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Abstract : In this paper, we introduce and study an iterative method, called
SN-iteration, for approximating a coincidence point of two continuous functions
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1 Introduction

Many problems in Science and Applied Science are nonlinear problems. Those
problems can be formulate as nonlinear equations. In the mathematical point of
view, we want to solve a given equation of the form.

Find x ∈ X such that f(x) = g(x) (1.1)

where X is a nonempty set and f, g : X −→ X are two mappings. A point x ∈ X
which is a solution of above equation is called a coincidence point of f and g.
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It is well known that the existence of a solution to problem (1.1) is, under
appropriate conditions, equivalent to the existence of a fixed point for a certain
mapping. In this sense, Machuca [1] proved a coincidence theorem by using Ba-
nach’s contraction principle.

Several physical problems, expressed as a coincidence point equation Tx = Sx,
are solved by an approximating sequence {xn} ⊆ X generated by an iterative
procedure.

In 2015, Ariza-Ruiz [2] introduced an iterative method by using the concept
of Mann iteration to prove the existence of coincidence of two mappings.

Fixed point iteration methods are useful tools for solving nonlinear equations.
The following clasical iterative methods were used to approximate fixed point of
various nonlinear mappings.

Let E be a closed interval on the real line and f : E → E be a continuous
function. A point p ∈ E is a fixed point of f if f(p) = p. We denote by F (f)
the set of fixed point of f . It is known that if E is also bounded, then F (f) is
nonempty. The Mann iteration (see [3]) is defined by u1 ∈ E and

un+1 = (1− αn)un + αnf(un) (1.2)

for all n ≥ 1, where {αn}∞n=1 is a sequence in [0, 1], and will denote byM(u1, αn, f).
The Ishikawa iteration (see [4]) is defined by s1 ∈ E and tn = (1− βn)sn + βnf(sn)

sn+1 = (1− αn)sn + αnf(tn)
(1.3)

for all n ≥ 1, where {αn}∞n=1 and {βn}∞n=1 are sequences in [0, 1], and will denote
by I(s1, αn, βn, f). The Noor iteration (see [5]) is defined by a1 ∈ E and cn = (1− γn)an + γnf(an)

bn = (1− βn)an + βnf(cn)
an+1 = (1− αn)an + αnf(bn)

(1.4)

for all n ≥ 1, where {αn}∞n=1, {βn}∞n=1 and {γn}∞n=1 are sequences in [0, 1], and
will denote by N(a1, αn, βn, γn, f). Clearly the Mann and Ishikawa iterations are
special cases of Noor iteration. The SP-iteration (see [6]) is defined by q1 ∈ E and rn = (1− γn)qn + γnf(qn)

tn = (1− βn)rn + βnf(rn)
qn+1 = (1− αn)tn + αnf(tn)

(1.5)

for all n ≥ 1, where {αn}∞n=1, {βn}∞n=1 and {γn}∞n=1 are sequences in [0, 1], and
will denote by SP (q1, αn, βn, γn, f). The S-iteration (see [7]) is defined by s1 ∈ E
and  tn = (1− βn)sn + βnf(sn)

sn+1 = (1− αn)f(sn) + αnf(tn)
(1.6)
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for all n ≥ 1, where {αn}∞n=1 and {βn}∞n=1 are sequences in [0, 1], and will denote
by S(s1, αn, βn, f). The P-iteration (see [8]) is defined by k1 ∈ E and sn = (1− γn)kn + γnf(kn)

tn = (1− βn)sn + βnf(sn)
kn+1 = (1− αn)f(sn) + αnf(tn)

(1.7)

for all n ≥ 1, where {αn}∞n=1, {βn}∞n=1 and {γn}∞n=1 are sequences in [0, 1], and
will denote by P (k1, αn, βn, γn, f). The W-iteration (see [9]) is defined by w1 ∈ E
and  un = (1− γn)wn + γnf(wn)

vn = (1− βn)f(wn) + βnf(un)
wn+1 = (1− αn)f(un) + αnf(vn)

(1.8)

for all n ≥ 1, where {αn}∞n=1, {βn}∞n=1 and {γn}∞n=1 are sequences in [0, 1], and
will denote by W (w1, αn, βn, γn, f).

