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Abstract : In this paper, we study the equation

∂

∂t
u(x, t) = c2 ⊗k

B u(x, t)

with the initial condition u(x, 0) = f(x) for x ∈ R+
n . The operator ⊗k

B is the
operator iterated k− times and defined by

⊗k
B =







(

p
∑

i=1

Bxi

)3

−





p+q
∑

j=p+1

Bxi





3






k

,

where p+q = n is the dimension of the R+
n , Bxi

= ∂2

∂x2
i

+ 2vi
xi

∂
∂xi

, 2vi = 2αi+1, αi >

− 1
2 , i = 1, 2, 3, ..., n, and k is a nonnegative integer, u(x, t) is an unknown function

for (x, t) = (x1, x2, . . . , xn, t) ∈ R+
n × (0,∞), f(x) is a given generalized function

and c is a positive constant. By the Fourier transform in sense of Distribution
theory we obtain the solution of such equation and related to the triharmonic
Besel heat equation.
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1 Introduction

The operator ♦k has been first by A. Kananthai [1] and is named as the
Diamond operator iterated k times and defined by

♦k =







(

p
∑

i=1

∂2

∂x2
i

)2

−





p+q
∑

j=p+1

∂2

∂x2
j





2






k

, p+ q = n. (1.1)

n is the dimension of the space R
n, for x = (x1, x2, . . . , xn) ∈ R

n and k is a
nonnegative integer. The operator ♦k can be expressed in the form

♦k = △k
✷

k = ✷
k△k, (1.2)

where △k is the Laplacian operator iterated k− times defined by

△k =

(

∂2

∂x2
1

+
∂2

∂x2
2

+ . . .+
∂2

∂x2
n

)k

(1.3)

and ✷
k is the Ultra-hyperbolic operator iterated k− times defined by

✷
k =

(

∂2

∂x2
1

+
∂2

∂x2
2

+ · · ·+
∂2

∂x2
p

−
∂2

∂x2
p+1

−
∂2

∂x2
p+2

− · · · −
∂2

∂x2
p+q

)k

. (1.4)

A. Kananthai [1] has shown that the solution of the convolution form

u(x) = (−1)kRe
2k(x) ∗R

H
2k(x)

is a unique elementary solution of the operator ♦k, that is

♦k
(

(−1)kRe
2k(x) ∗R

H
2k(x)

)

= δ. (1.5)

The function RH
α (υ) is called the Ultra-hyperbolic kernel of Marcel Riesz was in-

troduced by Y. Nozaki (see [2], p. 72) defined by

RH
α (υ) =

{

υ
α−n

2

Kn(α)
, for x ∈ Γ+,

0, for x 6∈ Γ+,
(1.6)

where the constant Kn(α) is given by the formula

Kn(α) =
π

n−1

2 Γ(2+α−n
2 )Γ(1−α

2 )Γ(α)

Γ(2+α−p
2 )Γ(p−α

2 )
. (1.7)

And the function Re
α(x) denoted the elliptic kernel of Marcel Riesz and defined by

Re
α(x) =

|x|α−n

Wn(α)
(1.8)
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where

Wn(α) =
π

n
2 2αΓ

(

α
2

)

Γ
(

n−α
2

) (1.9)

α is a complex parameter and n is the dimension of Rn.
In 2004, Hüseyin Yildirim, M. Zeki Sarikaya and Sermin Öztürk (see [3, 4]) first
introduced the Bessel diamond operator ♦k

B iterated k−times, defined by

♦k
B =







(

p
∑

i=1

Bxi

)2

−





p+q
∑

j=p+1

Bxj





2






k

(1.10)

where Bxi
= ∂2

∂x2
i

+ 2υi

xi

∂
∂xi

, 2υi = 2αi + 1, αi > − 1
2 , xi > 0. The operator ♦k

B can

be expressed by ♦k
B = △k

B✷
k
B = ✷

k
B△

k
B, where

△k
B =

(

p
∑

i=1

Bxi

)k

and ✷
k
B =





p
∑

i=1

Bxi
−

p+q
∑

j=p+1

Bxj





k

. (1.11)

And, Hüseyin Yildirim, M. Zeki Sarikaya and Sermin Öztürk (see [3,4]) have shown
that the solution of the convolution form u(x) = (−1)kS2k(x) ∗R2k(x) is a unique
elementary solution of ♦k

B that is

♦k
B((−1)kS2k(x) ∗R2k(x)) = δ. (1.12)

The function Sα(x) define by

Sα(x) =
|x|α−n−2|ν|

wn(α)
, (1.13)

where |x| = x2
1 + x2

2 + . . .+ x2
n, |ν| = ν1 + ν2 + . . .+ νn and,

wn(α) =

∏n
i=1 2

νi−
1
2Γ(νi +

1
2 )

2n+2|ν|−2αΓ(n+2|ν|−α
2 )

.

