Chromatic Numbers of Glued Graphs

C. Promsakon and C. Uiyyasathian¹

Abstract : Let G_1 and G_2 be any two graphs. Assume that $H_1 \subseteq G_1$ and $H_2 \subseteq G_2$ are non-trivial connected and such that $H_1 \cong H_2$ with an isomorphism f. The glued graph of G_1 and G_2 at H_1 and H_2 with respect to f, denoted by $G_1 \triangleleft_{H_1 \cong_f H_2} \triangleright G_2$, is the graph that results from combining G_1 with G_2 by identifying H_1 and H_2 with respect to the isomorphism f. We characterize graph gluing between trees, forests, and bipartite graphs. Furthermore, we give an upper bound of the chromatic number of glued graphs in terms of the chromatic numbers of their original graphs. We also provide a family of glued graphs to guarantee the sharpness of this upper bound.

Keywords : Graph coloring, glued graph 2000 Mathematics Subject Classification : 05C15, 05C99

1 Introduction

The gluing is a natural graph operation. It is mathematically defined in [1]. We follow West [2] for terminologies and notations not defined here and only consider simple graphs. Let G_1 and G_2 be any graphs, $H_1 \subseteq G_1$ and $H_2 \subseteq G_2$ be non-trivial connected and such that $H_1 \cong H_2$ with an isomorphism f. We define the glued graph of G_1 and G_2 at H_1 and H_2 with respect to f, denoted by $G_1 \triangleleft_{H_1 \cong_f H_2} \triangleright G_2$, as the graph that results from combining G_1 with G_2 by identifying H_1 and H_2 with respect to the isomorphism f. If H is the copy of H_1 and H_2 in the glued graph, we refer to H as its clone and G_1 and G_2 as its original graphs. The glued graph $G_1 \Leftrightarrow G_2$ at the clone H means that there exist a subgraph H_1 of G_1 , a subgraph H_2 of G_2 , and an isomorphism f such that $G_1 \triangleleft_{H_1 \cong_f H_2} \triangleright G_2$ and H is the copy of H_1 and H_2 in the resulting graph. Unless we define specifically, we denote $G_1 \Leftrightarrow G_2$ as an arbitrary graph resulting from gluing G_1 and G_2 . Note that ,from the definition of glued graphs, clones must be connected and not a single vertex. The notation $P_n(v_1, \ldots, v_n)$ denote a path of n vertices on the vertex set $\{v_1, \ldots, v_n\}$.

We first note few facts that the copy of both original graphs are subgraphs of their glued graphs. The glue operation does not create an edge. Also, a glued

¹Supported by Grants for Development of New Faculty Staff from Chulalongkorn University.

graph of disconnected graphs is still disconnected. A graph gluing could give a resulting graph with multiple edges. In section 2, we focus more on graph colorings, we will in particular consider multiple edges as a single edge in any glued graphs.

Proposition 1.1. Let G_1 and G_2 be graphs gluing at a clone H. Then $|V(G_1 \Leftrightarrow G_2)| = |V(G_1)| + |V(G_2)| - |V(H)|$, and $|E(G_1 \Leftrightarrow G_2)| = |E(G_1)| + |E(G_2)| - |E(H)|$.

Proof. Since for each vertex and each edge in H are counted twice in the glued graph, we have that $|V(G_1 \Leftrightarrow G_2)| = |V(G_1)| + |V(G_2)| - |V(H)|$ and $|E(G_1 \Leftrightarrow G_2)| = |E(G_1)| + |E(G_2)| - |E(H)|$.

The rest of this section deals with the characterization of graph gluing between trees, forests and bipartite graphs.

Theorem 1.2. Let T_1 and T_2 be graphs. $T_1 \Leftrightarrow T_2$ is a tree if and only if T_1 and T_2 are trees.

