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Abstract : The purpose of this paper is to present some existence and uniqueness

results for common fixed point theorems for θ-ψ contraction mappings with two

metrics endowed with a directed graph. In addition, by using our main results,

we obtain some results about coupled coincidence point endowed with a directed

graph. Our results also generalize those presented in [1, 2].
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1 Introduction and Preliminaries

Geraghty [3] introduced an interesting class θ of functions θ : [0,∞) →
[0, 1) satisfying that:

θ(tn) → 1 =⇒ tn → 0,
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as well as some result which is a generalization of Banach’s contraction
principle in 1973. Amini-Harandi and Emami [4] then extended the result
in [3] in the context of partially ordered complete metric spaces.

Let d′, d be two metrics on X. By d < d′ (resp., d ≤ d′), we mean
d(x, y) < d′(x, y) (resp., d(x, y) ≤ d′(x, y)) for all x, y ∈ X.

When equipping a metric space with two metrics, we can also extend
the concept of fixed point theory. There are several research papers in
this area, for example see [5, 6]. Recently, some new common fixed point
theorems for Geraghty’s type contraction mappings using the monotone
property with two metrics were shown in [1] by using d-compatibility and
g-uniform continuity defined as follows;

Definition 1.1 ( [7]). Let (X, d) and (Y, d′) be two metric spaces. Let
f : X → Y, and g : X → X be two mappings.

(i) The mappings g and f are said to be d-compatible if

lim
n→∞

d(gfxn, fgxn) = 0

whenever {xn} is a sequence in X such that lim
n→∞

fxn = lim
n→∞

gxn.

(ii) A mapping f is said to be g-uniformly continuous on X if, for any real
number ǫ > 0, there exists δ > 0 such that d′(fx, fy) < ǫ whenever
x, y ∈ X and d(gx, gy) < δ. If g is the identity mapping, it is obvious
that f is uniformly continuous on X.

Let (X, d) be a metric space, and ∆ be a diagonal of X × X. Let G
be a directed graph such that the set V (G) of its vertices coincides with X
and ∆ ⊆ E(G), where E(G) is the set of the edges of the graph. Assume
also that G has no parallel edges and, thus, one can identify G with the
pair (V (G), E(G)).

Throughout the paper we shall say that G with the above mentioned
properties satisfies the standard conditions.

The fixed point theorem using the context of metric spaces endowed
with a graph was initiated by Jachymski [8], which generalizes the Banach
contraction principle to mappings on a metric spaces with a graph. Also,
the definitions of G-continuous and the property A were given.

Definition 1.2 ([8]). Let (X, d) be a metric space, and let E(G) be the
set of the edges of the graph.
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(i) A mapping f : X → X is called G-continuous if for any x ∈ X such
that there exists a sequence (xn) inX, xn → x and (xn, xn+1) ∈ E(G)
for n ∈ N, then f(xn) → f(x).

(ii) The triple (X, d,G) is said to have the property A, if for any sequence
(xn) in X with xn → x, as n→ ∞, and (xn, xn+1) ∈ E(G), for n ∈ N,
then (xn, x) ∈ E(G).

Consequently, several authors have studied the problem of existence of
a fixed points for a single-valued mapping and multi-valued mappings in
several spaces with a graph; see [9–13].

We now state a collection of notions and definitions from [2].

Definition 1.3 ([2]). Let (X, d) be a metric space, and let E(G) be the
set of the edges of the graph. Let F : X2 → X and g : X → X, then

(i) A pair of mappings F and g is called G-edge preserving if

[(gx, gu), (gy, gv) ∈ E(G)] ⇒ [(F (x, y), F (u, v)), (F (y, x), F (v, u)) ∈ E(G)].

(ii) The mapping F is called G-continuous if for all (x∗, y∗) ∈ X2 and
for any sequence (ni)i ∈ N of positive integers, with F (xni

, yni
) → x∗,

F (yni
, xni

) → y∗, as i→ ∞, and
(F (xni

, yni
), F (xni+1, yni+1)), (F (yni

, xni
), F (yni+1, xni+1)) ∈ E(G),

we have that

F (F (xni
, yni

), F (yni
, xni

)) → F (x∗, y∗)

F (F (yni
, xni

), F (xni
, yni

)) → F (y∗, x∗),

as i→ ∞.