The function Rγ(x) defined by

Rγ(x) =







V
γ−n−2|ν|

2

Kn(γ)
, for x ∈ Γ+,

0, for x 6∈ Γ+,
(1.14)

where

Kn(γ) =
π

n+2|ν|−1

2 Γ
(

2+γ−n−2|ν|
2

)

Γ
(

1−γ
2

)

Γ(γ)

Γ
(

2+γ−p−2|ν|
2

)

Γ
(

p−2|ν|−γ
2

) ,

and γ is a complex number.
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Furthermore, W. Satsanit has first introduced the Bessel ⊗k
B (see [5]) and defined

by

⊗k
B =







(

p
∑

i=1

Bxi

)3

−





p+q
∑

j=p+1

Bxj





3






k

=





p
∑

i=1

Bxi
−

p+q
∑

j=p+1

Bxj





k
[(

p
∑

i=1

Bxi

)2

+

(

p
∑

i=1

Bxi

)

·





p+q
∑

j=p+1

Bxj



+





p+q
∑

j=p+1

Bxj





2
]k

= ✷
k
B

(

△2
B −

1

4
(△B +✷B)(△B −✷B)

)k

=

(

3

4
♦B△B +

1

4
✷

3
B

)k

(1.15)

and ♦B, △B and ✷B are defined by (1.10) and (1.11) with k = 1 respectively.
It is well known that for the heat equation

∂

∂t
u(x, t) = c2△u(x, t) (1.16)

with the initial condition u(x, 0) = f(x), △ =

n
∑

i=1

∂2

∂x2
i

is the Laplace operator and

(x, t) = (x1, x2, . . . , xn, t) ∈ R
n × (0,∞), we obtain

u(x, t) =
1

(4c2πt)n/2

∫

Rn

exp

(

−
|x− y|2

4c2t

)

f(y)dy (1.17)

as the solution of (1.16). The equation, (1.17) can be written

u(x, t) = E(x, t) ∗ f(x),

where

E(x, t) =
1

(4c2πt)n/2
exp

(

−
|x|2

4c2t

)

. (1.18)

E(x, t) is called the heat kernel, where |x|2 = x2
1 + x2

2 + · · ·+ x2
n and t > 0 (see [6],

pp. 208-209).

Next, Hüseyin Yildirim, M. Zeki Sarikaya and A. Saglam (see [7]) have study
the following equation,

∂

∂t
u(x, t) = c2♦k

Bu(x, t) (1.19)
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with the initial condition

u(x, 0) = f(x), for x ∈ R+
n , (1.20)

where the operator ♦k
B is named the Bessel diamond operator iterated k− times,

and defined by (1.10), k is a positive integer, u(x, t) i an unknown function, f(x)
is the given generalized function and c is a constant, p+ q = n is the dimension of
the R+

n = {x : x = (x1, x2, . . . , xn, t), xi > 0, i = 1, 2, 3, . . . , n}.
They obtain the solution in the classical convolution form

u(x, t) = E(x, t) ∗ f(x), (1.21)

where the symbol ∗ is the B− convolution in (2.1), as a solution of (1.19) and
satisfies (1.20), where

E(x, t) = Cv

∫

Ω+

e
c2t

[

(y2
1+...+y2

p)
2
−(y2

p+1+...+y2
p+q)

2
]k n
∏

i=1

Jvi− 1
2
(xi, yi) y

2υi

i dy

(1.22)
and Ω+ ⊂ R+

n is the spectrum of E(x, t) for any fixed t > 0 and Jvi− 1
2
(xi, yi) is

the normalized Bessel function.
Now, the purpose of this work is to study the following equation