Proof. Without loss of generality, we may assume that T_1 is not a tree. Therefore T_1 contains a cycle or T_1 is disconnected. This yields that $T_1 \Leftrightarrow T_2$ also contains a cycle or it is disconnected. Hence $T_1 \Leftrightarrow T_2$ is not a tree. Conversely, let T_1 and T_2 be trees, and $T_1 \Leftrightarrow T_2$ at a clone H. Since a connected subgraph of a tree is a tree, H is also a tree. By Proposition 1.1, we have

$$\begin{aligned} |E(T_1 \triangleleft T_2)| &= |E(T_1)| + |E(T_2)| - |E(H)| \\ &= |V(T_1)| - 1 + |V(T_2)| - 1 - |V(H)| + 1 \\ &= |V(T_1)| + |V(T_2)| - |V(H)| - 1 \\ &= |V(T_1 \triangleleft T_2)| - 1. \end{aligned}$$

Moreover, $T_1 \Leftrightarrow T_2$ is connected because T_1 and T_2 are connected. Therefore $T_1 \Leftrightarrow T_2$ is a tree.

In particular, Theorem 1.2 can be applied for connected graphs G_1 and G_2 as follows: $G_1 \Leftrightarrow G_2$ has a cycle if and only if G_1 or G_2 has a cycle. We observe that a glued graph can have a new cycle that is not contained in any original graphs. In a glued graph, cycles in its original graphs are called *original cycles*, otherwise they are *created cycles*.

Theorem 1.3. Let G_1 and G_2 be graphs. If $G_1 \Leftrightarrow G_2$ contains a created cycle, then both G_1 and G_2 contain a cycle.

Proof. Let G_1 and G_2 be graphs glued at the clone H. By contrapositive, we assume that G_1 is acyclic. Without loss of generality, we may assume that both G_1 and G_2 are connected. If G_2 does not contain a cycle. G_1 and G_2 are trees. By Theorem 1.2, $G_1 \Leftrightarrow G_2$ is a tree which is acyclic. On the other hand, let G_2 contain a cycle. Suppose that $G_1 \Leftrightarrow G_2$ contains a created cycle, say C. Then there exists a path in C which is not a subgraph of G_2 . Let P_1 be a u, v-path in C whose all edges are in $G_1 \setminus G_2$ and $|E(P_1)|$ is maximum. Then both u and v are

in $V(G_1) \cap V(G_2)$, and therefore they are in V(H). Since H is connected, there is a u, v-path P_2 in H. Because $H \subseteq G_2$, $P_2 \neq P_1$. Hence $P_1 \cup P_2$ is a closed walk, so it contains a cycle. But $P_1 \cup P_2 \subseteq G_1$, so G_1 contains a cycle, a contradiction. Therefore $G_1 \Leftrightarrow G_2$ does not contain a created cycle.

Corollary 1.4. Let G_1 and G_2 be graphs. $G_1 \Leftrightarrow G_2$ is a forest if and only if G_1 and G_2 are forests.

Proof. Let G_1 and G_2 be graphs. Without loss of generality, we may assume that G_1 is not a forest. So G_1 contains a cycle. Since $G_1 \subseteq G_1 \Leftrightarrow G_2$, the glued graph $G_1 \Leftrightarrow G_2$ contains a cycle. Hence $G_1 \Leftrightarrow G_2$ is not a forest. Conversely, suppose $G_1 \Leftrightarrow G_2$ is not a forest. So $G_1 \Leftrightarrow G_2$ contains a cycle, say C. If C is an original cycle, then it is done. Suppose C is a created cycle. By Theorem 1.3, both G_1 and G_2 contain a cycle. Hence G_1 and G_2 are not forests.

Theorem 1.5. Let B_1 and B_2 be graphs. $B_1 \Leftrightarrow B_2$ is a bipartite graph if and only if B_1 and B_2 are bipartite.

Proof. Necessity. Without loss of generality, we may assume that B_1 is not bipartite. Then B_1 contains an odd cycle. Since $B_1 \subseteq B_1 \Leftrightarrow B_2$, we have that $B_1 \Leftrightarrow B_2$ contains an odd cycle and hence $B_1 \Leftrightarrow B_2$ is not a bipartite graph. Sufficiency. Assume B_1 and B_2 are bipartite. Let X_i and Y_i be bipartition of B_i for i = 1, 2. Let H be the clone of arbitrary $B_1 \Leftrightarrow B_2$. Because H is a subgraph of B_1 and B_2 , the clone H is bipartite. Let X_H and Y_H be bipartition of H. We may assume that X_H is a subset of X_1 and X_2 and Y_H is a subset of Y_1 and Y_2 . Let $X = X_1 \cup X_2$ and $Y = Y_1 \cup Y_2$. To show that X and Y are bipartition of $B_1 \Leftrightarrow B_2$, let u and v be adjacent vertices in $B_1 \Leftrightarrow B_2$. So both u and v are adjacent in B_1 or B_2 . We may assume that u and v are in B_1 . Because B_1 is a bipartite graph, u and v are not in the same partition of B_1 . Hence $u \in X_1 \subset X$ and $v \in Y_1 \subset Y$ or vise versa. This yields that u and v are not in the same partition in $B_1 \Leftrightarrow B_2$. Therefore $B_1 \Leftrightarrow B_2$ is a bipartite graph.

