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Chromatic Numbers of Glued Graphs
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Abstract : Let G1 and G2 be any two graphs. Assume that H1 ⊆ G1 and
H2 ⊆ G2 are non-trivial connected and such that H1

∼= H2 with an isomorphism
f . The glued graph of G1 and G2 at H1 and H2 with respect to f , denoted by
G1�H1∼=f H2�G2, is the graph that results from combining G1 with G2 by identifying
H1 and H2 with respect to the isomorphism f . We characterize graph gluing
between trees, forests, and bipartite graphs. Furthermore, we give an upper bound
of the chromatic number of glued graphs in terms of the chromatic numbers of
their original graphs. We also provide a family of glued graphs to guarantee the
sharpness of this upper bound.
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1 Introduction

The gluing is a natural graph operation. It is mathematically defined in [1]. We
follow West [2] for terminologies and notations not defined here and only consider
simple graphs. Let G1 and G2 be any graphs, H1 ⊆ G1 and H2 ⊆ G2 be non-trivial
connected and such that H1

∼= H2 with an isomorphism f . We define the glued
graph of G1 and G2 at H1 and H2 with respect to f , denoted by G1 �H1∼=f H2 �G2,
as the graph that results from combining G1 with G2 by identifying H1 and H2

with respect to the isomorphism f . If H is the copy of H1 and H2 in the glued
graph, we refer to H as its clone and G1 and G2 as its original graphs. The glued
graph G1 �� G2 at the clone H means that there exist a subgraph H1 of G1, a
subgraph H2 of G2, and an isomorphism f such that G1 �H1∼=f H2 �G2 and H is the
copy of H1 and H2 in the resulting graph. Unless we define specifically, we denote
G1 �� G2 as an arbitrary graph resulting from gluing G1 and G2. Note that
,from the definition of glued graphs, clones must be connected and not a single
vertex. The notation Pn(v1, . . . , vn) denote a path of n vertices on the vertex set
{v1, . . . , vn}.

We first note few facts that the copy of both original graphs are subgraphs
of their glued graphs. The glue operation does not create an edge. Also, a glued
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graph of disconnected graphs is still disconnected. A graph gluing could give a
resulting graph with multiple edges. In section 2, we focus more on graph colorings,
we will in particular consider multiple edges as a single edge in any glued graphs .

Proposition 1.1. Let G1 and G2 be graphs gluing at a clone H. Then
|V (G1 �� G2)| = |V (G1)| + |V (G2)| − |V (H)|, and |E(G1 �� G2)| = |E(G1)| +
|E(G2)| − |E(H)| .
Proof. Since for each vertex and each edge in H are counted twice in the glued
graph, we have that |V (G1 �� G2)| = |V (G1)|+|V (G2)|−|V (H)| and |E(G1 �� G2)|
= |E(G1)| + |E(G2)| − |E(H)|.
The rest of this section deals with the characterization of graph gluing between
trees, forests and bipartite graphs.

Theorem 1.2. Let T1 and T2 be graphs. T1 �� T2 is a tree if and only if T1 and
T2 are trees.

Proof. Without loss of generality, we may assume that T1 is not a tree. Therefore
T1 contains a cycle or T1 is disconnected. This yields that T1 �� T2 also contains
a cycle or it is disconnected. Hence T1 �� T2 is not a tree. Conversely, let T1 and
T2 be trees, and T1 �� T2 at a clone H . Since a connected subgraph of a tree is a
tree, H is also a tree. By Proposition 1.1, we have

|E(T1 �� T2)| = |E(T1)| + |E(T2)| − |E(H)|
= |V (T1)| − 1 + |V (T2)| − 1 − |V (H)| + 1
= |V (T1)| + |V (T2)| − |V (H)| − 1
= |V (T1 �� T2)| − 1.

Moreover, T1 �� T2 is connected because T1 and T2 are connected. Therefore
T1 �� T2 is a tree.