∂

∂t
u(x, t) = c2 ⊗k

B u(x, t) (1.23)

with the initial condition

u(x, 0) = f(x), for x ∈ R+
n , (1.24)

where the operator ⊗k
B defined by (1.15) u(x, t) is an unknown unction, f(x) is

the given generalized function, k is a positive integer, and c is a positive constant.
Moreover, Bessel heat kernel has interesting properties and also related to the

kernel of an extension of the heat equation. We obtain the solution in the classical
convolution form

u(x, t) = E(x, t) ∗ f(x), (1.25)

where the symbol ∗ is the B− convolution in (2.1), as a solution of (1.23)and
satisfies (1.24), where

E(x, t) = Cv

∫

Ω+

e
c2t

[

(y2
1+...+y2

p)
3
−(y2

p+1+...+y2
p+q)

3
]k n
∏

i=1

Jvi− 1
2
(xi, yi) y

2υi

i dy

(1.26)
and Ω+ ⊂ R+

n is the spectrum of E(x, t) for any fixed t > 0 and Jvi− 1
2
(xi, yi) is

the normalized Bessel function. Before going into details, the following definitions
and some important concepts are needed.
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2 Preliminaries

The shift operator according to the law remark that this shift operator con-
nected to the Bessel differential operator (see [8–10]).

T y
xϕ(x) = C∗

v

∫ π

0

· · ·

∫ π

0

ϕ(
√

x2
1 + y21 − 2x1y1 cos θ1, · · ·

√

x2
n + y2n − 2xnyn cos θn)

(

Πn
i=1sin

2vi−1θi
)

dθ1 · · · dθn

where x, y ∈ R+
n , C

∗
v =

∏n
i=1

Γ(vi+1)

Γ( 1
2
)Γ(vi)

. We remark that this shift operator is

closely connected to the Bessel differential operator [see2,3,5]

d2U

dx2
+

2v

x

dU

dx
=

d2U

dy2
+

2v

y

dU

dy

U(x, 0) = f(x) , Uy(x, 0) = 0.

The convolution operator determined by the T y
x is as follows:

(f ∗ ϕ)(y) =

∫

R+
n

f(y)T y
xϕ(x)

(

Πn
i=1y

2vi
i

)

dy. (2.1)

Convolution (2.1) is known as a B-convolution. We note the following properties
of the B-convolution and the generalized shift operator:

(1) T y
x · 1 = 1

(2) T 0
xf(x) = f(x)

(3) If f(x), g(x) ∈ C(R+
n ), g(x) is a bounded function for all x > 0 and

∫ ∞

0

|f(x)|

(

n
∏

i=1

x2vi
i

)

dx < ∞ then

∫

R+
n
T y
x f(x)g(y)

(
∏n

i=1 y
2vi
i

)

dy =
∫

R+
n
f(y)T y

x g(x)
(
∏n

i=1 y
2vi
i

)

dy.

(4) From (3), we have the following equality for g(x) = 1 :

∫

R+
n

T y
x f(x)

(

n
∏

i=1

y2vii

)

dy =

∫

R+
n

f(y)

(

n
∏

i=1

y2vii

)

dy.

(5) (f ∗ g)(x) = (g ∗ f)(x).

The Fourier-Bessel transformation and its inverse transformation are defined as
follows

(FBf) (x) = Cv

∫

R+
n

f(y)

(

n
∏

i=1

Jvi− 1
2
(xi, yi) y

2υi

i

)

dy, (2.2)

(

F−1
B f

)

(x) = (FBf) (−x), Cv =

(

n
∏

i=1

2υi−
1
2Γ

(

υi +
1

2

)

)−1

, (2.3)
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where Jvi− 1
2
(xi, yi) is the normalized Bessel function which is the eigenfunction of

the Bessel differential operator. The following equalities for Fourier-Bessel trans-
formation are true (see [8–10]).

FBδ(x) = 1 (2.4)

FB (f ∗ g) (x) = FBf(x).FBg(x). (2.5)

Definition 2.1. The spectrum of the kernel E(x, t) of (1.26) is the bounded
support of the Fourier Bessel transform FBE(y, t) for any fixed t > 0.