In 1976, Rhoades [10] proved the convergence of the Mann and Ishikawa it-
erations for the class of continuous and non-decreasing functions on unit closed
interval. After that in 1991 Borwein and Borwein [11] proved the convergence
of the Mann iteration of the continuous functions on a bounded closed interval.
It was shown in [6] that the SP-iteration converges faster than Noor itteration,
Ishikawa iteration and Mann iteration. In 2013, Kosol [7] showed that the S-
iteration coverges faster than the Ishikawa iteration on an arbitrary interavl, after
that, Sainuan [8] showed that the P-iteration converges faster than S-iteration on
an arbitrary interval.

Motivated by those works mentioned above, we aim to introduce a new itera-
tion method and discuss convergence analysis of the proposed method and compare
rate of convergence among those methods.

2 Preliminaries

In this section, we recall some definitions and useful results which will be used
for our main result.

In order to compare the rate of convergence of two iterative methods, we
employ the concept introduced by Rhoades in 1976 [10]

Definition 2.1. Let E be a closed interval on the real line and f : E → E
be a continuous function. Suppose that {xn} and {yn} are two iterations which
converge to a fixed point p of f . Then {xn} is said to converge faster than {yn}
if |xn − p| ≤ |yn − p| for all n ≥ 1.

Lemma 2.2 ([9]). Let E be a closed interval on real line and f : E → E be a
continuous and non-decreasing function. Let {αn}∞n=1, {βn}∞n=1 and {γn}∞n=1 be
sequences in [0, 1]. For x1 ∈ E, let {xn} be a sequence defined by W-iteration.
Then the followwing hold:

1. If f(x1) < x1 then f(xn) ≤ xn, for all n ≥ 1 and {xn} is non-increasing.
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2. If f(x1) > x1 then f(xn) ≥ xn, for all n ≥ 1 and {xn} is non-decreasing.

Theorem 2.3 ([9]). Let E be a closed interval on real line and f : E → E be
a continuous and non-decreasing function. Let {αn}∞n=1, {βn}∞n=1 and {γn}∞n=1

be sequences in [0, 1] and limn→∞αn = 0, limn→∞βn = 0, limn→∞γn = 0. For
x1 ∈ E, let {xn} be a sequence defined by W-iteration. Then {xn} is bounded if
and only if {xn} converges to a fixed point of f.

Lemma 2.4 ([9]). Let E be a closed interval on real line and f : E → E be a
continuous and non-decreasing function. Let {αn}∞n=1, {βn}∞n=1 and {γn}∞n=1 be
sequences in [0, 1]. Let {xn} be a sequence defined by W-iteration. Then we have
the following :

i) If p ∈ F (f) with x1 > p, then xn ≥ p for all n ≥ 1.

ii) If p ∈ F (f) with x1 < p, then xn ≤ p for all n ≥ 1.

Lemma 2.5 ([9]). Let E be a closed interval on real line and f : E → E be a
continuous and non-decreasing function. Let {αn}∞n=1, {βn}∞n=1 and {γn}∞n=1 be
sequences in [0, 1]. For x1 = q1 ∈ E, let {qn} be a sequence defined by P-Iteration
and {xn} be a sequence defined by W-iteration. Then we have the followwing
results:

i) If f(q1) < q1, then xn ≤ qn for all n ≥ 1.

ii) If f(q1) > q1, then xn ≥ qn for all n ≥ 1.