In particular, Theorem 1.2 can be applied for connected graphs G1 and G2 as
follows: G1 �� G2 has a cycle if and only if G1 or G2 has a cycle. We observe
that a glued graph can have a new cycle that is not contained in any original
graphs. In a glued graph, cycles in its original graphs are called original cycles,
otherwise they are created cycles.

Theorem 1.3. Let G1 and G2 be graphs. If G1 �� G2 contains a created cycle,
then both G1 and G2 contain a cycle.

Proof. Let G1 and G2 be graphs glued at the clone H . By contrapositive, we
assume that G1 is acyclic. Without loss of generality, we may assume that both
G1 and G2 are connected. If G2 does not contain a cycle. G1 and G2 are trees.
By Theorem 1.2, G1 �� G2 is a tree which is acyclic. On the other hand, let G2

contain a cycle. Suppose that G1 �� G2 contains a created cycle, say C. Then
there exists a path in C which is not a subgraph of G2. Let P1 be a u, v-path in C
whose all edges are in G1 \ G2 and |E(P1)| is maximum. Then both u and v are
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in V (G1)∩V (G2), and therefore they are in V (H). Since H is connected, there is
a u, v-path P2 in H . Because H ⊆ G2, P2 �= P1. Hence P1 ∪ P2 is a closed walk,
so it contains a cycle. But P1 ∪ P2 ⊆ G1, so G1 contains a cycle, a contradiction.
Therefore G1 �� G2 does not contain a created cycle.

Corollary 1.4. Let G1 and G2 be graphs. G1 �� G2 is a forest if and only if G1

and G2 are forests.

Proof. Let G1 and G2 be graphs. Without loss of generality, we may assume that
G1 is not a forest. So G1 contains a cycle. Since G1 ⊆ G1 �� G2, the glued graph
G1 �� G2 contains a cycle. Hence G1 �� G2 is not a forest. Conversely, suppose
G1 �� G2 is not a forest. So G1 �� G2 contains a cycle, say C. If C is an original
cycle, then it is done. Suppose C is a created cycle. By Theorem 1.3, both G1

and G2 contain a cycle. Hence G1 and G2 are not forests.

Theorem 1.5. Let B1 and B2 be graphs. B1 �� B2 is a bipartite graph if and
only if B1 and B2 are bipartite.

Proof. Necessity. Without loss of generality, we may assume that B1 is not bi-
partite. Then B1 contains an odd cycle. Since B1 ⊆ B1 �� B2, we have that
B1 �� B2 contains an odd cycle and hence B1 �� B2 is not a bipartite graph.
Sufficiency. Assume B1 and B2 are bipartite. Let Xi and Yi be bipartition of Bi

for i = 1, 2. Let H be the clone of arbitrary B1 �� B2. Because H is a subgraph
of B1 and B2, the clone H is bipartite. Let XH and YH be bipartition of H . We
may assume that XH is a subset of X1 and X2 and YH is a subset of Y1 and Y2.
Let X = X1 ∪ X2 and Y = Y1 ∪ Y2. To show that X and Y are bipartition of
B1 �� B2, let u and v be adjacent vertices in B1 �� B2. So both u and v are
adjacent in B1 or B2. We may assume that u and v are in B1. Because B1 is a
bipartite graph, u and v are not in the same partition of B1. Hence u ∈ X1 ⊂ X
and v ∈ Y1 ⊂ Y or vise versa. This yields that u and v are not in the same
partition in B1 �� B2. Therefore B1 �� B2 is a bipartite graph.

2 Chromatic Numbers of Glued Graphs

A k-coloring of a graph G is a labelling f : V (G) → S, where |S| = k. The labels
are colors ; the vertices of one color form a color class. A k-coloring is proper if
adjacent vertices have different labels. A graph is k-colorable if it has a proper
k-coloring. The chromatic number of graph G, χ(G), is the least k such that G
is k-colorable. For any glued graph G1 �� G2, since G1 and G2 are subgraphs
G1 �� G2, the chromatic number of χ(G1 �� G2) is at least χ(G1) and χ(G2).
We therefore get a lower bound for any graphs G1 and G2 that

χ(G1 �� G2) ≥ max{χ(G1), χ(G2)}.