Definition 2.2. Let x = (x1, x2, . . . , xn) be a point in R
+
n and denote by

Γ+ = {x ∈ R
+
n : x2

1 + x2
2 + . . .+ x2

p − x2
p+1 − x2

p+2 − . . .− x2
p+q > 0 and ξ1 > 0}

the set of an interior of the forward cone, and Γ+ denotes the closure of Γ+.
Let Ω+ be spectrum of E(x, t) defined by (1.26) for any fixed t > 0 and

Ω ⊂ Γ+. Let FBE(y, t) be the Fourier Bessel transform of E(x, t), defined by

FBE(y, t) =







e
c2t

[

(y2
1+...+y2

p)
3
−(y2

p+1+...+y2
p+q)

3
]k

for ξ ∈ Ω+,

0 for ξ /∈ Ω+.
(2.6)

Lemma 2.1 (Fourier Bessel Transform of ✷k
B Operator).

FB✷
k
Bu(x) = (−1)kV k

1 (x)FBu(x),

where

V k
1 (x) =





p
∑

i=1

x2
i −

p+q
∑

j=p+1

x2
j





k

.

Proof. See [7].

Lemma 2.2 (Fourier Bessel Transform of △k
B Operator).

FB△
k
Bu(x) = (−1)k|x|2kFBu(x),

where
|x|2k =

(

x2
1 + x2

2 + . . .+ x2
n

)k
.

Proof. See [7].

Lemma 2.3 (Fourier Bessel Transform of ⊗k
B Operator).

FB ⊗k
B u(x) = (−1)kV k(x)FBu(x),

where

V k(x) =







(

p
∑

i=1

x2
i

)3

−





p+q
∑

j=p+1

x2
j





3






k

.
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Proof. We can use the mathematical induction method, for k = 1, we have

FB(⊗Bu)(x)

= Cv

∫

R+
n

(⊗Bu(y))

(

n
∏

i=1

Jvi− 1
2
(xi, yi) y

2υi

i

)

dy

= Cv

∫

R+
n

✷B

(

3

4
△2

B +
1

4
✷

2
B

)

u(y)

(

n
∏

i=1

Jvi− 1
2
(xi, yi) y

2υi

i

)

dy

= Cv

∫

R+
n

(

3

4
△2

B +
1

4
✷

2
B

)

g(y)

(

n
∏

i=1

Jvi− 1
2
(xi, yi) y

2υi

i

)

dy, g(y) = ✷Bu(y)

= FB

(

3

4
△2

B +
1

4
✷

2
B

)

(x)

=
3(−1)2(x2

1+ . . .+x2
n)

2+ (−1)2(x2
1+ . . .+x2

p − x2
p+1 − . . .− x2

p+q)
2

4
FBg(x)

=







(

p
∑

i=1

x2
i

)2

+

(

p
∑

i=1

x2
i

)





p+q
∑

j=p+1

x2
j



+





p+q
∑

j=p+1

x2
j





2





FB✷Bu(x)

=
(

(

x2
1 + x2

2 + . . .+ x2
p

)3
−
(

x2
p+1 + . . .+ x2

p+q

)3
)

FBu(x)

= V (x)FBu(x),

where V (x) =
(

x2
1 + x2

2 + . . .+ x2
p

)3
−
(

x2
p+1 + . . .+ x2

p+q

)3
. By inverse Fourier

transform we obtain
⊗Bu(x) = F−1

B V (x)FBu(x).

Assume the statement is true for k − 1, that is

⊗k−1
B u(x) = F−1

B V k−1(x)FBu(x).

We must prove that is also true for k ∈ N. So we have

⊗k
Bu(x) = ⊗B

(

⊗k−1
B u(x)

)

= F−1
B V (x)FBF

−1
B V k−1(x)FBu(x)

= F−1
B V k(x)FBu(x).

This completes the proof.

Lemma 2.4. For t, v > 0 and x, y ∈ R
n, we have

∫ ∞

0

e−c2x2tx2υdx =
Γ(υ)

2c2υ+1tυ+
1
2

(2.7)

and
∫ ∞

0

e−c2x2tJυ− 1
2
(xy)x2υdx =

Γ(υ + 1
2 )

2 (c2t)υ+
1
2

e−
y2

4c2t , (2.8)

where c is a positive constant.
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Proof. See [7].

