Thai Journal of Mathematics (2003) 1: 49-57

On the Residue of the Generalized Function P^{λ}

A. Kananthai and K. Nonlaopon¹

Abstract: In this paper we study the residue of the generalized function P^{λ} where

$$P = \left(\sum_{i=1}^p x_i^2\right)^m - \left(\sum_{j=p+1}^{p+q} x_j^2\right)^m,$$

p+q=n is a dimension of the Euclidean space \mathbb{R}^n , m is a positive integer and λ is a complex number. For the case m=1 we obtain the special residue appear in the sense of I.M. Gel'fand and G.E. Shilov. Moreover, for case m=2 we obtain the residue of Fourier transform of the Diamond kernel related to the spectrum, see [2, pages 715-723]. And for case m=4 obtain the residue of the Fourier transform of the distributional kernel related to the spectrum, see [3].

Keywords: generalized function, Diamond kernel, distributional kernel. **2000 Mathematics Subject Classification:** 46F10

1 Introduction

I.M. Gel'fand and G.E. Shilov [1, p253-258] have studied the generalized function P^{λ} , where

$$P = \sum_{i=1}^{p} x_i^2 - \sum_{j=p+1}^{p+q} x_j^2 \tag{1.1}$$

is quadratic form, λ is a complex number and p+q=n is the dimension of the Euclidean space \mathbb{R}^n . They found that P^{λ} has two sets of singularities, namely $\lambda=-1,-2,\ldots,-k,\ldots$ and $\lambda=-\frac{n}{2},-\frac{n}{2}-1,\ldots,-\frac{n}{2}-k,\ldots$, where k is a positive integer. For singular point $\lambda=-k$, the generalized function P^{λ} has a simple pole with residues.

$$\underset{\lambda = -k}{\text{res}} P^{\lambda} = \frac{(-1)^k}{(k-1)!} \delta_1^{(k-1)}(P) \tag{1.2}$$

for p + q = n is odd with p odd and q even.

¹Supported by The Royal Golden Jubilee Project grant No. PHD/0221/2543.

Also, for the singular point $\lambda = -\frac{n}{2} - k$ they obtain

$$\underset{\lambda = -\frac{n}{2} - k}{\text{res}} P^{\lambda} = \frac{\pi^{\frac{n}{2}} (-1)^{\frac{q}{2}} L^{k} \delta(x)}{2^{2k} k! \Gamma(\frac{n}{2} + k)}$$
(1.3)

where

$$L = \sum_{i=1}^{p} \frac{\partial^2}{\partial x_i^2} - \sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2},$$

p + q = n is odd with p odd and q even.

The purpose of this work is studying the residues of the generalized function P^{λ} which is positive definite and defined by

$$P^{\lambda} = \left[\left(\sum_{i=1}^{p} x_i^2 \right)^m - \left(\sum_{j=p+1}^{p+q} x_j^2 \right)^m \right]^{\lambda}$$
 (1.4)

where λ is a complex number and m is a positive integer. Now (1.4) is generalized function of (1.1).

We obtain

$$\underset{\lambda = -k}{\text{res}} P^{\lambda} = \frac{(-1)^k}{(k-1)!} \delta_1^{*(k-1)}(P) \tag{1.5}$$

and also

$$\operatorname{res}_{\lambda = -\frac{n}{2m} - k} < P^{\lambda}, \varphi > = \frac{1}{k!} \left[\frac{\partial^{k}}{\partial u^{k}} \Phi(-\frac{n}{2m} - k, u) \right]_{u = 0}$$
(1.6)

where $\delta_1^{*(k-1)}(P)$ defined by (2.15), $\Phi(-\frac{n}{2m}-k,u)$ defined by (3.10) with $\lambda=-\frac{n}{2m}-k$ and $u=r^{2m}$. In particular, for m=1 (1.5) reduces to (1.2) and (1.6) reduces to (1.3).

