Chromatic Numbers of Glued Graphs

C. Promsakon and C. Uiyyasathian ${ }^{1}$

Abstract

Let G_{1} and G_{2} be any two graphs. Assume that $H_{1} \subseteq G_{1}$ and $H_{2} \subseteq G_{2}$ are non-trivial connected and such that $H_{1} \cong H_{2}$ with an isomorphism f. The glued graph of G_{1} and G_{2} at H_{1} and H_{2} with respect to f, denoted by $G_{1} \triangleleft_{H_{1}} \cong_{f} H_{2} \triangleright G_{2}$, is the graph that results from combining G_{1} with G_{2} by identifying H_{1} and H_{2} with respect to the isomorphism f. We characterize graph gluing between trees, forests, and bipartite graphs. Furthermore, we give an upper bound of the chromatic number of glued graphs in terms of the chromatic numbers of their original graphs. We also provide a family of glued graphs to guarantee the sharpness of this upper bound.

Keywords : Graph coloring, glued graph
2000 Mathematics Subject Classification : 05C15, 05C99

1 Introduction

The gluing is a natural graph operation. It is mathematically defined in [1]. We follow West [2] for terminologies and notations not defined here and only consider simple graphs. Let G_{1} and G_{2} be any graphs, $H_{1} \subseteq G_{1}$ and $H_{2} \subseteq G_{2}$ be non-trivial connected and such that $H_{1} \cong H_{2}$ with an isomorphism f. We define the glued graph of G_{1} and G_{2} at H_{1} and H_{2} with respect to f, denoted by $G_{1} \triangleleft_{H_{1} \varkappa_{f} H_{2}} \triangleright G_{2}$, as the graph that results from combining G_{1} with G_{2} by identifying H_{1} and H_{2} with respect to the isomorphism f. If H is the copy of H_{1} and H_{2} in the glued graph, we refer to H as its clone and G_{1} and G_{2} as its original graphs. The glued graph $G_{1} \bowtie G_{2}$ at the clone H means that there exist a subgraph H_{1} of G_{1}, a subgraph H_{2} of G_{2}, and an isomorphism f such that $G_{1} \triangleleft_{H_{1} \cong_{f} H_{2} \triangleright G_{2} \text { and } H \text { is the }}$ copy of H_{1} and H_{2} in the resulting graph. Unless we define specifically, we denote $G_{1} \triangleleft G_{2}$ as an arbitrary graph resulting from gluing G_{1} and G_{2}. Note that ,from the definition of glued graphs, clones must be connected and not a single vertex. The notation $P_{n}\left(v_{1}, \ldots, v_{n}\right)$ denote a path of n vertices on the vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$.

We first note few facts that the copy of both original graphs are subgraphs of their glued graphs. The glue operation does not create an edge. Also, a glued

[^0]graph of disconnected graphs is still disconnected. A graph gluing could give a resulting graph with multiple edges. In section 2 , we focus more on graph colorings, we will in particular consider multiple edges as a single edge in any glued graphs .

Proposition 1.1. Let G_{1} and G_{2} be graphs gluing at a clone H. Then
$\left|V\left(G_{1} \triangleleft G_{2}\right)\right|=\left|V\left(G_{1}\right)\right|+\left|V\left(G_{2}\right)\right|-|V(H)|$, and $\left|E\left(G_{1} \triangleleft G_{2}\right)\right|=\left|E\left(G_{1}\right)\right|+$ $\left|E\left(G_{2}\right)\right|-|E(H)|$.

Proof. Since for each vertex and each edge in H are counted twice in the glued graph, we have that $\left|V\left(G_{1} \triangleleft G_{2}\right)\right|=\left|V\left(G_{1}\right)\right|+\left|V\left(G_{2}\right)\right|-|V(H)|$ and $\left|E\left(G_{1} \triangleleft G_{2}\right)\right|$ $=\left|E\left(G_{1}\right)\right|+\left|E\left(G_{2}\right)\right|-|E(H)|$.

The rest of this section deals with the characterization of graph gluing between trees, forests and bipartite graphs.