(iii) The set E(G) is said to satisfies the transitivity property if, for all
x, y, a ∈ X, (x, a), (a, y) ∈ E(G) ⇒ (x, y) ∈ E(G).

In 2015, Suantai et al. [2] used the above definitions to present some
existence and uniqueness results for coupled coincidence point and common
fixed point of θ-ψ contraction mappings in complete metric spaces endowed
with a directed graph. Their results also generalize others in partially
ordered metric spaces.

The aim of this paper is to present some existence and uniqueness results
for common fixed point theorems for θ-ψ contraction mappings with two
metrics endowed with a directed graph. By using our main results, we are
able to obtain some results for coupled coincidence point endowed with a
directed graph. Our results generalize the realted results given in [1, 2].
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2 Main Results

We define the concept of G(g, f)-edge preserving which is an effective
tool as follows.

Definition 2.1. Let G be a directed graph. We say that f, g : X → X are
G(g, f)-edge preserving if

(gx, gy) ∈ E(G) ⇒ (fx, fy) ∈ E(G).

Let Ψ denote the class of all functions ψ : [0,∞) → [0,∞) which satisfy
the following conditions:

(ψ1) ψ is nondecreasing;

(ψ2) ψ is continuous;

(ψ3) ψ(t) = 0 ⇔ t = 0.

We now introduce a new class of the Geraghty type contractions in the
following definition.

Definition 2.2. Let (X, d) be a metric space endowed with a directed
graph G. A pair of mappings f, g : X → X is called a θ-ψ-contraction if

(1) The pair f and g is G(g, f)-edge preserving;

(2) there exists θ ∈ Θ and ψ ∈ Ψ such that for all x, y ∈ X such that
(gx, gy) ∈ E(G),

ψ(d(fx, fy)) ≤ θ(d(gx, gy))ψ(d(gx, gy)). (2.1)

Let (X, d) be a metric space endowed with a directed graph G satisfying
the standard conditions, and let f, g : X → X. We define some important
subsets of X as follows:

1. X(f, g) = {u ∈ X : (gu, fu) ∈ E(G)}.

2. C(f, g) = {u ∈ X : fu = gu}, i.e., the set of all coincidence points of
mappings f and g by C(f, g).

3. Cm(f, g) = {u ∈ X : fu = gu = u}, i.e., the set of all common fixed
points of mapping f and g by Cm(f, g).
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We now ready to present and prove the main result. We shall begin
with a lemma.

Lemma 2.3. Let (X, d) be a complete metric space endowed with a directed
graph G, and let g, f : X → X be two mappings such that f and g are a
θ-ψ-contraction. Assume that x0, y0 ∈ X and f(X) ⊆ g(X). Then

(i) There exists sequences {xn}, {yn} in X for which

gxn = fxn−1 and gyn = fyn−1 for all n ∈ N. (2.2)

(ii) If (gxn, gyn) ∈ E(G) for all n ∈ N, then

lim
n→∞

d(gxn, gyn) = 0.

Proof. (i) Let x0, y0 ∈ X. By the assumption that f(X) ⊂ g(X) and
f(x0), f(y0) ∈ g(X), it is easy to construct sequences {xn} and {yn} in X
for which

gxn = fxn−1 and gyn = fyn−1

for all n ∈ N.

(ii) Let (gxn, gyn) ∈ E(G) for all n ∈ N. It follows from the contractive
condition (2.1) that

ψ(d(gxn+1, gyn+1)) = ψ(d(fxn, fyn))

≤ θ(d(gxn, gyn))ψ(d(gxn, gyn))

< ψ(d(gxn, gyn)) (2.3)

for all n ∈ N. By the properties of ψ1, we have that

d(gxn+1, gyn+1) < d(gxn, gyn).

Thus the sequence {dn} := {d(gxn, gxn)} is a decreasing sequence. It
follows that dn → d as n→ ∞ for some d ≥ 0.