Moreover, for case m=2 we obtain the residue of the Fourier transform of the Diamond kernel related to the spectrum, See [2, pages 715-723]. And for case m=4 we obtain the residue of the Fourier transform of the distributional kernel related to the spectrum, see [3].

2 Preliminaries

Definition 2.1 Given $\varphi(x)$ be any testing function in the Schwartz space **S**. Define

$$\langle P^{\lambda}, \varphi \rangle = \int_{P>0} P^{\lambda} \varphi(x) dx$$
 (2.1)

where P^{λ} is defined by (1.4). Actually $P^{\lambda} \in \mathbf{S}$ - the space of tempered distribution.

Definition 2.2 Given the hyper-surface P = 0 where

$$P = \left(\sum_{i=1}^p x_i^2\right)^m - \left(\sum_{j=p+1}^{p+q} x_j^2\right)^m,$$

p+q=n is a dimension of \mathbb{R}^n and m is a positive integer.

Let grad $P \neq 0$ that means there is no singular point on P = 0. Then we define

$$<\delta^{(k)}(P), \varphi> = \int \delta^{(k)}(P)\varphi(x) dx$$
 (2.2)

where $\delta^{(k)}$ is the Dirac-delta distribution with k-derivatives, $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ and $dx = dx_1 dx_2 \dots dx_n$. In a sufficiently small neighborhood U of any point (x_1, x_2, \dots, x_n) of the hyper-surface P = 0. We can introduce a new coordinate system such that P = 0 becomes one of the coordinate hyper-surface. For this purpose we write $P = u_1$ and choose the remaining u_i coordinates (with $i = 2, 3, \dots, n$) for which the Jacobian D $\binom{x}{n} > 0$ where

$$D\binom{x}{u} = \frac{\partial(x_1, x_2, \dots, x_n)}{\partial(P, u_2, \dots, u_n)}.$$

Thus (2.2) can be written by

$$<\delta^{(k)}(P), \varphi> = (-1)^k \int \left[\frac{\partial^k}{\partial P^k} \{ \varphi \operatorname{D}(_u^x) \} \right]_{P=0} du_2 du_3 \dots du_n.$$
 (2.3)

Lemma 2.1 Given the hyper-surface

$$P = \left(\sum_{i=1}^{p} x_i^2\right)^m - \left(\sum_{j=p+1}^{p+q} x_j^2\right)^m, \tag{2.4}$$

p+q=n is the dimension of \mathbb{R}^n and m is a positive integer. If we transform to bipolar coordinates defined by

$$x_1 = r\omega_1, x_2 = r\omega_2, \dots, x_p = r\omega_p$$

and

$$x_{p+1} = s\omega_{p+1}, x_{p+2} = s\omega_{p+2}, \dots, x_{p+q} = s\omega_{p+q}$$

where $\sum_{i=1}^{p} \omega_i^2 = 1$, $\sum_{j=p+1}^{p+q} \omega_j^2 = 1$. Then $r^2 = \sum_{i=1}^{p} x_i^2$ and $s^2 = \sum_{j=p+1}^{p+q} x_j^2$ and (2.4) can be written by $P = r^{2m} - s^{2m}$. Then we obtain

$$\langle \delta^{(k)}(P), \varphi \rangle = \int_0^\infty \left[\left(\frac{1}{2ms^{2m-1}} \frac{\partial}{\partial s} \right)^k \left\{ s^{q-2m} \frac{\psi(r, s)}{2m} \right\} \right]_{s=r} r^{p-1} dr. \tag{2.5}$$

$$<\delta^{(k)}(P), \varphi> = (-1)^k \int_0^{\infty} \left[\left(\frac{1}{2mr^{2m-1}} \frac{\partial}{\partial r} \right)^k \left\{ r^{p-2m} \frac{\psi(r,s)}{2m} \right\} \right]_{r=s} s^{q-1} ds. \tag{2.6}$$

where $\psi(r,s) = \int \varphi d\Omega_p d\Omega_q$, $d\Omega_p$ and $d\Omega_q$ are the elements of surface area on the unit sphere in \mathbb{R}^p and \mathbb{R}^q respectively.