Theorem 1.2. Let T_{1} and T_{2} be graphs. $T_{1} \triangleleft T_{2}$ is a tree if and only if T_{1} and T_{2} are trees.

Proof. Without loss of generality, we may assume that T_{1} is not a tree. Therefore T_{1} contains a cycle or T_{1} is disconnected. This yields that $T_{1} \triangleleft T_{2}$ also contains a cycle or it is disconnected. Hence $T_{1} \boxtimes T_{2}$ is not a tree. Conversely, let T_{1} and T_{2} be trees, and $T_{1} \triangleleft T_{2}$ at a clone H. Since a connected subgraph of a tree is a tree, H is also a tree. By Proposition 1.1, we have

$$
\begin{aligned}
\left|E\left(T_{1} \triangleleft T_{2}\right)\right| & =\left|E\left(T_{1}\right)\right|+\left|E\left(T_{2}\right)\right|-|E(H)| \\
& =\left|V\left(T_{1}\right)\right|-1+\left|V\left(T_{2}\right)\right|-1-|V(H)|+1 \\
& =\left|V\left(T_{1}\right)\right|+\left|V\left(T_{2}\right)\right|-|V(H)|-1 \\
& =\left|V\left(T_{1} \leftrightarrow T_{2}\right)\right|-1 .
\end{aligned}
$$

Moreover, $T_{1} \triangleleft T_{2}$ is connected because T_{1} and T_{2} are connected. Therefore $T_{1} \triangleleft T_{2}$ is a tree.

In particular, Theorem 1.2 can be applied for connected graphs G_{1} and G_{2} as follows: $G_{1} \triangleleft G_{2}$ has a cycle if and only if G_{1} or G_{2} has a cycle. We observe that a glued graph can have a new cycle that is not contained in any original graphs. In a glued graph, cycles in its original graphs are called original cycles, otherwise they are created cycles.

Theorem 1.3. Let G_{1} and G_{2} be graphs. If $G_{1} \bowtie G_{2}$ contains a created cycle, then both G_{1} and G_{2} contain a cycle.

Proof. Let G_{1} and G_{2} be graphs glued at the clone H. By contrapositive, we assume that G_{1} is acyclic. Without loss of generality, we may assume that both G_{1} and G_{2} are connected. If G_{2} does not contain a cycle. G_{1} and G_{2} are trees. By Theorem 1.2, $G_{1} \triangleleft G_{2}$ is a tree which is acyclic. On the other hand, let G_{2} contain a cycle. Suppose that $G_{1} \triangleleft G_{2}$ contains a created cycle, say C. Then there exists a path in C which is not a subgraph of G_{2}. Let P_{1} be a u, v-path in C whose all edges are in $G_{1} \backslash G_{2}$ and $\left|E\left(P_{1}\right)\right|$ is maximum. Then both u and v are
in $V\left(G_{1}\right) \cap V\left(G_{2}\right)$, and therefore they are in $V(H)$. Since H is connected, there is a u, v-path P_{2} in H. Because $H \subseteq G_{2}, P_{2} \neq P_{1}$. Hence $P_{1} \cup P_{2}$ is a closed walk, so it contains a cycle. But $P_{1} \cup P_{2} \subseteq G_{1}$, so G_{1} contains a cycle, a contradiction. Therefore $G_{1} \bowtie G_{2}$ does not contain a created cycle.

Corollary 1.4. Let G_{1} and G_{2} be graphs. $G_{1} \triangleleft G_{2}$ is a forest if and only if G_{1} and G_{2} are forests.

Proof. Let G_{1} and G_{2} be graphs. Without loss of generality, we may assume that G_{1} is not a forest. So G_{1} contains a cycle. Since $G_{1} \subseteq G_{1} \triangleleft G_{2}$, the glued graph $G_{1} \triangleleft G_{2}$ contains a cycle. Hence $G_{1} \triangleleft G_{2}$ is not a forest. Conversely, suppose $G_{1} \bowtie G_{2}$ is not a forest. So $G_{1} \bowtie G_{2}$ contains a cycle, say C. If C is an original cycle, then it is done. Suppose C is a created cycle. By Theorem 1.3, both G_{1} and G_{2} contain a cycle. Hence G_{1} and G_{2} are not forests.