Proposition 2.6 ([9]). Let E be a closed interval on the real line and f : E → E
be a continuous non-decreasing function such that F (f) is nonempty and bounded
with x1 < inf{p ∈ E; f(p) = p}. Let {αn}, {βn}, {γn} be sequences in [0, 1]. If
f(x1) < x1, then the sequence {xn} defined by W-iteration dose not converges to
a fixed point of f.

Proposition 2.7 ([9]). Let E be a closed interval on the real line and f : E → E
be a continuous non-decreasing function such that F (f) is nonempty and bounded
with x1 > sup{p ∈ E; f(p) = p}. Let {αn}, {βn}, {γn} be sequences in [0, 1]. If
f(x1) > x1, then the sequence {xn} defined by W-iteration dose not converges to
a fixed point of f .

Theorem 2.8 ([9]). Let E be a closed interval on the real line and f : E → E
be a continuous non-decreasing function such that F (f) is nonempty and bounded.
For x1 = q1 ∈ E, let {qn} and {xn} be the sequences defined by P-iteration and
W-iteration, respectively. If {qn} converges to a fixed point p of f , then {xn}
converges to p. Moreover {xn} converges faster than {qn}.
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3 Main Results

We first introduce our iteration method, called N-iteration, as follows : x1 ∈ E
and  zn = (1− γn)xn + γnf(xn)

yn = (1− βn)f(zn) + βnf
2(zn)

xn+1 = (1− αn)f(zn) + αnf
2(yn)

(3.1)

for all n ≥ 1, where {αn}∞n=1, {βn}∞n=1 and {γn}∞n=1 are sequences in [0, 1], and
will denote by SN(x1, αn, βn, γn, f). In order to prove convergence of our proposed
method, the following Lemma is needed.

Lemma 3.1. Let E be a closed interval on real line and f : E → E be continuous
and non-decreasing function. Let {αn}∞n=1 , {βn}

∞
n=1 and {γn}∞n=1be sequences in

[0, 1]. For x1 ∈ E, let {xn}be a sequence defined by SN-iteration. Then the
following hold:

1. If f(x1) < x1, then f(xn) ≤ xn, for all n ≥ 1 and {xn} is non-increasing.

2. If f(x1) > x1, then f(xn) ≥ xn, for all n ≥ 1 and {xn} is non-decreasing.

Proof. i) Let {xn} be a sequence defined by N-iteration and f(x1) < x1, from the
definition of z1, we get z1 = (1− γ1)x1 + γ1f(x1), so

f(x1) ≤ z1 ≤ x1.

Since f is non-decreasing, we have

f3(x1) ≤ f2(z1) ≤ f2(x1) ≤ f(z1) ≤ f(x1) ≤ z1 ≤ x1.

From y1 = (1− β1)f(z1) + β1f
2(z1) and f2(z1) ≤ f(z1), we get

f2(z1) ≤ y1 ≤ f(z1)

Since f is non-decreasing,

f4(z1) ≤ f2(y1) ≤ f3(z1) ≤ f(y1) ≤ f2(z1) ≤ y1 ≤ f(z1)

From x2 = (1− α1)f(z1) + α1f
2(y1), we get

f2(y1) ≤ x2 ≤ f(z1) ≤ x1.

For x2, we consider three cases:
Case 1: f2(y1) ≤ x2 ≤ f(y1). Since f is non-decreasing, we get

f(x2) ≤ f2(y1) ≤ x2 ≤ f(y1) ≤ f(z1) ≤ x1.

Thus f(x2) ≤ x2 and x2 ≤ x1.
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Case 2: f(y1) ≤ x2 ≤ y1. Since f is non-decreasing, we have

f(x2) ≤ f(y1) ≤ x2 ≤ y1 ≤ f(z1) ≤ x1.

Thus, we have f(x2) ≤ x2 and x2 ≤ x1.
Case 3: y1 ≤ x2 ≤ f(z1). Then

f(y1) ≤ f(x2) ≤ f2(z1) ≤ y1 ≤ x2 ≤ f(z1) ≤ x1.