2 Chromatic Numbers of Glued Graphs

A k-coloring of a graph G is a labelling $f: V(G) \to S$, where |S| = k. The labels are colors; the vertices of one color form a color class. A k-coloring is proper if adjacent vertices have different labels. A graph is k-colorable if it has a proper k-coloring. The chromatic number of graph G, $\chi(G)$, is the least k such that G is k-colorable. For any glued graph $G_1 \Leftrightarrow G_2$, since G_1 and G_2 are subgraphs $G_1 \Leftrightarrow G_2$, the chromatic number of $\chi(G_1 \Leftrightarrow G_2)$ is at least $\chi(G_1)$ and $\chi(G_2)$. We therefore get a lower bound for any graphs G_1 and G_2 that

$$\chi(G_1 \Leftrightarrow G_2) \ge max\{\chi(G_1), \chi(G_2)\}.$$

It is possible that the chromatic number of a glued graph exceeds both chromatic numbers of it original graphs. For instant, we obtain K_4 by gluing $K_4 \setminus \{e\}$ with K_3 at a clone P_2 where P_2 contains both endpoints of the edge e. So $\chi(K_4 \setminus \{e\} \Leftrightarrow K_3) = \chi(K_4) = 4$ while $\chi(K_4 \setminus \{e\}) = 3 = \chi(K_3)$. However, for any glued graph with chromatic number $\chi(G_1 \Leftrightarrow G_2) = 2$ or 3, we have $\chi(G_1 \Leftrightarrow G_2) = \max\{\chi(G_1), \chi(G_2)\}$. This result is found in Proposition 2.1. On the other hand, when $\chi(G_1 \Leftrightarrow G_2) \ge 4$, there exist a family of glued graphs each of whose chromatic number greater than both chromatic numbers of its original graphs. This family of glued graphs are given in Theorem 2.3.

Proposition 2.1. Let G_1 and G_2 be non-trivial graphs. Then (i) $\chi(G_1 \Leftrightarrow G_2) = 2$ if and only if $\chi(G_1) = 2 = \chi(G_2)$, and (ii) if $\chi(G_1 \Leftrightarrow G_2) = 3$, then $\chi(G_1) = 3$ or $\chi(G_2) = 3$.

Proof. We note that for any graph G, G is non-trivial bipartite if and only if $\chi(G) = 2$. Together with Theorem 1.5, statement (i) is concluded.

To prove statement (ii), let G_1 and G_2 be non-trivial graphs. Thus $\chi(G_1) \neq 1$ and $\chi(G_2) \neq 1$. Assume that $\chi(G_1 \Leftrightarrow G_2) = 3$. Since $\chi(G_1 \Leftrightarrow G_2) \geq max\{\chi(G_1), \chi(G_2)\}$, we have $\chi(G_1) \leq 3$ and $\chi(G_2) \leq 3$. By (i), we have $\chi(G_1) \neq 2$ or $\chi(G_2) \neq 2$. Therefore $\chi(G_1) = 3$ or $\chi(G_2) = 3$.

In general, to determine the chromatic number of a glued graph between G_1 and G_2 , ones intuitively believe that a set of $\chi(G_1) + \chi(G_2)$ colors should be enough to provide a proper coloring for $G_1 \Leftrightarrow G_2$. However, this intuition is not always true as provided in Figure 1.

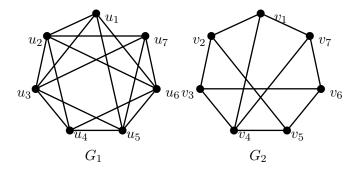


Figure 1: $\chi(G_1) = 3 = \chi(G_2)$ and $\chi(G_1 \Leftrightarrow G_2) = 7$.