Theorem 1.5. Let B_{1} and B_{2} be graphs. $B_{1} \bowtie B_{2}$ is a bipartite graph if and only if B_{1} and B_{2} are bipartite.

Proof. Necessity. Without loss of generality, we may assume that B_{1} is not bipartite. Then B_{1} contains an odd cycle. Since $B_{1} \subseteq B_{1} \triangleleft B_{2}$, we have that $B_{1} \triangleleft B_{2}$ contains an odd cycle and hence $B_{1} \triangleleft B_{2}$ is not a bipartite graph. Sufficiency. Assume B_{1} and B_{2} are bipartite. Let X_{i} and Y_{i} be bipartition of B_{i} for $i=1,2$. Let H be the clone of arbitrary $B_{1} \triangleleft B_{2}$. Because H is a subgraph of B_{1} and B_{2}, the clone H is bipartite. Let X_{H} and Y_{H} be bipartition of H. We may assume that X_{H} is a subset of X_{1} and X_{2} and Y_{H} is a subset of Y_{1} and Y_{2}. Let $X=X_{1} \cup X_{2}$ and $Y=Y_{1} \cup Y_{2}$. To show that X and Y are bipartition of $B_{1} \triangleleft B_{2}$, let u and v be adjacent vertices in $B_{1} \bowtie B_{2}$. So both u and v are adjacent in B_{1} or B_{2}. We may assume that u and v are in B_{1}. Because B_{1} is a bipartite graph, u and v are not in the same partition of B_{1}. Hence $u \in X_{1} \subset X$ and $v \in Y_{1} \subset Y$ or vise versa. This yields that u and v are not in the same partition in $B_{1} \triangleleft B_{2}$. Therefore $B_{1} \triangleleft B_{2}$ is a bipartite graph.

2 Chromatic Numbers of Glued Graphs

A k-coloring of a graph G is a labelling $f: V(G) \rightarrow S$, where $|S|=k$. The labels are colors; the vertices of one color form a color class. A k-coloring is proper if adjacent vertices have different labels. A graph is k-colorable if it has a proper k-coloring. The chromatic number of graph $G, \chi(G)$, is the least k such that G is k-colorable. For any glued graph $G_{1} \triangleleft G_{2}$, since G_{1} and G_{2} are subgraphs $G_{1} \triangleleft G_{2}$, the chromatic number of $\chi\left(G_{1} \triangleleft G_{2}\right)$ is at least $\chi\left(G_{1}\right)$ and $\chi\left(G_{2}\right)$. We therefore get a lower bound for any graphs G_{1} and G_{2} that

$$
\chi\left(G_{1} \triangleleft G_{2}\right) \geq \max \left\{\chi\left(G_{1}\right), \chi\left(G_{2}\right)\right\}
$$

It is possible that the chromatic number of a glued graph exceeds both chromatic numbers of it original graphs. For instant, we obtain K_{4} by gluing $K_{4} \backslash\{e\}$
with K_{3} at a clone P_{2} where P_{2} contains both endpoints of the edge e. So $\chi\left(K_{4} \backslash\{e\} \triangleleft K_{3}\right)=\chi\left(K_{4}\right)=4$ while $\chi\left(K_{4} \backslash\{e\}\right)=3=\chi\left(K_{3}\right)$. However, for any glued graph with chromatic number $\chi\left(G_{1} \triangleleft G_{2}\right)=2$ or 3 , we have $\chi\left(G_{1} \triangleleft G_{2}\right)=\max \left\{\chi\left(G_{1}\right), \chi\left(G_{2}\right)\right\}$. This result is found in Proposition 2.1. On the other hand, when $\chi\left(G_{1} \triangleleft G_{2}\right) \geq 4$, there exist a family of glued graphs each of whose chromatic number greater than both chromatic numbers of its original graphs. This family of glued graphs are given in Theorem 2.3.