We claim that the constant d is 0. Assume on the contrary that d > 0.
Then by (2.3), we have

ψ(dn+1)

ψ(dn)
≤ θ(dn) < 1.

Taking n→ ∞ and using properties ψ3 and ψ4, we have limn→∞

ψ(dn+1)
ψ(dn)

=

1. It implies that θ(dn) → 1 as n → ∞. Since θ ∈ Θ, we have dn → 0
as n → ∞ which is a contradiction. Finally, we can conclude that dn =
d(gxn, gyn) → 0 as n→ ∞.
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Theorem 2.4. Let (X, d′) be a complete metric space endowed with a di-
rected graph G, and let d be another metric on X. Suppose that f, g : X → X
are a θ-ψ-contraction. Suppose that:

(1) g : (X, d′) → (X, d′) is continuous and g(X) is d′-closed;

(2) f(X) ⊆ g(X);

(3) E(G) satisfies the transitivity property;

(4) if d � d′, assume that f : (X, d) → (X, d′) is g-uniformly continu-
ous;

(5) if d 6= d′, assume that f : (X, d′) → (X, d′) is G-continuous and g
and f are d′-compatible;

(6) if d = d′, assume that (a) f is G-continuous and g and f are
compatible or (b) (X, d,G) has the property A.

Then under these conditions,

X(f, g) 6= ∅ if and only if C(f, g) 6= ∅.

Proof. Suppose that C(f, g) 6= ∅. Let u ∈ C(f, g). We have fu = gu. Then
(gu, fu) = (gu, gu) ∈ ∆ ⊂ E(G). Hence (gu, gu) = (gu, fu) ∈ E(G) which
means that u ∈ X(f, g) and thus X(f, g) 6= ∅.

Suppose now X(f, g) 6= ∅. Let x0 ∈ X such that (gx0, fx0) ∈ E(G).
By Lemma 2.3, we have a sequence {xn} in X such that

gxn = fxn−1

for all n ∈ N. If gxn0
= gxn0−1 for some n0 ∈ N, then xn0−1 is a coincidence

point of the mappings g and f . Therefore, we assume that, for each n ∈ N,
gxn 6= gxn−1 holds.

Since (gx0, fx0) = (gx0, gx1) ∈ E(G) and the G(g, f)-edge preserving
property of f and g, we have (fx0, fx1) = (gx1, gx2) ∈ E(G). Continue
inductively, we obtain that (gxn−1, gxn) ∈ E(G) for each n ∈ N. From
Lemma 2.3 (ii), we have

lim
n→∞

d(gxn−1, gxn) = 0. (2.4)

Now, we show that {gxn} is a Cauchy sequence with respect to d.
Suppose that {gxn} is not a Cauchy sequence with respect to d. Then
there exists ǫ > 0 for which we can find subsequences {gxnk

}, {gxmk
} of

{gxn} such that nk > mk ≥ k satisfying

d(gxnk
, gxmk

) ≥ ǫ, d(gxnk−1, gxmk
) < ǫ. (2.5)
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Using (2.5) and the triangle inequality, we have

ǫ ≤ rk := d(gxnk
, gxmk

)

≤ d(gxnk
, gxnk−1) + d(gxnk−1, gxmk

)

< d(gxnk
, gxnk−1) + ǫ.

Letting k → ∞, we have

rk = d(gxnk
, gxmk

) → ǫ. (2.6)

Again, by the triangle inequality, we have

d(gxnk
, gxmk

) ≤ d(gxnk
, gxnk+1) + d(gxnk+1, gxmk+1) + d(gxmk+1, gxmk

)

= d(gxnk
, gxnk+1) + d(gxmk+1, gxmk

) + d(fxnk
, fxmk

),

which is equivalent to

d(gxnk
, gxmk

)− d(gxnk
, gxnk+1)− d(gxmk+1, gxmk

) ≤ d(fxnk
, fxmk

).

By the property of ψ1, we have

ψ(d(gxnk
, gxmk

)− d(gxnk
, gxnk+1)− d(gxmk+1, gxmk

))

≤ ψ(d(fxnk
, fxmk

))

≤ θ(d(gxnk
, gxmk

)ψ(d(gxnk
, gxmk

)).