It is possible that the chromatic number of a glued graph exceeds both chro-
matic numbers of it original graphs. For instant, we obtain K4 by gluing K4 \ {e}
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with K3 at a clone P2 where P2 contains both endpoints of the edge e. So
χ(K4 \ {e} �� K3) = χ(K4) = 4 while χ(K4 \ {e}) = 3 = χ(K3). However,
for any glued graph with chromatic number χ(G1 �� G2) = 2 or 3, we have
χ(G1 �� G2) = max{χ(G1),χ(G2)}. This result is found in Proposition 2.1. On
the other hand, when χ(G1 �� G2) ≥ 4, there exist a family of glued graphs each
of whose chromatic number greater than both chromatic numbers of its original
graphs. This family of glued graphs are given in Theorem 2.3.

Proposition 2.1. Let G1 and G2 be non-trivial graphs. Then
(i) χ(G1 �� G2) = 2 if and only if χ(G1) = 2 = χ(G2), and
(ii) if χ(G1 �� G2) = 3, then χ(G1) = 3 or χ(G2) = 3.

Proof. We note that for any graph G, G is non-trivial bipartite if and only if
χ(G) = 2. Together with Theorem 1.5, statement (i) is concluded.

To prove statement (ii), let G1 and G2 be non-trivial graphs. Thus χ(G1) �=
1 and χ(G2) �= 1. Assume that χ(G1 �� G2) = 3. Since χ(G1 �� G2) ≥
max{χ(G1), χ(G2)}, we have χ(G1) ≤ 3 and χ(G2) ≤ 3. By (i), we have χ(G1) �= 2
or χ(G2) �= 2. Therefore χ(G1) = 3 or χ(G2) = 3.

In general, to determine the chromatic number of a glued graph between G1 and
G2, ones intuitively believe that a set of χ(G1) + χ(G2) colors should be enough
to provide a proper coloring for G1 �� G2 . However, this intuition is not always
true as provided in Figure 1.
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Figure 1: χ(G1) = 3 = χ(G2) and χ(G1 �� G2) = 7.

Though the sum of the chromatic numbers of the original graphs of a glued graph
cannot be an upper bound, the product of the chromatic numbers of its original
graphs is large enough to be an upper bound. We prove this fact in Theorem
2.2. Furthermore, this bound is sharp as provided by a family of glued graphs in
Theorem 2.3.

Theorem 2.2. Let G1 and G2 be non-trivial graphs. Then
χ(G1 �� G2) ≤ χ(G1)χ(G2).
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Proof. Let G1 and G2 be non-trivial graphs gluing at a connected clone H . Assume
χ(G1) = p and χ(G2) = q. Let γ1 : V (G1) → A = {1, 2, . . . , p} and γ2 : V (G2) →
B = {1, 2, . . . , q} be proper colorings of G1 and G2, respectively. Define β :
V (G1 �� G2) → A × B by for all v ∈ V (G1 �� G2),

β(v) =

⎧⎪⎨
⎪⎩

(γ1(v), 1) if v ∈ V (G1 \ H),
(γ1(v), γ2(v)) if v ∈ V (H),
(1, γ2(v)) if v ∈ V (G2 \ H).

Let v, u ∈ V (G1 �� G2) be such that v and u are adjacent by an edge e. Then
e ∈ E(G1) or E(G2). In case e ∈ E(G1), we have β(v) = (γ1(v), a) where a = 1 or
γ2(v), and β(u) = (γ1(u), b) where b = 1 or γ2(u). Since γ1(v) �= γ1(u), it follows
that β(v) �= β(u) Similarly, suppose e ∈ E(G2), we have β(v) = (c, γ2(v)) where
c = 1 or γ1(v), and β(u) = (d, γ2(u)) where d = 1 or γ1(u). Since γ2(v) �= γ2(u),
β(v) �= β(u). Hence β is a proper coloring of the glued graph G1 �� G2. Therefore
χ(G1 �� G2) ≤ |A × B| = pq = χ(G1)χ(G2).