Though the sum of the chromatic numbers of the original graphs of a glued graph cannot be an upper bound, the product of the chromatic numbers of its original graphs is large enough to be an upper bound. We prove this fact in Theorem 2.2. Furthermore, this bound is sharp as provided by a family of glued graphs in Theorem 2.3.

Theorem 2.2. Let G_1 and G_2 be non-trivial graphs. Then $\chi(G_1 \Leftrightarrow G_2) \leq \chi(G_1)\chi(G_2)$.

Proof. Let G_1 and G_2 be non-trivial graphs gluing at a connected clone H. Assume $\chi(G_1) = p$ and $\chi(G_2) = q$. Let $\gamma_1 : V(G_1) \to A = \{1, 2, \ldots, p\}$ and $\gamma_2 : V(G_2) \to B = \{1, 2, \ldots, q\}$ be proper colorings of G_1 and G_2 , respectively. Define β : $V(G_1 \Leftrightarrow G_2) \to A \times B$ by for all $v \in V(G_1 \Leftrightarrow G_2)$,

$$\beta(v) = \begin{cases} (\gamma_1(v), 1) & \text{if } v \in V(G_1 \setminus H), \\ (\gamma_1(v), \gamma_2(v)) & \text{if } v \in V(H), \\ (1, \gamma_2(v)) & \text{if } v \in V(G_2 \setminus H). \end{cases}$$

Let $v, u \in V(G_1 \Leftrightarrow G_2)$ be such that v and u are adjacent by an edge e. Then $e \in E(G_1)$ or $E(G_2)$. In case $e \in E(G_1)$, we have $\beta(v) = (\gamma_1(v), a)$ where a = 1 or $\gamma_2(v)$, and $\beta(u) = (\gamma_1(u), b)$ where b = 1 or $\gamma_2(u)$. Since $\gamma_1(v) \neq \gamma_1(u)$, it follows that $\beta(v) \neq \beta(u)$ Similarly, suppose $e \in E(G_2)$, we have $\beta(v) = (c, \gamma_2(v))$ where c = 1 or $\gamma_1(v)$, and $\beta(u) = (d, \gamma_2(u))$ where d = 1 or $\gamma_1(u)$. Since $\gamma_2(v) \neq \gamma_2(u)$, $\beta(v) \neq \beta(u)$. Hence β is a proper coloring of the glued graph $G_1 \Leftrightarrow G_2$. Therefore $\chi(G_1 \Leftrightarrow G_2) \leq |A \times B| = pq = \chi(G_1)\chi(G_2)$.

Theorem 2.3. Let p and q be integers such that $p, q \ge 2$ but $pq \ne 4$. Then there exist G_1 and G_2 with a glued graph $G_1 \Leftrightarrow G_2$ such that $\chi(G_1) = p$, $\chi(G_2) = q$, and $\chi(G_1 \Leftrightarrow G_2) = pq$.

Proof. Let p and q be integers at least 2 but $pq \neq 4$. We construct separately a family of glued graphs satisfying the required property when p = q and $p \neq q$. **Case 1** p = q: Let G_1 be defined by $V(G_1) = \{u_1, u_2, \ldots, u_{p^2}\}$ and u_i and u_j are adjacent if and only if $i \neq j \pmod{p}$. Now let $\gamma_1 : V(G_1) \to \{1, 2, \ldots, p\}$ be a

coloring of G_1 defined by

$$\gamma_1(u_i) = l$$
 where $l \equiv i \pmod{p}$ and $l \in \{1, 2, \dots, p\}$.

For $u_i, u_j \in V(G_1)$, assume that u_i and u_j are adjacent. Then $i \not\equiv j \pmod{p}$. Suppose $\gamma_1(u_i) = l$ and $\gamma_1(u_j) = k$, so $i \equiv l \pmod{p}$ and $j \equiv k \pmod{p}$. Hence $l \equiv i \not\equiv j \equiv k \pmod{p}$. Then $\gamma_1(u_i) \neq \gamma_1(u_j)$. Therefore γ_1 is proper and also $\chi(G_1) \leq p$. Since the set of vertices $\{u_1, u_2, \ldots, u_p\}$ forms a *p*-clique, $\chi(G_1) \geq p$. Hence $\chi(G_1) = p$.