Letting k → ∞, using the property of ψ2 and (2.6), we have

lim
k→∞

θ(d(gxnk
, gxmk

) = 1.

It follows that
lim
k→∞

d(gxnk
, gxmk

) = lim
k→∞

rk = 0

which contradicts. Therefore {gxn} is a Cauchy sequence with respect to
d. Applying the similar argument as the proof of Theorem 3.1 in [1], we
can see that {gxn} is a Cauchy sequence with respect to d and d′. Since
g(X) is a d′-closed subset of the complete metric space (X, d′), there exists
u = gx ∈ g(X) such that

lim
n→∞

gxn = lim
n→∞

fxn = u.

Finally, we shall show that u is a common fixed point of f and g. We
consider two cases:
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Case I: d 6= d′. By the triangle inequality, we have

d′(gu, f(fxn−1)) = d′(gu, fgxn) ≤ d′(gu, gfxn) + d′(gfxn, fgxn).

Taking n→ ∞, using the d′-compatibility of g and f , the continuity of g in
right side and the G-continuity of f in left side, we have that d′(gu, fu) = 0,
i.e., gu = fu.

Case II: d = d′. In order to avoid the repetition, we can only con-
sider (b) of the condition (7). In this case, there exists x ∈ X such that
(gxn, gx) = (gxn, u) ∈ E(G) for each n ∈ N. By triangle inequality, we
have

d(gxn, fx) ≤ d(gxn, gx) + d(gx, fx) (2.7)

and

d(gx, fx) ≤ d(gx, gxn) + d(gxn, fx). (2.8)

Taking n→ ∞ in (2.7) and (2.8), then

lim
n→∞

d(gxn, fx) = d(gx, fx).

Since (gxn, gx) = (gxn, u) ∈ E(G) and using (2.1), we get

ψ(d(gxn+1, fx)) = ψ(d(fxn, fx))

≤ θ(d(gxn, gx))ψ(d(gxn, gx))

< ψ(d(gxn, gx)).

Taking n→ ∞, we have limn→∞ ψ(d(gxn+1, fx)) = 0. Therefore, by prop-
erty ψ2 and ψ3, we can conclude that d(fx, gx) = 0. Hence gx = fx. The
proof is now complete.

Taking d = d′ in Theorem 2.4, we have the following.

Theorem 2.5. Let (X, d) be a complete metric space endowed with a di-
rected graph G and g, f : X → X be two mappings such that f and g are a
θ-ψ contraction. Suppose that the following conditions hold:

(1) g is continuous and g(X) is closed;
(2) f(X) ⊆ g(X);
(3) (a) f is G-continuous and g and f are compatible or (b) (X, d,G)

has the property A;
(4) E(G) satisfies the transitivity property.

Under these conditions,

X(f, g) 6= ∅ if and only if C(f, g) 6= ∅.
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Theorem 2.6. In addition to the hypotheses of Theorem 2.4, assume that

(8) for any x, u ∈ C(f, g) such that gx 6= gy, we have (gx, gu) ∈ E(G).

If f and g are d′-compatible and X(f, g) 6= ∅, then Cm(f, g) 6= ∅.

Proof. Theorem 2.4 implies that there exists a coincidence point x ∈ X,
that is, gx = fx. Suppose that there exists another coincidence point
y ∈ X such that gy = fy. Assume that gx 6= gy. By assumption (8), we
have

ψd(fx, fy) ≤ θ(d(gx, gy))ψ(d(gx, gy))

< ψ(d(gx, gy)) = ψ(d(fx, fy)),

which is a contradiction. Therefore, gx = gy. The proof of Cm(f, g) 6= ∅
can be derived using a similar argument as in Theorem 2.8 in [1] with the
d′-compatibility of f and g.

Remark 2.7. Let (X,�) be a partially ordered set, d and d′ be two metrics
on X such that (X, d′) is a complete metric space. Let E(G) = {(x, y) ∈
X×X : x � y} and ψ(t) = t. In this case, we simply obtain results from [1].

