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Abstract : In this work, we investigate the dynamical behaviour of a fractional
order phytoplankton–zooplankton system(PZS) with a Crowley–Martin functional
response. Local stability analysis of biologically feasible equilibrium points is
worked out with help of ecological as well as disease basic reproduction numbers.
We proved that the equilibrium E0 = (0, 0, 0) of the PZS is a saddle point. We
proved that the equilibrium E1 = ( 1

γ
, 0, 0) of the system is asymptotically stabile

if R0 < 1 and R∗

0 < 1. Also we proved that the equilibrium E2 = (S2, I2, 0) of the
system if R0(1) > 1. Numerical simulations are carried out for a hypothetical set
of parameter values to substantiate our analytical findings.
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simulation; fractional order.
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1 Introduction

Phytoplankton are microscopic algae found in marine and fresh water and
represent a major source of food and oxygen for wildlife inhabiting lakes, rivers,
estuaries and oceans. Plankton are microscopic organisms that float freely with
oceanic currents and in other bodies of water. They are made up of tiny plants
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(called phytoplankton) and tiny animals (called zooplankton). Plankton is the
basis of all aquatic food chains, and phytoplankton in particular lies on the first
trophic level of the food chain. The animals in the plankton community are known
as zooplankton. The phytoplankton are consumed by zooplankton, their animal
counterparts, which considered to be most favorable food sources for fish and other
aquatic animals. The importance of plankton for the wealth of the ocean ecosystem
and ultimately for the planet itself is nowadays widely recognized. Mathematical
models to study algae blooms are now classical [1], but research to investigate
these phenomena and the mechanisms behind them is still ongoing [2]. The man-
ifestation in new geographic areas and the increase in the number of blooms of
both toxic as well as non toxic algae species are reported in [3].

Many authors have studied phytoplankton-zooplanktonmodels. A phytoplank-
ton-zooplankton model with harvesting is proposed and investigated in [4]. Rehim
and Imran [5] investigated the interaction of toxic–phytoplankton–zooplankton
systems and their dynamical behavior based upon nonlinear ordinary differen-
tial equation model system. Das and Ray [6] investigated the effect of delay on
nutrient cycling in phytoplankton–zooplankton interactions in the estuarine sys-
tem. Saha and Bandyopadhyay [7] considered a toxin producing phytoplankton–
zooplankton model in which the toxin liberation by phytoplankton species follows
a discrete time variation. In [8], authors have dealt with a nutrient–plankton
model in an aquatic environment in the context of phytoplankton bloom. In [9],
models of nutrient–plankton interaction with a toxic substance that inhibits either
the growth rate of phytoplankton, zooplankton or both trophic levels are proposed
and studied.

In [10] the authors proposed a prey–predator model for the phytoplankton–
zooplankton system with the assumption that the viral disease is spreading only
among the prey species, and, though the predator feeds on both the susceptible
and infected prey, the infected prey is more vulnerable to predation as is seen in
nature (see references quoted earlier). The dynamical behaviour of the system
is investigated from the point of view of stability and persistence. The model
shows that infection can be sustained only above a threshold of force of infection.
Gakkhar and Negi [11] investigate the dynamical behaviour of toxin producing
phytoplankton (TPP) and zooplankton. The phytoplanktons are divided into
two groups, namely susceptible phytoplankton and infected phytoplankton. The
conditions for coexistence for the populations are presented. Chattopadhyay et al.
[12], deals with the problem of a nutrient–phytoplankton (N–P) populations where
phytoplankton population is divided into two groups, namely susceptible phyto-
plankton and infected phytoplankton. Conditions for coexistence or extinction of
populations are derived taking into account general nutrient uptake functions and
Holling type-II functional response as an example. In 2010, Dhar and Sharma [13],
proposed the role of viral infection in phytoplankton dynamics without and with
incubation population class is studied. It is observed that phytoplankton species
in the absence of incubated class are unstable around an endemic equilibrium but
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the presence of delay in the form of incubated class has made it conditionally sta-
ble around an endemic equilibrium.
Fractional order differentiation consist in the generalization of classical integer
differentiation to real or com- plex orders. We observe that fractional order can
be complex in viewpoint of pure mathematics and there is much interest in de-
veloping the theoretical analysis and numerical methods to fractional equations,
because they have recently proved to be valuable in various fields of science and en-
gineering. Indeed, we can find numerous applications in polymer rheology, regular
variation in thermodynamics, biophysics, blood flow phenomena, aerodynamics,
electro-dynamics of complex medium, viscoelasticity, Bode analysis of feedback
amplifiers, capacitor theory, electrical circuits, electro-analytical chemistry, biol-
ogy, control theory, fitting of experimental data, etc. [14, 15, 16, 17, 18, 19, 20].
For some recent work on fractional differential equations and inclusions, see [21,
22, 23, 24, 25, 27, 28, 29] and the references therein.
In this paper, we consider the following equations describing the time evolution of
the fractional order phytoplankton–zooplankton system [30]:

dαS
dtα

= aS(1− γ(S + I))− cPS
(1+α1S)(1+α2P ) − ζSI,

dαI
dtα

= I(ζS − kP − h),

dαP
dtα

= P (−d+ eS
(1+α1S)(1+α2P ) + k1I),

S(δ) = S0 > 0, I(δ) = I0 > 0, P (δ) = P0 > 0.

(1.1)

in Caputo fractional derivative sense. Here S and I are the concentrations of
the susceptible and the infected prey phytoplanktons, respectively; and P is the
concentration of the predator zooplankton, at time t and γ = b

a
. The parameters

as it appears in equation (1.1) denotes the intrinsic rate of increase of susceptible
prey; b relates to the carrying capacity or crowding effects of the prey; c is the
capture rate of the susceptible prey by the predator; d denotes the death rate
of predators in the absence of prey; e is the growth rate of predators due to
predation of susceptible prey; k denotes the rate of capturing of infected prey
by the predators; h is the death rate of infected phytoplankton; ζ is the force of
infection between susceptible and infected prey populations; and k1 is the growth
rate of predator due to predation of infected phytoplankton k1 ≤ k.

2 Preliminaries

Definition 2.1. The Riemann-Liouville fractional integral operator of order α >

0, of function f ∈ L1(R+) is defined as

Iα0 f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds,

where Γ(·) is the Euler gamma function.
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Definition 2.2. The Riemann-Liouville and Caputo fractional derivative of order
α > 0, n− 1 < α < n, n ∈ N is defined as

Dα
t f(t) =

1

Γ(n− α)

( d

dt

)n
∫ t

a

(t− s)n−α−1f(s)ds,

and

Dα
t0
f(t) =

1

Γ(n− α)

∫ t

a

f (n)(s)

(t− s)α+1−n
ds,

where the function f(t) have absolutely continuous derivatives up to order (n−1).

The initial value problem related to Definition 2.2 is

{

Dαx(t) = f(t, x(t)),

x(t)|t=0+ = x0,
(2.1)

where 0 < α < 1 and Dα = Dα
0 .

Now, some stability theorems on fractional-order systems are introduced.

Theorem 2.3 ([31]). The following autonomous system:

dαx

dtα
= Ax, x(0) = x0, (2.2)

with 0 < α ≤ 1, x ∈ R
n and A ∈ R

n×n, is asymptotically stable if and only if
| arg(λ)| > απ

2 is satisfied for all eigenvalues of matrix A. Also, this system is stable
if and only if | arg(λ)| ≥ απ

2 is satisfied for all eigenvalues of matrix A with those
critical eigenvalues satisfying | arg(λ)| = απ

2 having geometric multiplicity of one.
The geometric multiplicity of an eigenvalue λ of the matrix A is the dimension of
the subspace of vectors v for which Av = λv.