Hence, we have f(x2) ≤ x2 and x2 ≤ x1.
By Case 1, 2 and 3, we have f(x2) ≤ x2 and x2 ≤ x1. By continuing in this way,
we can show that f(xn) ≤ xn and xn+1 ≤ xn for all n ≥ 1.

ii) By using the same argument as i), we obtain the desired result.

Theorem 3.2. Let E be a closed interval on real line and f : E → E be continuous
and non-decreasing function. Let {αn}∞n=1 , {βn}

∞
n=1 and {γn}∞n=1 be sequences

in [0, 1] and lim
n→∞

αn = 0, lim
n→∞

βn = 0, lim
n→∞

γn = 0. For x1 ∈ E, let {xn} be

a sequence defined by SN-iteration. Then {xn} is bounded if and only if {xn}
converges to a fixed point of f .

Proof. It is easy to see that if {xn} converges to a fixed point of f , then {xn} is
bounded. Next suppose that {xn} is bounded.

Case 1. f(x1) = x1: From definition of N-iteration, we obtain that xn = x1 for all
n ≥ 1. Thus {xn} converge to x1 ∈ F (f).

Case 2. f(x1) 6= x1 :
If f(x1) < x1, by Lemma 3.11, we have {xn} is non-increasing. It follows that

{xn} is convergent.
If f(x1) > x1, by Lemma 3.12, we have {xn} is non-decreasing. It follows that

{xn} is convergent.
Next, we will show {xn} converges to a fixed point of f . Let p = lim

n→∞
xn.

By continuity of f , we have that f(xn) converges to f(p). From zn = (1−γn)xn +
γnf(xn) and lim

n→∞
γn = 0, we obtain that

lim
n→∞

zn = lim
n→∞

xn = p.

By continuity of f , we have that f(zn) converges to f(p) and f2(zn) converges to
f2(p). From yn = (1− βn)f(zn) + βnf

2(zn) and lim
n→∞

βn = 0, we get

lim
n→∞

yn = lim
n→∞

f(zn) = f(p).

By continuity of f , we get f(yn) converges to f(p) and f2(yn) converge to f2(p).
From

xn+1 = (1− αn)f(zn) + αnf
2(yn) and lim

n→∞
αn = 0,
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we have lim
n→∞

xn+1 = lim
n→∞

f(zn) = f(p). So we get

p = f(p).

Thus {xn} converges to a fixed point of f .

Lemma 3.3. let E be a closed interval on real line and f : E → E be continuous
and non-decreasing function. Let {αn}∞n=1 , {βn}

∞
n=1 and {γn}∞n=1 be sequences in

[0, 1]. Let {xn} be a sequence defined by SN-iteration. Then we have the following
:

1. If p ∈ F (f) with x1 > p then xn ≥ p, for all n ≥ 1.

2. If p ∈ F (f) with x1 < p then xn ≤ p, for all n ≥ 1.

Proof. i) Let p ∈ F (f) and x1 > p. Since f is non-decreasing, we get f(x1) > f(p).
From z1 = (1− γ1)x1 + γ1f(x1) and x1 > p, we have

z1 > (1− γ1)p+ γ1f(p) = p.

Since f is non-decreasing, we have f(z1) ≥ p and f2(z1) ≥ p. From y1 = (1 −
β1)f(z1) + β1f

2(z1), we get y1 ≥ p. It follows that

f2(y1) ≥ p.

From x2 = (1− α1)f(z1) + α1f
2(y1), f(z1) ≥ p and f2(y1) ≥ p we get x2 ≥ p.

Next, we assume xk ≥ p, we will show xk+1 ≥ p. From zk = (1− γk)xk + γkf(xk)
and xk ≥ p, we get

zk ≥ (1− γk)p+ γkp = p.

Since f is non-decreasing , we have f(zk) ≥ p. From yk = (1 − βk)f(zk) +
βkf

2(zk), f(xk) ≥ p and f2(zk) > p, we have

yk ≥ (1− βk)p+ βkp = p.