Proposition 2.1. Let G_{1} and G_{2} be non-trivial graphs. Then
(i) $\chi\left(G_{1} \triangleleft G_{2}\right)=2$ if and only if $\chi\left(G_{1}\right)=2=\chi\left(G_{2}\right)$, and
(ii) if $\chi\left(G_{1} \triangleleft G_{2}\right)=3$, then $\chi\left(G_{1}\right)=3$ or $\chi\left(G_{2}\right)=3$.

Proof. We note that for any graph G, G is non-trivial bipartite if and only if $\chi(G)=2$. Together with Theorem 1.5, statement (i) is concluded.

To prove statement (ii), let G_{1} and G_{2} be non-trivial graphs. Thus $\chi\left(G_{1}\right) \neq$ 1 and $\chi\left(G_{2}\right) \neq 1$. Assume that $\chi\left(G_{1} \triangleleft G_{2}\right)=3$. Since $\chi\left(G_{1} \triangleleft G_{2}\right) \geq$ $\max \left\{\chi\left(G_{1}\right), \chi\left(G_{2}\right)\right\}$, we have $\chi\left(G_{1}\right) \leq 3$ and $\chi\left(G_{2}\right) \leq 3$. By (i), we have $\chi\left(G_{1}\right) \neq 2$ or $\chi\left(G_{2}\right) \neq 2$. Therefore $\chi\left(G_{1}\right)=3$ or $\chi\left(G_{2}\right)=3$.

In general, to determine the chromatic number of a glued graph between G_{1} and G_{2}, ones intuitively believe that a set of $\chi\left(G_{1}\right)+\chi\left(G_{2}\right)$ colors should be enough to provide a proper coloring for $G_{1} \triangleleft G_{2}$. However, this intuition is not always true as provided in Figure 1.

Figure 1: $\chi\left(G_{1}\right)=3=\chi\left(G_{2}\right)$ and $\chi\left(G_{1} \triangleleft G_{2}\right)=7$.

Though the sum of the chromatic numbers of the original graphs of a glued graph cannot be an upper bound, the product of the chromatic numbers of its original graphs is large enough to be an upper bound. We prove this fact in Theorem 2.2. Furthermore, this bound is sharp as provided by a family of glued graphs in Theorem 2.3.

Theorem 2.2. Let G_{1} and G_{2} be non-trivial graphs. Then $\chi\left(G_{1} \triangleleft G_{2}\right) \leq \chi\left(G_{1}\right) \chi\left(G_{2}\right)$.

Proof. Let G_{1} and G_{2} be non-trivial graphs gluing at a connected clone H. Assume $\chi\left(G_{1}\right)=p$ and $\chi\left(G_{2}\right)=q$. Let $\gamma_{1}: V\left(G_{1}\right) \rightarrow A=\{1,2, \ldots, p\}$ and $\gamma_{2}: V\left(G_{2}\right) \rightarrow$ $B=\{1,2, \ldots, q\}$ be proper colorings of G_{1} and G_{2}, respectively. Define β : $V\left(G_{1} \triangleleft G_{2}\right) \rightarrow A \times B$ by for all $v \in V\left(G_{1} \bowtie G_{2}\right)$,

$$
\beta(v)= \begin{cases}\left(\gamma_{1}(v), 1\right) & \text { if } \quad v \in V\left(G_{1} \backslash H\right) \\ \left(\gamma_{1}(v), \gamma_{2}(v)\right) & \text { if } \quad v \in V(H) \\ \left(1, \gamma_{2}(v)\right) & \text { if } \quad v \in V\left(G_{2} \backslash H\right)\end{cases}
$$

Let $v, u \in V\left(G_{1} \triangleleft G_{2}\right)$ be such that v and u are adjacent by an edge e. Then $e \in E\left(G_{1}\right)$ or $E\left(G_{2}\right)$. In case $e \in E\left(G_{1}\right)$, we have $\beta(v)=\left(\gamma_{1}(v), a\right)$ where $a=1$ or $\gamma_{2}(v)$, and $\beta(u)=\left(\gamma_{1}(u), b\right)$ where $b=1$ or $\gamma_{2}(u)$. Since $\gamma_{1}(v) \neq \gamma_{1}(u)$, it follows that $\beta(v) \neq \beta(u)$ Similarly, suppose $e \in E\left(G_{2}\right)$, we have $\beta(v)=\left(c, \gamma_{2}(v)\right)$ where $c=1$ or $\gamma_{1}(v)$, and $\beta(u)=\left(d, \gamma_{2}(u)\right)$ where $d=1$ or $\gamma_{1}(u)$. Since $\gamma_{2}(v) \neq \gamma_{2}(u)$, $\beta(v) \neq \beta(u)$. Hence β is a proper coloring of the glued graph $G_{1} \triangleleft G_{2}$. Therefore $\chi\left(G_{1} \triangleleft G_{2}\right) \leq|A \times B|=p q=\chi\left(G_{1}\right) \chi\left(G_{2}\right)$.