Theorem 2.4 ([32]). Consider the following commensurate fractional-order sys-
tem:

dαx

dtα
= f(x), x(0) = x0, (2.3)

with 0 < α ≤ 1 and x ∈ R
n. The equilibrium points of system (3.1) are calculated

by solving the following equation: f(x) = 0. These points are locally asymptoti-
cally stable if all eigenvalues λi of the Jacobian matrix J = ∂f

∂x
evaluated at the

equilibrium points satisfy: | arg(λi)| >
απ
2 .

3 Main Results

In this section we deal with local stability of the system (1.1). Let

dαS

dtα
= 0,

dαI

dtα
= 0,

dαP

dtα
= 0. (3.1)
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System (3.1) has a trivial equilibrium E0 = (0, 0, 0) and a infected prey and
predator-free equilibrium E1 = ( 1

γ
, 0, 0). Let R0 = ζ

γh
is the basic reproduction

number. If R0 > 1, then (3.1) admits a unique predator-free equilibrium E2 =
(S2, I2, 0), where

S2 =
1

γR0
, I2 =

a
γ
(R0 − 1)

R0(a+R0h)
.

Let R∗

0 = e
d(γ+α1)

. If S3, is a real positive root of the algebraic equation dα1γβS
3+

(dβ(γ − α1)S + (e− dβ − dα1)S + d = 0, then (3.1) admits the equilibrium E3 =
(S3, 0, P3) where P3 = β

α2
S3(1 − γS3) and β = eaα2

cd
. Also if S∗ is a real positive

root of the following equation, then (3.1) admits the equilibrium E∗ = (S∗, I∗, P ∗):

[

1− α2h
k

+ S(α2ζ
k

+ α1 −
α1α2h

k
) + α1α2dζ

k
S2

]

×
[

chd
ek

+ (a− cdζ
ek

)S − aγS2
]

− 1
k1

[

d− e− α2hd
k

+ S(α2ζd
k

+ α1d−
α1α2hd

k
) + α1α2dζ

k
S2

]

×
[

ck1h
ek

+ (aγ + ζ − ck1ζ
ek

)S
]

= 0,

(3.2)

where

I∗ =
1

k1

[

d−
keS∗

(1 + α1S∗)(k + α2(ζS∗ − h))

]

and

P ∗ =
1

k

[

ζS∗ − h
]

.

Now, in order to investigate the local behavior of model system (1.1) around
each of the equilibrium points, the Jacobian matrix J of the equilibria point E =
(S, I, P ) is computed as

J(E) = (Jij) ,

where

J11 = a(1−γ(S+ I))−
cP

(1 + α1S)(1 + α2P )
− ζI+S

[

−aγ+
α1cP

(1 + α1S)(1 + α2P )
,

J12 = −(aγ+ζ)S, J13 = − cS
(1+α1S)(1+α2P ) , J21 = ζI, J22 = ζS−kP−h, J23 = −kI,

J31 =
eP

(1 + α1S)(1 + α2P )
, J32 = k1P, J33 = −d+ k1I +

eS

(1 + α1S)(1 + α2P )
.

The local stability of system (1.1) around each of the equilibria is obtained by
computing the variational matrix corresponding to each equilibrium. Now we
consider the asymptotically stability of system (1.1) at the equilibrium point E0.

The Jacobian matrix of (1.1) at equilibrium point E0 is
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J(E0) =





a 0 0
0 −h 0
0 0 −d



 , (3.3)

The eigenvalues corresponding to the equilibrium E0 are

λ1 = a, λ2 = −h, λ3 = −d.