It follows that f2(yk) ≥ p. From xk+1 = (1− αk)f(zk) + αkf
2(yk)and f(zk) ≥ p,

we get
xk+1 ≥ p for all n ≥ 1.

By induction, we can conclude that xn ≥ p for all n ≥ 1
ii) By using the same argument as i), we obtain the desired result.

Theorem 3.4. Let E be closed interval on real line and f : E → E be a continuous
and non-decreasing function. Let {αn}∞n=1 , {βn}

∞
n=1 and {γn}∞n=1 be sequences in

[0, 1]. For a1 = x1 ∈ E, let {wn} be a sequence defined by W-Iteration and {xn}
be a sequence defined by SN-Iteration. Then we have the following results :

1. If f(w1) < w1 then xn ≤ wn for all n ≥ 1 .

2. If f(w1) > w1 then xn ≥ wn for all n ≥ 1 .
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Proof. i) Suppose that f(w1) < w1. From definition of u1. we have

f(w1) ≤ u1 ≤ w1.

Since f is non-decreasing, we get

f3(w1) ≤ f2(u1) ≤ f2(w1) ≤ f(u1) ≤ f(w1) ≤ u1 ≤ w1.

Since w1 = x1, we get f(w1) = f(x1). We note that

z1 − u1 = (1− γ1)(x1 − w1) + γ1(f(x1)− f(w1)) = 0,

so z1 = u1. Since f(u1) ≤ f(w1), f2(u1) ≤ f(u1) and z1 = u1 we get

f(z1) ≤ f(w1) and f2(z1) ≤ f(u1).

From definition of r1, we get f(u1) ≤ v1 ≤ f(w1). We note that

y1 − v1 = (1− β1)(f(z1)− f(w1)) + β1(f2(z1)− f(u1)) ≤ 0

so y1 ≤ v1. Since f is non-decreasing, we get

f2(y1) ≤ f2(v1) ≤ f2(u1) ≤ f(v1) and f(z1) = f(u1).

It follows that x2−w2 = (1−γ1)(f(y1)− f(u1)) +α1(f2(y1)− f(v1)), so x2 ≤ w2.
Next, we assume that xk ≤ wk. Since f is non - decreasing, we get f(xk) ≤

f(wk). It follows that

zk − uk = (1− γk)(xk − wk) + γk(f(xk)− f(wk)) ≤ 0,

so zk ≤ uk. Since f is non decreasing, f2(zk) ≤ f2(uk).
From Lemma 2.2 1, Lemma 3.1 1 we get f(wk) ≤ wk and f(xk) ≤ xk respectively.
From definition zk = (1 − γk)xk + γkf(xk), we have f(xk) ≤ zk ≤ xk. Since f is
non-decreasing, we get

f3(xk) ≤ f2(zk) ≤ f2(xk) ≤ f(xk) ≤ zk ≤ xk.

From definition uk = (1− γk)wk + γkf(wk) and f(wk) ≤ wk, we get

f(wk) ≤ uk ≤ wk.

Since f is non decreasing, we have

f2(wk) ≤ f(uk) ≤ f(wk).

Since f2(zk) ≤ f(zk), we get

f2(zk) ≤ yk ≤ f(zk) ≤ f(uk) ≤ f(wk) ≤ uk

and f4(zk) ≤ f2(yk) ≤ f3(zk) ≤ f3(uk) ≤ f3(wk) ≤ f2(uk) ≤ f2(wk) ≤ f(uk)
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≤ f(wk) ≤ uk. This implies f(uk) ≤ vk ≤ f(wk). Since f is non-decreasing, we
have

f2(uk) ≤ f(vk) ≤ f2(wk).