Lemma 2.5. Let the operator L be defined by

L =
∂

∂t
− c2⊗k

B, (2.9)

where ⊗k
B is the operator iterated k− times, and is given by

⊗k
B =







(

p
∑

i=1

Bxi

)3

−





p+q
∑

j=p+1

Bxi





3






k

,

and

Bxi
=

∂2

∂x2
i

+
2vi
xi

∂

∂xi

p+ q = n is the dimension R
+
n , k is a positive integer, (x1, x2, . . . , xn) ∈ R

+
n , and

c is a positive constant. Then

E(x, t) = Cv

∫

Ω+

e
c2t

[

(y2
1+...+y2

p)
3
−(y2

p+1+...+y2
p+q)

3
]k n
∏

i=1

Jvi− 1
2
(xi, yi) y

2υi

i dy

(2.10)
is the elementary solution of (2.9) in the spectrum Ω+ ⊂ R+

n for t > 0.

Proof. Let LE(x, t) = δ(x, t), where E(x, t) is the elementary solution of L and δ
is the Dirac-delta distribution. Thus

∂

∂t
E(x, t)− c2 ⊗k

B E(x, t) = δ(x)δ(t).

Applying the Fourier Bessel transform, which is defined by (2.2) to the both sides
of the above equation and using Lemma 2.3 by considering FBδ(x) = 1, we obtain

∂

∂t
FBE(x, t)−c2

[

(

x2
1 + x2

2 + . . .+ x2
p

)3
−
(

x2
p+1 + . . .+ x2

p+q

)3
]k

FBE(x, t) = δ(t).

Thus, we get

FBE(x, t) = H(t)e
c2t

[

(x2
1+x2

2+...+x2
p)

3
−(x2

p+1+...+x2
p+q)

3
]k

,

where H(t) is the Heaviside function, because H(t) = 1 holds for t ≥ 0.
Therefore,

FBE(x, t) = e
c2t

[

(x2
1+x2

2+...+x2
p)

3
−(x2

p+1+...+x2
p+q)

3
]k

,

which has been already by (2.5). Thus from (2.3), we have

E(x, t) = Cv

∫

R
+
n

e
c2t

[

(y2
1+...+y2

p)
3
−(y2

p+1+...+y2
p+q)

3
]k n
∏

i=1

Jvi− 1
2
(xi, yi) y

2υi

i dy
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where Ω+ is the spectrum of E(x, t). Thus, we obtain

E(x, t) = Cv

∫

Ω+

e
c2t

[

(y2
1+...+y2

p)
3
−(y2

p+1+...+y2
p+q)

3
]k n
∏

i=1

Jvi− 1
2
(xi, yi) y

2υi

i dy

as an elementary solution of (2.9) in the spectrum Ω+ ⊂ R+
n for t > 0.

3 Main Results

Theorem 3.1. Let us consider the equation

∂

∂t
u(x, t)− c2 ⊗k

B u(x, t) = 0 (3.1)

with the initial condition
u(x, 0) = f(x) (3.2)

where ⊗k
B is the operator iterated k− times, and is defined by

⊗k
B =







(

p
∑

i=1

Bxi

)3

−





p+q
∑

j=p+1

Bxi





3






k

,

and

Bxi
=

∂2

∂x2
i

+
2vi
xi

∂

∂xi
,

p + q = n is the dimension R
+
n , k is a positive integer, u(x, t) is an unknown

function for (x, t) = (x1, x2, . . . , xn, t) ∈ R
+
n × (0,∞), f(x) is the given generalized

function, and c is a positive constant. Then

u(x, t) = E(x, t) ∗ f(x) (3.3)

is a solution of (3.1) and satisfies (3.2), where E(x, t) is given by (2.10). In
particular, if we put k = 1 and q = 0 in (3.1), then (3.1) reduces to the equation

∂

∂t
u(x, t)− c2△3

Bu(x, t) = 0,

which is related the Triharmonic Bessel heat equation.