Theorem 2.3. Let p and q be integers such that $p, q \geq 2$ but $p q \neq 4$. Then there exist G_{1} and G_{2} with a glued graph $G_{1} \leftrightarrow G_{2}$ such that $\chi\left(G_{1}\right)=p, \chi\left(G_{2}\right)=q$, and $\chi\left(G_{1} \bowtie G_{2}\right)=p q$.

Proof. Let p and q be integers at least 2 but $p q \neq 4$. We construct separately a family of glued graphs satisfying the required property when $p=q$ and $p \neq q$.
Case $1 p=q$: Let G_{1} be defined by $V\left(G_{1}\right)=\left\{u_{1}, u_{2}, \ldots, u_{p^{2}}\right\}$ and u_{i} and u_{j} are adjacent if and only if $i \not \equiv j(\bmod p)$. Now let $\gamma_{1}: V\left(G_{1}\right) \rightarrow\{1,2, \ldots, p\}$ be a coloring of G_{1} defined by

$$
\gamma_{1}\left(u_{i}\right)=l \quad \text { where } l \equiv i \quad(\bmod p) \text { and } l \in\{1,2, \ldots, p\}
$$

For $u_{i}, u_{j} \in V\left(G_{1}\right)$, assume that u_{i} and u_{j} are adjacent. Then $i \not \equiv j(\bmod p)$. Suppose $\gamma_{1}\left(u_{i}\right)=l$ and $\gamma_{1}\left(u_{j}\right)=k$, so $i \equiv l(\bmod p)$ and $j \equiv k(\bmod p)$. Hence $l \equiv i \not \equiv j \equiv k(\bmod p)$. Then $\gamma_{1}\left(u_{i}\right) \neq \gamma_{1}\left(u_{j}\right)$. Therefore γ_{1} is proper and also $\chi\left(G_{1}\right) \leq p$. Since the set of vertices $\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$ forms a p-clique, $\chi\left(G_{1}\right) \geq p$. Hence $\chi\left(G_{1}\right)=p$.

We next define graph G_{2} by $V\left(G_{2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{p^{2}}\right\}$ and v_{i} and v_{j} are adjacent if and only if $i=j+1$ or $i \equiv j(\bmod p)$. Let $\gamma_{2}: V\left(G_{2}\right) \rightarrow\{1,2, \ldots, p\}$ be a coloring of G_{2}. For each $i \in\left\{1,2, \ldots, p^{2}\right\}$, write $i=a p+b$ where $a, b \in \mathbb{Z}, a \geq$ $0,0<b \leq p$, define $\gamma_{2}\left(v_{i}\right)$ by

$$
\gamma_{2}\left(v_{i}\right)=l \text { where } l \equiv a+b \quad(\bmod p) \text { and } l \in\{1,2, \ldots, p\}
$$

Figure 2 illustrates G_{1} and G_{2} for $p=q=3$. If we let clones $H_{1}=$ $P_{9}\left(u_{1}, \ldots, u_{9}\right)$ and $H_{2}=P_{9}\left(v_{1}, \ldots, v_{9}\right)$ with the isomorphism f where $f\left(u_{i}\right)=v_{i}$, then $\chi\left(G_{1}\right)=\chi\left(G_{2}\right)=3$ while $\chi\left(G_{1} \triangleleft_{H_{1}} \cong_{f} H_{2} \triangleright G_{2}\right)=\chi\left(K_{9}\right)=9$.