From f2(yk) ≤ f2(uk) and f2(uk) ≤ f(vk), we get f2(yk) ≤ f(vk). It follows that

xk+1 − wx+1 = (1− αk)(f(zk)− f(uk)) + αk(f2(yk)− f(vk) ≤ 0

so xk+1 ≤ wk+1. By induction, we obtain xn ≤ wn for all n ≥ 1.
ii) By using same argument as (i), we obtain xn ≥ wn for all n ≥ 1 .

Proposition 3.5. Let E be a closed interval on the real line and f : E → E
be a continuous non-decreasing function such that F (f) is nonempty and bounded
with x1 < inf {p ∈ E; f(p) = p}. Let {αn}∞n=1 , {βn}

∞
n=1 and {γn}∞n=1 be sequences

in [0, 1]. If f(x1) < x1, then the sequence {xn} defined by SN-iteration does not
converges to a fixed point of f

Proof. Suppose f(x1) < x1. By Lemma 3.11, {xn} is non - increasing. Since the
initial point

x1 < inf {p ∈ E; f(p) = p} ,

it follows that {xn} does not converges to a fixed point of f .

Proposition 3.6. Let E be a closed interval on the real line and f : E → E
be a continuous non-decreasing function such that F (f) is nonempty and bounded
with x1 > sup {p ∈ E; f(p) = p}. Let {αn}∞n=1 , {βn}

∞
n=1 and {γn}∞n=1be sequence

in [0, 1]. If f(x1) > x1 , then the sequence {xn} defined by SN-iteration does not
converges to a fixed point of f .

Proof. Suppose f(x1) > x1. By Lemma 3.12, {xn} is non - decreasing. Since the
initial point

x1 > sup {p ∈ E; f(p) = p} ,

it follows that {xn} does not converges to a fixed of f .

Theorem 3.7. Let E be a closed interval on the real line and f : E → E be
continuous and non-decreasing function such that F (f) is non empty set and
bounded . For w1 = x1 ∈ E , let {xn} and {wn} be the sequences defined by
SN-iteration and W - iteration, respectively. If {wn} converges to fixed point p of
f then {xn}converges to p. Moreover {xn} converges faster than {wn}.

Proof. Suppose that {wn} converges to a fixed point p of f . Let l = inf F (f) and
u = supF (f). We divide our proof into three cases.
Case 1 : w1 = x1 > u.
Since {wn} converge to p, by Proposition 3.6, we get f(w1) < w1. By Lemma
3.41, we get xn ≤ wn for all n ≥ 1. Since f is non-decreasing and w1 = x1, we
have

u = f(u) ≤ f(x1) < x1.
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It follows that
f(x1) ≤ z1 ≤ x1.

Since f is non-decreasing, we get

u = f(u) ≤ f3(x1)

and f3(x1) ≤ f2(z1) ≤ f2(x1) ≤ f(z1) ≤ f(x1) ≤ z1 ≤ x1.

From y1 = (1 − β1)f(z1) + β1f
2(z1), we get f2(z1) ≤ y1 ≤ f(z1). Since f is

non-decreasing, we get

u = f(u) ≤ f2(y1) ≤ f3(z1) ≤ f(y1) ≤ f2(z1) ≤ f(z1).

From definition of x2, we have

f2(y1) ≤ x2 ≤ f(y1)

so we get u = f(u) ≤ f2(y1) ≤ x2. Hence u ≤ x2.
Next, we assume u ≤ xk. Then u = f(u) ≤ f(xk). By Lemma 3.11 and

definition of zk, we get

u = f(u) ≤ f(xk) ≤ zk ≤ xk,

so u ≤ zk ≤ xk. Since f is non-decreasing, we get

u = f(u) ≤ f2(zk) ≤ f2(xk) ≤ f(zk) ≤ f(xk) ≤ zk ≤ xk.

From difinition of yk, we get f2(zk) ≤ yk ≤ f(zk). Then

u = f(u) = f2(yk) ≤ f3(zk) ≤ f(zk).