We next define graph G_2 by $V(G_2) = \{v_1, v_2, \ldots, v_{p^2}\}$ and v_i and v_j are adjacent if and only if i = j + 1 or $i \equiv j \pmod{p}$. Let $\gamma_2 : V(G_2) \to \{1, 2, \ldots, p\}$ be a coloring of G_2 . For each $i \in \{1, 2, \ldots, p^2\}$, write i = ap + b where $a, b \in \mathbb{Z}, a \geq 0, 0 < b \leq p$, define $\gamma_2(v_i)$ by

 $\gamma_2(v_i) = l$ where $l \equiv a + b \pmod{p}$ and $l \in \{1, 2, \dots, p\}$.

Figure 2 illustrates G_1 and G_2 for p = q = 3. If we let clones $H_1 = P_9(u_1, \ldots, u_9)$ and $H_2 = P_9(v_1, \ldots, v_9)$ with the isomorphism f where $f(u_i) = v_i$, then $\chi(G_1) = \chi(G_2) = 3$ while $\chi(G_1 \triangleleft_{H_1 \cong_f H_2} \triangleright G_2) = \chi(K_9) = 9$.

For $v_i, v_j \in V(G_2)$, to show that γ_2 is proper, assume that v_i and v_j are adjacent. Then i = j + 1 or $i \equiv j \pmod{p}$. Let j = ap + b where $a \ge 0$ and $0 < b \le p$. So $\gamma_2(v_j) \equiv a + b \pmod{p}$.

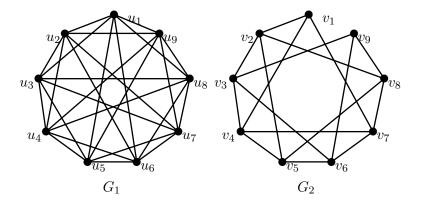


Figure 2: G_1 and G_2 defined in Case 1 when p = q = 3.

Case 1.1 i = j + 1 = ap + b + 1: If b < p, then $b + 1 \le p$, consequently, $\gamma_2(v_i) \equiv a + b + 1 \pmod{p} \not\equiv a + b \pmod{p} \equiv \gamma_2(v_j)$. Suppose b = p. Then i = ap + p + 1 = p(a + 1) + 1. So $\gamma_2(v_i) \equiv a + 2 \pmod{p}$. Since $p^2 \neq 4$, we have $p \neq 2$. This yields $\gamma_2(v_i) \equiv a + 2 \pmod{p} \not\equiv a + p \pmod{p} \equiv \gamma_2(v_j)$.

Case 1.2 $i \equiv j \pmod{p}$: Without loss of generality, we may assume i > j. Then i = j + np = ap + b + np = p(a + n) + b where $n \in \mathbb{N}$. Since $1 \le i \le p^2$, $1 \le n \le p - 1$. Hence $\gamma_2(v_i) \equiv a + n + b \pmod{p} \not\equiv a + b \pmod{p} \equiv \gamma_2(v_j)$.

Therefore, by both cases, γ_2 is a proper coloring. This yields $\chi(G_2) \leq p$. Moreover, since the set of vertices $\{v_1, v_{1+p}, v_{1+2p}, \ldots, v_{1+(p-1)p}\}$ forms a *p*-clique, $\chi(G_2) \geq p$. Hence $\chi(G_2) = p$.

Now consider $H_1 = P_{p^2}(u_1, \ldots, u_{p^2}) \subseteq G_1$ and $H_2 = P_{p^2}(v_1, \ldots, v_{p^2}) \subseteq G_2$. Let an isomorphism $f: H_1 \to H_2$ be defined by $f(u_i) = v_i$ for all $i \in \{1, 2, \ldots, p^2\}$. Let $G = G_1 \triangleleft_{H_1 \cong_f H_2} \triangleright G_2$ and $V(G) = \{w_i : i = 1, \ldots, p^2 \text{ where } w_i \text{ corresponds}$ to u_i and $v_i\}$. Note that $|V(G)| = p^2$. Let $w_i, w_j \in V(G)$. If $i \equiv j \pmod{p}$, w_i and w_j are adjacent in G_2 . Otherwise, w_i and w_j are adjacent in G_1 . It follows that w_i and w_j are adjacent in G. Hence G is a complete graph. That is, $\chi(G_1 \triangleleft_{H_1 \cong_f H_2} \triangleright G_2) = p^2$.