For $v_{i}, v_{j} \in V\left(G_{2}\right)$, to show that γ_{2} is proper, assume that v_{i} and v_{j} are adjacent. Then $i=j+1$ or $i \equiv j(\bmod p)$. Let $j=a p+b$ where $a \geq 0$ and $0<b \leq p$. So $\gamma_{2}\left(v_{j}\right) \equiv a+b(\bmod p)$.

Figure 2: G_{1} and G_{2} defined in Case 1 when $p=q=3$.
Case $1.1 i=j+1=a p+b+1$: If $b<p$, then $b+1 \leq p$, consequently, $\gamma_{2}\left(v_{i}\right) \equiv a+b+1(\bmod p) \not \equiv a+b(\bmod p) \equiv \gamma_{2}\left(v_{j}\right)$. Suppose $b=p$. Then $i=a p+p+1=p(a+1)+1$. So $\gamma_{2}\left(v_{i}\right) \equiv a+2(\bmod p)$. Since $p^{2} \neq 4$, we have $p \neq 2$. This yields $\gamma_{2}\left(v_{i}\right) \equiv a+2(\bmod p) \not \equiv a+p(\bmod p) \equiv \gamma_{2}\left(v_{j}\right)$.

Case $1.2 i \equiv j(\bmod p)$: Without loss of generality, we may assume $i>j$. Then $i=j+n p=a p+b+n p=p(a+n)+b$ where $n \in \mathbb{N}$. Since $1 \leq i \leq p^{2}$, $1 \leq n \leq p-1$. Hence $\gamma_{2}\left(v_{i}\right) \equiv a+n+b(\bmod p) \not \equiv a+b(\bmod p) \equiv \gamma_{2}\left(v_{j}\right)$.

Therefore, by both cases, γ_{2} is a proper coloring. This yields $\chi\left(G_{2}\right) \leq p$. Moreover, since the set of vertices $\left\{v_{1}, v_{1+p}, v_{1+2 p}, \ldots, v_{1+(p-1) p}\right\}$ forms a p-clique, $\chi\left(G_{2}\right) \geq p$. Hence $\chi\left(G_{2}\right)=p$.

Now consider $H_{1}=P_{p^{2}}\left(u_{1}, \ldots, u_{p^{2}}\right) \subseteq G_{1}$ and $H_{2}=P_{p^{2}}\left(v_{1}, \ldots, v_{p^{2}}\right) \subseteq G_{2}$. Let an isomorphism $f: H_{1} \rightarrow H_{2}$ be defined by $f\left(u_{i}\right)=v_{i}$ for all $i \in\left\{1,2, \ldots, p^{2}\right\}$. Let $G=G_{1} \triangleleft_{H_{1} \cong_{f} H_{2}} \triangleright G_{2}$ and $V(G)=\left\{w_{i}: i=1, \ldots, p^{2}\right.$ where w_{i} corresponds to u_{i} and $\left.v_{i}\right\}$. Note that $|V(G)|=p^{2}$. Let $w_{i}, w_{j} \in V(G)$. If $i \equiv j(\bmod p)$, w_{i} and w_{j} are adjacent in G_{2}. Otherwise, w_{i} and w_{j} are adjacent in G_{1}. It follows that w_{i} and w_{j} are adjacent in G. Hence G is a complete graph. That is, $\chi\left(G_{1} \triangleleft_{H_{1} \cong_{f} H_{2}} \triangleright G_{2}\right)=p^{2}$.

Case $2 p \neq q$: We may assume $p<q$. Define G_{1} and γ_{1} the same as Case 1 . Then $\chi\left(G_{1}\right)=p$. For G_{2}, let $V\left(G_{2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{p q}\right\}$ and v_{i} and v_{j} are adjacent if and only if $i=j+1$ or $i \equiv j(\bmod p)$. Figure 3 illustrates for $p=3, q=4$.