Example 2.8. Let X = [0,∞) ⊆ R and the metrics d, d′ : X×X → [0,∞)
be defined by

d(x, y) =

{

0, if x = y,
max{x, y}, if x 6= y,

and
d′(x, y) = |x− y|

for all x, y ∈ X, respectively. It is easy to see that d ≥ d′.
Now, we consider E(G) given by

E(G) = {(x, y) : x = y or [x, y ∈ [0, 1/4] with x ≤ y]},

where ≤ is the usual order.
Consider the mappings f : X → X and g : X → X defined by

gx = x2 and fx = x4

for all x ∈ X, respectively.
Next, we show that the conditions (1)–(2) in Definition 2.2 hold as

follows:
(1) Let (gx, gy) ∈ E(G).

If gx = gy, then fx = fy and (fx, fy) ∈ E(G).
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If gx, gy ∈ E(G) with gx ≤ gy, then we obtain gx = x2, gy = y2 ∈ [0, 1/4]
and x2 = gx ≤ gy = y2. We have fx = x4 ≤ fy = y4 and fx, fy ∈ [0, 1/4].
This implies that (fx, fy) ∈ E(G);

(2) Let ψ(t) = t
2 , and let θ ∈ Θ be defined by

θ(t) =

{

1
4 , if 0 ≤ t < 1,

t2 + 2, if t ≥ 1.

Let x, y be arbitrary points in X and (gx, gy) ∈ E(G). If gx = gy, we
have x = y and hence the contractive condition (2.1) holds for this case. In
another case, we have

gx = x2, gy = y2 ∈ [0, 1/4] with gx ≤ gy.

Then we obtain x, y ∈ [0, 1/2] and x ≤ y. Also, we have

ψ(d(fx, fy)) =
d(fx, fy)

2
=

max{x4, y4}

2

=
y4

2

≤
1

4

y2

2

= θ(y2)
y2

2

= θ(max{x2, y2})
max{x2, y2}

2
= θ(d(gx, gy))ψ(d(gx, gy)).

Similarly, we can also prove that the condition (2.1) holds for case of
gx ≥ gy. Therefore, f and g are a θ-ψ contraction.

Next, we show that the conditions (1)–(6) in Theorem 2.4 hold as fol-
lows:

(1) We can easily check that g : (X, d′) → (X, d′) is continuous. Also,
we can see that g(X) = [0,∞) is d′-closed;

(2) By the definition of f and g, we can see that f(X) = g(X);

(3) It is easy to see that E(G) satisfies the transitivity property;

(4) It follows from d ≥ d′ that we have nothing to show this condition;

(5) Since d 6= d′, we will prove that f : (X, d′) → (X, d′) is continuous
and g and f are d′-compatible. It is easy to see that f : (X, d′) → (X, d′) is
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continuous. So we will only show that g and f are d′-compatible. Suppose
that {xn} is a sequence in X such that

lim
n→∞

gxn = lim
n→∞

fxn = a.

for some a ∈ X. Now, we have

d′(gfxn, fgxn) = |x8n − x8n| = 0

for all n ∈ N. This implies that d′(gfxn, fgxn) → 0 as n→ ∞;
(6) Since d 6= d′, we have nothing to show this condition.

Consequently, all the conditions of Theorem 2.4 hold. Therefore, g and
f have a coincidence point and, further, the points 0 and 1 are coincidence
points of the mappings g and f .

3 Some Particular Cases

We begin with some useful background. Throughout this section, let X
be a nonempty set and F : X2 → X, g : X → X be two mappings.

We define two mappings T 2
F , G

2 : X ×X → X ×X by

T 2
F (x, y) = (F (x, y), F (y, x)) (3.1)

and

G2(x, y) = (gx, gy) (3.2)

for all x, y ∈ X.

The concept of the cross product of the graphs Gi = (Vi, Ei), i = 1, 2,
is defined by

G1 ×G2 := (V1 × V2, {((x, y), (x
′, y′))|(x, x′) ∈ E1 and (y, y′) ∈ E2}).