Theorem 2.3. Let p and q be integers such that p, q ≥ 2 but pq �= 4. Then there
exist G1 and G2 with a glued graph G1 �� G2 such that χ(G1) = p, χ(G2) = q,
and χ(G1 �� G2) = pq.

Proof. Let p and q be integers at least 2 but pq �= 4. We construct separately a
family of glued graphs satisfying the required property when p = q and p �= q.
Case 1 p = q: Let G1 be defined by V (G1) = {u1, u2, . . . , up2} and ui and uj are
adjacent if and only if i �≡ j (mod p). Now let γ1 : V (G1) → {1, 2, . . . , p} be a
coloring of G1 defined by

γ1(ui) = l where l ≡ i (mod p) and l ∈ {1, 2, . . . , p}.
For ui, uj ∈ V (G1), assume that ui and uj are adjacent. Then i �≡ j (mod p).
Suppose γ1(ui) = l and γ1(uj) = k, so i ≡ l (mod p) and j ≡ k (mod p). Hence
l ≡ i �≡ j ≡ k (mod p). Then γ1(ui) �= γ1(uj). Therefore γ1 is proper and also
χ(G1) ≤ p. Since the set of vertices {u1, u2, . . . , up} forms a p-clique, χ(G1) ≥ p.
Hence χ(G1) = p.

We next define graph G2 by V (G2) = {v1, v2, . . . , vp2} and vi and vj are
adjacent if and only if i = j + 1 or i ≡ j (mod p). Let γ2 : V (G2) → {1, 2, . . . , p}
be a coloring of G2. For each i ∈ {1, 2, . . . , p2}, write i = ap+b where a, b ∈ Z, a ≥
0, 0 < b ≤ p, define γ2(vi) by

γ2(vi) = l where l ≡ a + b (mod p) and l ∈ {1, 2, . . . , p}.
Figure 2 illustrates G1 and G2 for p = q = 3. If we let clones H1 =

P9(u1, . . . , u9) and H2 = P9(v1, . . . , v9) with the isomorphism f where f(ui) = vi,
then χ(G1) = χ(G2) = 3 while χ(G1 �H1∼=f H2 �G2) = χ(K9) = 9.

For vi, vj ∈ V (G2), to show that γ2 is proper, assume that vi and vj are
adjacent. Then i = j + 1 or i ≡ j (mod p). Let j = ap + b where a ≥ 0 and
0 < b ≤ p. So γ2(vj) ≡ a + b (mod p).
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Figure 2: G1 and G2 defined in Case 1 when p = q = 3.

Case 1.1 i = j + 1 = ap + b + 1: If b < p, then b + 1 ≤ p, consequently,
γ2(vi) ≡ a + b + 1 (mod p) �≡ a + b (mod p) ≡ γ2(vj). Suppose b = p. Then
i = ap + p + 1 = p(a + 1) + 1. So γ2(vi) ≡ a + 2 (mod p). Since p2 �= 4, we have
p �= 2. This yields γ2(vi) ≡ a + 2 (mod p) �≡ a + p (mod p) ≡ γ2(vj).

Case 1.2 i ≡ j (mod p): Without loss of generality, we may assume i > j.
Then i = j + np = ap + b + np = p(a + n) + b where n ∈ N. Since 1 ≤ i ≤ p2,
1 ≤ n ≤ p − 1. Hence γ2(vi) ≡ a + n + b (mod p) �≡ a + b (mod p) ≡ γ2(vj).