Case 2 $p \neq q$: We may assume p < q. Define G_1 and γ_1 the same as Case 1. Then $\chi(G_1) = p$. For G_2 , let $V(G_2) = \{v_1, v_2, \ldots, v_{pq}\}$ and v_i and v_j are adjacent if and only if i = j + 1 or $i \equiv j \pmod{p}$. Figure 3 illustrates for p = 3, q = 4.

We define $\gamma_2 : V(G_2) \to \{1, 2, \dots, q\}$ as follows: For each $i \in \{1, \dots, pq\}$, write i = ap + b where $a, b \in \mathbb{Z}, a \ge 0, 0 < b \le p$,

 $\gamma_2(v_i) = l$ where $l \equiv 2 + a - b \pmod{q}$ and $l \in \{1, 2, \dots, q\}$.

For $v_i, v_j \in V(G_2)$, assume that v_i and v_j are adjacent. Then i = j + 1 or $i \equiv j \pmod{p}$. (mod p). Let j = ap + b where $a \ge 0, \ 0 < b \le p$. So $\gamma_2(v_j) \equiv 2 + a - b \pmod{q}$.

Case 2.1 i = j + 1 = ap + b + 1: If b < p, then $b + 1 \le p$ and also $\gamma_2(v_i) \equiv 2 + a - b - 1 \pmod{q} \not\equiv 2 + a - b \pmod{q} \equiv \gamma_2(v_j) \pmod{q}$. If b = p, i = p,

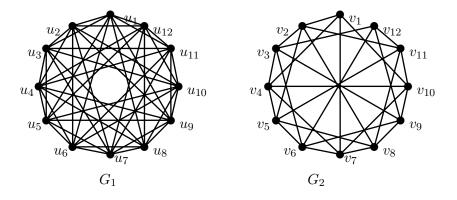


Figure 3: G_1 and G_2 defined in Case 2 when p = 3 and q = 4.

ap + p + 1 = p(a+1) + 1 and $\gamma_2(v_i) = 2 + a \pmod{q}$. Since p < q, $\gamma_2(v_i) \equiv a + 2 \pmod{q} \not\equiv 2 + a - p \pmod{q} \equiv \gamma_2(v_j) \pmod{q}$.

Case 2.2 $i \equiv j \pmod{p}$: We may assume that i > j. So i = j + np = ap + b + np = p(a + n) + b where $n \in \mathbb{N}$. Since $1 \le i \le pq$, we have $1 \le n \le q - 1$. So $\gamma_2(v_i) \equiv 2 + a + n - b \pmod{q} \not\equiv 2 + a - b \pmod{q} \equiv \gamma_2(v_j)$. Hence, by both cases, γ_2 is proper and $\chi(G_2) \le q$. We can see that the set of vertices $\{v_1, v_{1+p}, v_{1+2p}, \dots, v_{1+(q-1)p}\}$ forms a q-clique. So $\chi(G_2) \ge q$. Hence $\chi(G_2) = q$.

Finally, let $H_1 = P_{pq}(u_1, \ldots, u_{pq})$ and $H_2 = P_{pq}(v_1, \ldots, v_{pq})$. Define $f: H_1 \to H_2$ by $f(u_i) = v_i$ for all $i \in \{1, 2, 3, \ldots, pq\}$. Let $G = G_1 \triangleleft_{H_1 \cong_f H_2} \triangleright_G_2$ and $V(G) = \{w_i: i = 1, \ldots, pq \text{ where } w_i \text{ corresponds to } u_i \text{ and } v_i\}$. Note that |V(G)| = pq. Now, let $w_i, w_j \in V(G)$. If $i \equiv j \pmod{p}$, then w_i and w_j are adjacent in G_2 . Otherwise, w_i and w_j are adjacent in G_1 . This means that w_i and w_j are adjacent in G. Hence G is a complete graph. Therefore, $\chi(G_1 \triangleleft_{H_1 \cong_f H_2} \triangleright_G_2) = pq$.

References

- C. Uiyyasathian, *Maximal-Clique Partitions*, PhD Thesis, University of Colorado at Denver, 2003.
- [2] D. West, Introduction to Graph Theory, Prentice Hall, 2001.

(Received 25 May 2006)

C. Promsakon and C. Uiyyasathian Department of Mathematics, Faculty of Science, Chulalongkorn University, Bangkok 10330, THAILAND. e-mail: Promsakon@Gmail.com and Chariya.U@Chula.ac.th