Proof. Taking the Fourier Bessel transform, which is defined by (2.2), of the both
sides of (3.1) for x ∈ R

+
n and using Lemma 2.3, we obtain

∂

∂t
FBu(x, t) = c2

(

(

x2
1 + . . .+ x2

p

)3
−
(

x2
p+1 + . . .+ x2

p+q

)3
)k

FBu(x, t). (3.4)

We consider the initial condition (3.2), then we have the following equality for
(3.4)

u(x, t) = f(x) ∗ F−1
B e

c2t
[

(x2
1+...+x2

p)
3
−(x2

p+1+...+x2
p+q)

3
]k

. (3.5)
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Here, if we use (2.2) and (2.3), then we have

u(x, t) = f(x) ∗ F−1
B e

c2t
[

(y2
1+...+y2

p)
3
−(y2

p+1+...+y2
p+q)

3
]k

=

∫

R
+
n

F−1
B e

c2t
[

(y2
1+...+y2

p)
3
−(y2

p+1+...+y2
p+q)

3
]k

T y
x f(x)

(

n
∏

i=1

y2υi

i

)

dy

=

∫

R
+
n

(

Cv

∫

R
+
n

ec
2tV k(z)

n
∏

i=1

Jυi−
1
2
(yi, zi)z

2υi

i dz

)

T y
x f(x)

(

n
∏

i=1

y2υi

i

)

dy,

(3.6)

where V (z) =
(

z21 + z22 + . . .+ z2p
)3

−
(

z2p+1 + z2p+2 + . . .+ z2p+q

)3
. Set

E(x, t) = Cv

∫

R
+
n

e
c2t

[

(y2
1+...+y2

p)
3
−(y2

p+1+...+y2
p+q)

3
]k n
∏

i=1

Jvi− 1
2
(xi, yi) y

2υi

i dy.

(3.7)
Since the integral in (3.7) is divergent, therefore we choose Ω+ ⊂ R

+
n be the

spectrum of E(x, t) and by (2.9), we have

E(x, t) = Cv

∫

R
+
n

e
c2t

[

(y2
1+...+y2

p)
3
−(y2

p+1+...+y2
p+q)

3
]k n
∏

i=1

Jvi− 1
2
(xi, yi) y

2υi

i dy

= Cv

∫

Ω+

e
c2t

[

(y2
1+...+y2

p)
3
−(y2

p+1+...+y2
p+q)

3
]k n
∏

i=1

Jvi− 1
2
(xi, yi) y

2υi

i dy.

(3.8)

Thus (3.6) can be written in the convolution form

u(x, t) = E(x, t) ∗ f(x)

Moreover, since E(x, t) exists, we can see that

lim
t→0

E(x, t) = Cv

∫

Ω+

n
∏

i=1

Jvi− 1
2
(xi, yi)y

2vi
i dy

= Cv

∫

R
+
n

n
∏

i=1

Jvi− 1
2
(xi, yi)y

2vi
i dy

= δ(x), for x ∈ R
+
n . (3.9)

hold (see [7]). Thus for the solution u(x, t) = E(x, t) ∗ f(x) of (3.1), then we have

lim
t→0

u(x, t) = u(x, 0) = δ ∗ f(x) = f(x)

which satisfies (3.2). This completes the proof.

Theorem 3.2. The kernel E(x, t) defined by (3.8) has the following properties:
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(1) E(x, t) ∈ C∞-the space of continuous function for x ∈ R
n, t > 0 with

infinitely differentiable.

(2)

(

∂

∂t
− c2⊗k

B

)

E(x, t) = 0 for all x ∈ R
+
n , t > 0.

(3) lim
t→0

E(x, t) = δ for all x ∈ R
+
n .

Proof. (1) From (3.8) and

∂n

∂tn
E(x, t) = Cv

∫

R
+
n

∂n

∂tn
e
c2t

[

(y2
1+...+y2

p)
3
−(y2

p+1+...+y2
p+q)

3
]k n
∏

i=1

Jvi− 1
2
(xi, yi) y

2υi

i dy,

we have E(x, t) ∈ C∞ for x ∈ R
+
n , t > 0.

(2) We have u(x, t) = E(x, t) since u(x, t) = E(x, t) ∗ f(x) holds. Note here that,
we use the fact f(x) = δ(x) by the Fourier Bessel transformation. Then, we obtain

(

∂

∂t
− c2⊗k

B

)

E(x, t) = 0

by direct computation.
(3) This case is obvious by (3.9).

In particular, if we put k = 1 and q = 0 in (3.1) then (3.1) reduces to the
equation

∂

∂t
u(x, t)− c2△3

Bu(x, t) = 0

which has solution
u(x, t) = E(x, t) ∗ f(x)

where E(x, t) is defined by (2.10) with k = 1 which is related to triharmonic Bessel
heat equation. This complete the proof.
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