Therefore, by both cases, γ2 is a proper coloring. This yields χ(G2) ≤ p.
Moreover, since the set of vertices {v1, v1+p, v1+2p, . . . , v1+(p−1)p} forms a p-clique,
χ(G2) ≥ p. Hence χ(G2) = p.

Now consider H1 = Pp2(u1, . . . , up2) ⊆ G1 and H2 = Pp2(v1, . . . , vp2) ⊆ G2.
Let an isomorphism f : H1 → H2 be defined by f(ui) = vi for all i ∈ {1, 2, . . . , p2}.
Let G = G1 �H1∼=f H2 �G2 and V (G) = {wi : i = 1, . . . , p2 where wi corresponds
to ui and vi}. Note that |V (G)| = p2. Let wi, wj ∈ V (G). If i ≡ j (mod p),
wi and wj are adjacent in G2. Otherwise, wi and wj are adjacent in G1. It fol-
lows that wi and wj are adjacent in G. Hence G is a complete graph. That is,
χ(G1 �H1∼=f H2 �G2) = p2.

Case 2 p �= q: We may assume p < q. Define G1 and γ1 the same as Case 1.
Then χ(G1) = p. For G2, let V (G2) = {v1, v2, . . . , vpq} and vi and vj are adjacent
if and only if i = j + 1 or i ≡ j (mod p). Figure 3 illustrates for p = 3, q = 4.

We define γ2 : V (G2) → {1, 2, . . . , q} as follows: For each i ∈ {1, . . . , pq}, write
i = ap + b where a, b ∈ Z, a ≥ 0, 0 < b ≤ p,

γ2(vi) = l where l ≡ 2 + a − b (mod q) and l ∈ {1, 2, . . . , q}.
For vi, vj ∈ V (G2), assume that vi and vj are adjacent. Then i = j + 1 or i ≡ j
(mod p). Let j = ap + b where a ≥ 0, 0 < b ≤ p. So γ2(vj) ≡ 2 + a − b (mod q).

Case 2.1 i = j + 1 = ap + b + 1: If b < p, then b + 1 ≤ p and also γ2(vi) ≡
2 + a − b − 1 (mod q) �≡ 2 + a − b (mod q) ≡ γ2(vj) (mod q). If b = p, i =
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Figure 3: G1 and G2 defined in Case 2 when p = 3 and q = 4.

ap + p + 1 = p(a + 1) + 1 and γ2(vi) = 2 + a (mod q). Since p < q, γ2(vi) ≡ a + 2
(mod q) �≡ 2 + a − p (mod q) ≡ γ2(vj) (mod q).

Case 2.2 i ≡ j (mod p): We may assume that i > j. So i = j + np =
ap + b + np = p(a + n) + b where n ∈ N. Since 1 ≤ i ≤ pq, we have 1 ≤ n ≤ q − 1.
So γ2(vi) ≡ 2 + a + n − b (mod q) �≡ 2 + a − b (mod q) ≡ γ2(vj). Hence, by
both cases, γ2 is proper and χ(G2) ≤ q. We can see that the set of vertices
{v1, v1+p, v1+2p, . . . , v1+(q−1)p} forms a q-clique. So χ(G2) ≥ q. Hence χ(G2) = q.

Finally, let H1 = Ppq(u1, . . . , upq) and H2 = Ppq(v1, . . . , vpq). Define f : H1 →
H2 by f(ui) = vi for all i ∈ {1, 2, 3, . . . , pq}. Let G = G1 �H1∼=f H2 �G2 and V (G) =
{wi : i = 1, . . . , pq where wi corresponds to ui and vi}. Note that |V (G)| = pq.
Now, let wi, wj ∈ V (G). If i ≡ j (mod p), then wi and wj are adjacent in G2.
Otherwise, wi and wj are adjacent in G1. This means that wi and wj are adjacent
in G. Hence G is a complete graph. Therefore, χ(G1 �H1∼=f H2 �G2) = pq.
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