Then we have λ1 > 0, λ2 < 0 and λ3 < 0. Whence it follows that the equi-
librium E0 of system (1.1) is unstable. Thus the stable manifold of the origin
W s(E0) is two-dimensional and the unstable manifold of the origin Wu(E0) is
one-dimensional.
The Jacobian matrix of (1.1) at equilibrium point E1 = ( 1

γ
, 0, 0) is

J(E1) =







−a −a− ζ
γ

− c
γ+α1

0 ζ
γ
− h 0

0 0 −d+ e
γ+α1






. (3.4)

The eigenvalues corresponding to the equilibrium E1 are

λ1 = −a, λ2 = ζ
γ
− h, λ3 = −d+ e

γ+α1
.

If R0 < 1 and R∗

0 < 1, then all the eigenvalues corresponding to the equilibrium
E1 are real and negative. Consequently, we have the following theorem:

Theorem 3.1. The equilibrium E1 of system (1.1) is locally asymptotically stable
if R0 < 1 and R∗

0 < 1 holds.

Now we consider the asymptotically stability of system (1.1) at the equilibrium
point E2. The Jacobian matrix of (1.1) at equilibrium point E2 is

J(E2) =





− a
R0

−aγ+ζ
γR0

− cS2

1+α1S2

ζI2 0 −kI2
0 0 −d+ eS2

1+α1S2
+ k1I2



 ,

=







− a
R0

−aγ+ζ
γR0

− c
γR0+α1

ζ
a(R0−1)

γR0(a+R0h)
0 −k

a(R0−1)
γR0(a+R0h)

0 0 −d+ e
γR0+α1

+ k1
a(R0−1)

γR0(a+R0h)
,






,

(3.5)

with the characteristic equation

Q(λ) = det(λ− J(E2)) = [λ− (−d+ e
γR0+α1

+ k1
a(R0−1)

γR0(a+R0h)
)]

×(λ2 + a
R0

λ+ aζ(aγ+ζ)(R0−1)
γ2R2

0(a+R0h)
).

(3.6)
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If 1 < R0 <
4ζ(aγ+ζ)+a2γ2

4ζ(aγ+ζ)−ha2γ2 , h <
ζ(aγ+ζ)

aγ2 and k1 < min{ γR0(a+R0h)
R0−1 (d− e

γR0+α1
), k}

hold, then the eigenvalues corresponding to the equilibrium E2 are real and nega-
tive as follows:

λ1 = −d+ e
γR0+α1

+ k1
a(R0−1)

γR0(a+R0h)
,

λ2,3 = 1
2

(

− a
R0

±
√

a2

R2
0
− 4aζ(aγ+ζ)(R0−1)

γ2R2
0(a+R0h)

)

.

Consequently, we have the following theorem:

Theorem 3.2. The equilibrium E2 of system (1.1) is locally asymptotically stable

if 1 < R0 <
4ζ(aγ+ζ)+a2γ2

4ζ(aγ+ζ)−ha2γ2 ,h <
ζ(aγ+ζ)

aγ2 and k1 < min{ γR0(a+R0h)
R0−1 (d− e

γR0+α1
), k}

holds.

If h <
ζ(aγ+ζ)

aγ2 ,R0 > max{ 4ζ(aγ+ζ)+a2γ2

4ζ(aγ+ζ)−ha2γ2 , 1} and k1 < min{ γR0(a+R0h)
R0−1 (d −

e
γR0+α1

), k} then λ1 < 0 and the eigenvalues λ2,3 corresponding to the equilibrium
E2 are complex as follows

λ2,3 = 1
2

(

− a
R0

± i
√

− a2

R2
0
+ 4aζ(aγ+ζ)(R0−1)

γ2R2
0(a+R0h)

)

.
(3.7)

Thus from theorem (2), if | arg(λ2,3)| = tan−1
(

√

−
a2

R2
0
+4

aζ(aγ+ζ)(R0−1)

γ2R2
0
(a+R0h)

a
R0

)

> απ
2 hold

then the equilibrium E2 is asymptotically stable. Consequently, we have the fol-
lowing theorem:

Theorem 3.3. If k1<min{γR0(a+R0h)
R0−1 (d− e

γR0+α1
), k} , R0>max{ 4ζ(aγ+ζ)+a2γ2

4ζ(aγ+ζ)−ha2γ2 ,1}

and h <
ζ(aγ+ζ)

aγ2 hold. Then the equilibrium E2 of system (1.1) is locally asymp-
totically stable for all

α < 2
π
tan−1

(

√

−
a2

R2
0

+4
aζ(aγ+ζ)(R0−1)

γ2R2
0
(a+R0h)

a
R0

)

.

