ € ﬂ?;l Fix(T}, Q). Moreover,

ITM Az — Az < TS Az — T Avk — Avk|| + || TOM Avk — AvF||

+||Av* — Az|

= |7 Az — TEM Avk — Adk|| + ||w* — Av¥||
+]|Av* — AzZ||

< ||Av* — Az ||+| ﬂ|||Tq>h)Av — AP || + Jwh — AR
+]|Av* — AZ||

= 2[|Av* A:c||+| Bl”w — AvF|| + |lwh — AR,

where the last inequality comes from Lemma 212l Letting k¥ — oo and recalling
that limy_, ;oo Av® = AZ. Then, we get

|TL9M Az — AzZ|| =0

Thus, Az € Fix(T¥™") = Scpp(Q, g, h). Hence,

Az € Sgrp(g,h ( ﬂ Fix(T )

So, we conclude that Z € €2, the proof of the theorem is complete. O

For each i € {1,2,...,p} and j € {1,2,...,p'} putting S; = S and T; = S,
where S and T are nonexpansive mappings, and h = 0 in Theorem [3.4] we have
the following result.
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Corollary 3.5. [11] Let Hi,Ha be two real Hilbert spaces and C C Hi,Q C Ho
be nonempty closed convex subsets. Let S: C — C; T : Q — Q be a nonexpansive
mapping, and let bifunctions f and g satisfy Assumptions I and II , respectively.
Let A:Hi — Ha be a bounded linear operator with its adjoint A*. If

Q:={z" € Sgp(C, f)N Fiz (S): Az™ € Fiz (Q,g)N Fiz (T)} # 0.

Then the sequences {x*}, {u*} and {v*} be generated by the following :
Step I : Solve the strongly convex program :

. 1
yr = argmm{f(:v’“’y) + ﬂlly —aF|? iy e C}

to obtain its unique solution y*. If y* = ¥ then set u* = z* and go to Step III.
Otherwise, go to Step II.

Step II : (Armijo linesearch rule) Find my as the smallest positive integer
number m such that

{Z’“’m = (L—nm)a® +qmy™,

F(hm k) = F(hm, k) > S 2k — g2,

(3.53)

Set ny, = ™k, 2k = ZFme
k Kk
Step III : Take t* € Of (2%, %), op = %, and denote
uF = Po (2% — ypopth),
v* = (1 - B)u + BS(uh),
wh = Ty, AvP,
oF = Po(vF + pA* (T (w®) — AvF))
and go to iteration k with k replaced by k + 1,
converge strongly to an element T € 2, and {w*} converges strongly to Az.
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