Now, the following lemma show that the edge preserving and the tran-
sitivity property in the 2-dimensional can be interpreted in terms of two
mapping T 2

F and G2.

Lemma 3.1. Let F : X2 → X, g : X → X be two mappings, and let (X, d)
be a metric space endowed with a directed graph G1 and G2. Then

(i) If F is G1-edge preserving and g is G2-edge preserving, then T 2
F , G

2 :
X ×X → X ×X is G∗(G2, T 2

F )-edge preserving.
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(ii) If E(G1) and E(G2) satisfies the transitivity property, then
so does E(G∗).

Proof. (i) Let F and g is G1 and G2-edge preserving and x, y, u, v ∈ X.
Then we have

(G2(x, y), G2(u, v)) ∈ E(G∗)

=⇒ ((gx, gy), (gu, gv)) ∈ E(G∗)

=⇒ (gx, gu) ∈ E(G1) and (gy, gv) ∈ E(G2)

=⇒ (F (x, y), F (u, v)) ∈ E(G1) and (F (y, x), F (v, u)) ∈ E(G2)

=⇒ ((F (x, y), F (y, x)), (F (u, v), F (v, u))) ∈ E(G∗)

=⇒ (T 2
F (x, y), T

2
F (F (u, v)) ∈ E(G∗).

(ii) Let E(G1) and E(G2) satisfies the transitivity property and x, y, u, v, a,
b ∈ X. We have

((x, y), (u, v)), ((u, v), (a, b)) ∈ E(G∗)

=⇒ ((x, u), (u, a)) ∈ E(G1) and ((y, v), (v, b)) ∈ E(G2)

=⇒ (x, a) ∈ E(G1) and (y, b) ∈ E(G2)

=⇒ ((x, y), (a, b)) ∈ E(G∗).

Suantai et al. [2] gave the notion of a θ-ψ-contraction as follows.

Definition 3.2 ([2]). Let (X, d) be a complete metric space endowed with
a directed graph G. A pair of mappings F : X2 → X and g : X → X is
called a θ-ψ-contraction if

(1) F and g are G-edge preserving;

(2) there exists θ ∈ Θ and ψ ∈ Ψ such that for all x, y, u, v ∈ X satisfying
(gx, gu), (gy, gv) ∈ E(G),

ψ(d(F (x, y), F (u, v))) ≤ θ(M(gx, gu, gy, gv))ψ(M(gx, gu, gy, gv))

where M(gx, gu, gy, gv) = max{d(gx, gu), d(gy, gv)}.

Let (X, d) be a metric space endowed with a directed graph G satisfying
the standard conditions. We consider the set denoted by (X2)Fg which is
defined by

(X2)Fg ={(x, y) ∈ X2 : (gx, F (x, y)), (gy, F (y, x)) ∈ E(G)}.
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We denote the set of all coupled coincidence points of mappings F :
X2 → X and g : X → X by CcFix(F ). In other words,

CcFix(F ) = {(x, y) ∈ X2 : F (x, y) = gx and F (y, x) = gy}.

We ready to present an application of Theorem 2.4 in order to deduce
coupled fixed point results.

Theorem 3.3. Let (X, d′) be a complete metric space endowed with a di-
rected graph G, d be another metric on X, and F : X × X → X and
g : X → X be a pair of mappings which is a θ-ψ-contraction. Suppose that
the following hold:

(1) g : (X, d′) → (X, d′) is continuous and g(X) is d′-closed;
(2) F (X ×X) ⊆ g(X);
(3) if d � d′, assume that F : (X, d) × (X, d) → (X, d′) is g-uniformly

continuous;
(4) if d 6= d′, assume that F : (X, d′)× (X, d′) → (X, d′) is continuous

and g and F are d′-compatible;
(5) if d = d′, assume that (a) F is G-continuous and g and F are

compatible or (b) (X, d,G) has the property A;
(6) E(G) satisfies the transitivity property.

Under these conditions, CcFix(F ) 6= ∅ if and only if (X2)Fg 6= ∅.