4 Numerical Simulation and Dissolution

In this section, to verify the effectiveness of the obtained results, some numer-
ical simulations for the fractional-order system (1.1) have been conducted. For
solving the fractional-order system (1.1) we used the numerical method discussed
in [33]. All the differential equations are solved using the method proposed in the
previous section. In all numerical runs, the solution has been approximated at
δ = ∆t = 0.01. We consider the following cases:
Case I
In this case we set α1 = 2, α2 = 4, a = 0.4, b = 0.006, c = 0.5, ζ = 0.23, k = 1, h =
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0.1, d = 0.4, e = 0.01, k1 = 0.8. In figure 1 we plot the numerical solution of system
(1.1) with the initial condition S0 = 3, I0 = 4, P0 = 2 for various values of α.
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Figure 1: The numerical solution of system (1.1) at α1 = 2, α2 = 4, a = 0.4, b =
0.006, c = 0.5, ζ = 0.23, k = 1, h = 0.1, d = 0.4, e = 0.01, k1 = 0.8 for various
values of α

In figures 2-3, we display the phase plane of system (1.1) with the initial
conditions [S0, I0, P0] = [3, 4, 2], [3, 5, 0.2], [4, 1, 0.5], [2, 3, 0.7] for α = 0.95, 0.75 re-
spectively.
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Figure 2: Phase plane of system (1.1) at α1 = 2, α2 = 4, a = 0.4, b = 0.006, c =
0.5, ζ = 0.23, k = 1, h = 0.1, d = 0.4, e = 0.01, k1 = 0.8 and α = 0.95.
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Figure 3: Phase plane of system (1.1) at α1 = 2, α2 = 4, a = 0.4, b = 0.006, c =
0.5, ζ = 0.23, k = 1, h = 0.1, d = 0.4, e = 0.01, k1 = 0.8 and α = 0.75.

Case II
In this case we set α1 = 2, α2 = 4, a = 0.4, b = 0.006, c = 0.5, ζ = 0.23, k = 1, h =
0.1, d = 0.4, e = 0.01, k1 = 0.008. In figure 4 we plot the numerical solution of
system (1.1) with the initial condition S0 = 3, I0 = 4, P0 = 2 for various values of
α.
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Figure 4: The numerical solution of system (1.1) at α1 = 2, α2 = 4, a = 0.4, b =
0.006, c = 0.5, ; ζ = 0.23, k = 1, h = 0.1, d = 0.4, e = 0.01, k1 = 0.008 for various
values of α

[H] In figures 5-6, we display the phase plane of system (1.1) with the ini-
tial conditions [S0, I0, P0] = [3, 4, 2], [3, 5, 0.2], [4, 1, 0.5], [2, 3, 0.7] for α = 0.95, 0.75
respectively.
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Figure 5: Phase plane of system (1.1) at α1 = 2, α2 = 4, a = 0.4, b = 0.006, c =
0.5, ζ = 0.23, k = 1, h = 0.1, d = 0.4, e = 0.01, k1 = 0.008 and α = 0.95.
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Figure 6: Phase plane of system (1.1) at α1 = 2, α2 = 4, a = 0.4, b = 0.006, c =
0.5, ζ = 0.23, k = 1, h = 0.1, d = 0.4, e = 0.01, k1 = 0.008 and α = 0.75.
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