We define $\gamma_{2}: V\left(G_{2}\right) \rightarrow\{1,2, \ldots, q\}$ as follows: For each $i \in\{1, \ldots, p q\}$, write $i=a p+b$ where $a, b \in \mathbb{Z}, a \geq 0,0<b \leq p$,

$$
\gamma_{2}\left(v_{i}\right)=l \text { where } l \equiv 2+a-b \quad(\bmod q) \text { and } l \in\{1,2, \ldots, q\} .
$$

For $v_{i}, v_{j} \in V\left(G_{2}\right)$, assume that v_{i} and v_{j} are adjacent. Then $i=j+1$ or $i \equiv j$ $(\bmod p)$. Let $j=a p+b$ where $a \geq 0,0<b \leq p$. So $\gamma_{2}\left(v_{j}\right) \equiv 2+a-b(\bmod q)$.

Case 2.1 $i=j+1=a p+b+1$: If $b<p$, then $b+1 \leq p$ and also $\gamma_{2}\left(v_{i}\right) \equiv$ $2+a-b-1(\bmod q) \not \equiv 2+a-b(\bmod q) \equiv \gamma_{2}\left(v_{j}\right)(\bmod q)$. If $b=p, i=$

Figure 3: G_{1} and G_{2} defined in Case 2 when $p=3$ and $q=4$.
$a p+p+1=p(a+1)+1$ and $\gamma_{2}\left(v_{i}\right)=2+a(\bmod q)$. Since $p<q, \gamma_{2}\left(v_{i}\right) \equiv a+2$ $(\bmod q) \not \equiv 2+a-p(\bmod q) \equiv \gamma_{2}\left(v_{j}\right)(\bmod q)$.

Case $2.2 i \equiv j(\bmod p)$: We may assume that $i>j$. So $i=j+n p=$ $a p+b+n p=p(a+n)+b$ where $n \in \mathbb{N}$. Since $1 \leq i \leq p q$, we have $1 \leq n \leq q-1$. So $\gamma_{2}\left(v_{i}\right) \equiv 2+a+n-b(\bmod q) \not \equiv 2+a-b(\bmod q) \equiv \gamma_{2}\left(v_{j}\right)$. Hence, by both cases, γ_{2} is proper and $\chi\left(G_{2}\right) \leq q$. We can see that the set of vertices $\left\{v_{1}, v_{1+p}, v_{1+2 p}, \ldots, v_{1+(q-1) p}\right\}$ forms a q-clique. So $\chi\left(G_{2}\right) \geq q$. Hence $\chi\left(G_{2}\right)=q$.

Finally, let $H_{1}=P_{p q}\left(u_{1}, \ldots, u_{p q}\right)$ and $H_{2}=P_{p q}\left(v_{1}, \ldots, v_{p q}\right)$. Define $f: H_{1} \rightarrow$ H_{2} by $f\left(u_{i}\right)=v_{i}$ for all $i \in\{1,2,3, \ldots, p q\}$. Let $G=G_{1} \triangleleft_{H_{1} \cong_{f} H_{2} \triangleright G_{2} \text { and } V(G)=}$ $\left\{w_{i}: i=1, \ldots, p q\right.$ where w_{i} corresponds to u_{i} and $\left.v_{i}\right\}$. Note that $|V(G)|=p q$. Now, let $w_{i}, w_{j} \in V(G)$. If $i \equiv j(\bmod p)$, then w_{i} and w_{j} are adjacent in G_{2}. Otherwise, w_{i} and w_{j} are adjacent in G_{1}. This means that w_{i} and w_{j} are adjacent in G. Hence G is a complete graph. Therefore, $\chi\left(G_{1} \triangleleft_{H_{1}} \cong_{f} H_{2} \triangleright G_{2}\right)=p q$.

References

[1] C. Uiyyasathian, Maximal-Clique Partitions, PhD Thesis, University of Colorado at Denver, 2003.
[2] D. West, Introduction to Graph Theory, Prentice Hall, 2001.
(Received 25 May 2006)

C. Promsakon and C. Uiyyasathian
Department of Mathematics,
Faculty of Science,
Chulalongkorn University,
Bangkok 10330, THAILAND.
e-mail: Promsakon@Gmail.com and Chariya.U@Chula.ac.th

[^0]: ${ }^{1}$ Supported by Grants for Development of New Faculty Staff from Chulalongkorn University.