Proof. It is only necessary to apply Theorem 2.4 to the mappings T 2
F and

G2 in a complete metric space (X ×X,D′) and a metric space (X ×X,D),
where

D′((x, y), (u, v)) = max{d′(x, u), d′(y, v)},

D((x, y), (u, v)) = max{d(x, u), d(y, v)}

and put G∗ = G×G, we have

((x, y), (u, v)) ∈ E(G∗) ⇔ (x, u), (y, v) ∈ E(G)

for all (x, y), (u, v) ∈ X ×X. By Lemma 3.1, we have T 2
F , G

2 : X ×X →
X × X is G∗(G2, T 2

F )-edge preserving and E(G∗) satisfies the transitivity
property. Since F (X × X) ⊆ g(X), let x0, y0 ∈ X, we can construct
sequences {gxn}, {gyn} for which

gxn = F (xn−1, yn−1) and gyn = F (yn−1, xn−1) for all n ∈ N.

From this, it easy to see that if F is G-continuous, then T 2
F is G-continuous.

Applying the similar argument as the proof of Theorem 3.5 in [1], we have
T 2
F and G2 are D′-compatible. This completes the proof.
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Remark 3.4. Taking d = d′ in Theorem 3.3, we simply obtain the result
in [2].

Let us denote by G−1 the graph obtained from G by reversing the
direction of edges. Thus,

E(G−1) = {(x, y) ∈ X ×X : (y, x) ∈ E(G)}.

Now, we defined the notion of F : X2 → X and g : X → X is edge
preserving as follow:

Definition 3.5. We say that a pair of mappings F : X2 → X and g : X →
X is edge preserving if

[(gx, gu) ∈ E(G), (gy, gv) ∈ E(G−1)]

⇒ [(F (x, y), F (u, v)) ∈ E(G), (F (y, x), F (v, u)) ∈ E(G−1)].

Remark 3.6. If F : X2 → X is edge preserving, then the pair F : X2 → X
and I : X → X is edge preserving, where I(x) is the identity map.

Definition 3.7. Let (X, d) be a complete metric space endowed with a
directed graph G. A pair of mappings F : X2 → X and g : X → X is
called a θ-G-contraction if :

(1) The pair F and g is edge preserving;

(2) there exists θ∈Θ such that for all (gx, gu) ∈ E(G), (gy, gv) ∈ E(G−1)
satisfying,

d(F (x, y), F (u, v)) ≤ θ

(

(d(gx, gu) + d(gy, gv))

2

)

(d(gx, gu) + d(gy, gv))

2
.

The next theorem is also obtained by applying our result.

Theorem 3.8. Let (X, d′) be a complete metric space endowed with a di-
rected graph G, and let d be another metric on X. Suppose that g : X → X
and F : X×X → X are a θ-G-contraction. Also suppose that the following
hold:

(1) g : (X, d′) → (X, d′) is continuous and g(X) is d′-closed;

(2) F (X ×X) ⊆ g(X);

(3) if d � d′, assume that F : (X, d) × (X, d) → (X, d′) is g-uniformly
continuous;
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(4) if d 6= d′, assume that F : (X, d′)× (X, d′) → (X, d′) is continuous
and g and F are d′-compatible;

(5) if d = d′, assume that (a) F is G-continuous and g and f are
compatible or (b) (X, d,G) has the property A.

Then, CcFix(F ) 6= ∅ if and only if (X2)Fg 6= ∅.

Proof. As in Theorem 3.3. By assume

D′((x, y), (u, v)) =
d′(x, u) + d′(y, v)

2
,

D((x, y), (u, v)) =
d(x, u) + d(y, v)

2

and put G∗ = G×G−1, we have

(x, y), (u, v)) ∈ E(G∗) ⇔ (x, u) ∈ E(G) and (y, v) ∈ E(G−1)

for all (x, y), (u, v) ∈ X × X. It is easy to see that T 2
F and G2 are D′-

compatible. By Lemma 3.1, we have T 2
F , G

2 : X × X → X × X is
G∗(G2, T 2

F )-edge preserving, E(G∗) satisfies the transitivity property and
T 2
F is G-continuous. Let ψ(t) = t. This completes the proof.
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