From definition of xk+1, we have f2(yk) ≤ xk+1 ≤ f(zk).
So we get

u = f(u) ≤ f2(yk) ≤ xk+1.

By induction, we can conclude that u ≤ xn for all n ≥ 1.
By Lemma 3.31 we have p ≤ xn ≤ wn for all n ≥ 1. It implies that

|xn − p| ≤ |wn − p| for all n ≥ 1.

It follows that {xn} converges to p faster than {wn} converges to p.
Case 2: w1 = x1 < l.
Since {wn} converges to p, by Proposition3.5, we get f(w1) > w1. By Lemma
3.42, we get

xn ≥ wn for all n ≥ 1.

By using the same proof as above, we can show that xn ≤ l for all n ≥ 1. It
implies that

|xn − p| ≤ |wn − p| , for all n ≥ 1.



Some Iterative Methods for Coincidence Points of Two Continuous ... 561

It follows that {xn} converges to p faster than {wn} converges to p.
Case 3: l < w1 = x1 < u.
If f(x1) = x1, it follows by definitions of {xn} and {wn} that xn = wn = x1 for
all n ≥ 1. So

p = x1 and |xn − p| = |wn − p| for all n ≥ 1.

If f(x1) < x1, by Lemma 3.11, we get {wn} is non-increasing. It follows that
p ≤ wn for all n ≥ 1. By Lemma 3.41, we get

p ≤ xn ≤ wn for all n ≥ 1.

It implies that
|xn − p| ≤ |wn − p| for all n ≥ 1.

It follows that {xn} converges to p faster than {wn} converges to p.
If f(x1) > x1, by Lemma 3.12, we get {wn} is non-increasing. It follows that

p ≤ wn for all n ≥ 1.

By Lemma 3.42, we get p ≤ xn ≤ wn for all n ≥ 1. It implies that

|xn − p| ≤ |wn − p| for all n ≥ 1.

It follows that {xn} converges to p faster than {wn} converges to p.

Example 3.8. Let f, g : R → R be defined by f(x) = x2−3x
7 and g(x) = 4x−12

7 .
We would like to find a coincidence point of f and g.

Consider

f(x)− g(x) =
x2 − 7x+ 12

7

so f(x)− g(x) + x =
x2 + 12

7
.

To do this, let
h(x) = f(x)− g(x) + x.

We see that a coincidence point of f and g is a fixed point of h. It is clear
that h is continuous and non-decreasing function.

The numerical results of P, W and SN-iterations are given in Table 1 when
αn = 1

n , βn = γn = 1
2n for all n ≥ 1 and initial point x1 = 1. It is observed that

{kn}, {wn} and {xn} converge to 3 which is a fixed point h (a coincidence point
of f and g) and note that the sequence {xn} generated by SN-iteration converges
faster than the sequence generated by P and W - iterations.
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Table 1: The comparision of the convergence P, W and SN-iterations to
the fixed point p = 3 of h(x).

P - iteration W-iteration SN - iteration

n kn wn xn |f(xn)− xn|
2 2.13553997787607 2.24723450991630 2.51878141774077 0.10182712945297
3 2.41789297649809 2.51672231726532 2.70607402202513 0.05433120835762
4 2.56953075488760 2.65289355428222 2.79338979802626 0.03561399679048
5 2.66755218616547 2.73741728668975 2.84579661620831 0.02542600962349
6 2.73660735743429 2.79527662577310 2.88100739212889 0.01902169265700
7 2.78775338213773 2.83721114345012 2.90620906853544 0.01465538146993
8 2.82689683304958 2.86875447664451 2.92498290256889 0.01152066604829
9 2.85755244535065 2.89310369446013 2.93935526260808 0.00918893165217
10 2.88197164453972 2.91225809600929 2.95057609443455 0.00740951828668

The following graphs show the convergence of the sequence generated by P, W
and SN-iterations.

Figure 1: Graph of the convergence of P, W and SN-iterations
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