Proof. We have the element of volume

$$dx = r^{p-1}s^{q-1}dr\,ds\,d\Omega_a\tag{2.7}$$

where $d\Omega_p$ and $d\Omega_q$ are the elements of surface area on the unit sphere in \mathbb{R}^p and \mathbb{R}^q respectively. Now

$$P = r^{2m} - s^{2m}. (2.8)$$

choose the coordinates to be p, r and the ω_i . Then (2.7) becomes

$$dx = \frac{1}{2m} (r^{2m} - P)^{\frac{q}{2m} - 1} r^{p-1} dP dr d\Omega_p d\Omega_q.$$
 (2.9)

Thus, by (2.3) we obtain

$$<\delta^{(k)}(P), \varphi> = (-1)^k \int \left[\frac{\partial^k}{\partial P^k} \left\{ \frac{1}{2m} (r^{2m} - P)^{\frac{q}{2m} - 1} \varphi \right\} \right]_{P=0} r^{p-1} dr d\Omega_p d\Omega_q.$$
(2.10)

Further, if we transform from P to $s = (r^{2m} - P)^{\frac{1}{2m}}$, we have $\frac{\partial}{\partial P} = -\frac{1}{2ms^{2m-1}} \frac{\partial}{\partial s}$. Thus (2.10) becomes

$$<\delta^{(k)}(P), \varphi> = \int \left[\left(\frac{1}{2ms^{2m-1}} \frac{\partial}{\partial s} \right)^k \left\{ s^{q-2m} \frac{\varphi}{2m} \right\} \right]_{s=r} r^{p-1} dr \, d\Omega_p \, d\Omega_q. \quad (2.11)$$

Write

$$\psi(r,s) = \int \varphi \, d\Omega_p \, d\Omega_q. \tag{2.12}$$

Then (2.11) becomes

$$\langle \delta^{(k)}(P), \varphi \rangle = \int_0^\infty \left[\left(\frac{1}{2ms^{2m-1}} \frac{\partial}{\partial s} \right)^k \left\{ s^{q-2m} \frac{\psi(r, s)}{2m} \right\} \right]_{s=r} r^{p-1} dr. \tag{2.13}$$

Similarly

$$<\delta^{(k)}(P), \varphi>=(-1)^k \int_0^\infty \left[\left(\frac{1}{2mr^{2m-1}} \frac{\partial}{\partial r} \right)^k \left\{ r^{p-2m} \frac{\psi(r,s)}{2m} \right\} \right]_{r=s} s^{q-1} ds.$$
 Thus, we obtain (2.5) and (2.6) as required.

Now, we assume that φ vanishes in the neighborhood of the origin; so that these integrals will converge for any k.

Now for $(p-1)+(q-2m)\geq 2mk$ or $k<\frac{1}{2m}(p+q-2m)$, the integral in (2.13) converge for any $\varphi(x)\in \mathbf{S}$. Similarly, for $(q-1)+(p-2m)\geq 2mk$ or $k<\frac{1}{2m}(p+q-2m)$, the integral in (2.14) also converges for any $\varphi(x)\in \mathbf{S}$. Thus we take (2.13) and (2.14) to be the defining equation for $\delta^{(k)}(P)$. If, on the other

hand, $k \ge \frac{1}{2m}(p+q-2m)$, we shall define $<\delta_1^{*(k)}(P), \varphi>$ and $<\delta_2^{*(k)}(P), \varphi>$ as the regularization of (2.13) and (2.14) respectively.

We shall say that for p > 1 and q > 1 the generalized function $\delta_1^{*(k)}(P)$ and $\delta_2^{*(k)}(P)$ are defines by

$$\langle \delta_1^{*(k)}(P), \varphi \rangle = \int_0^\infty \left[\left(\frac{1}{2ms^{2m-1}} \frac{\partial}{\partial s} \right)^k \left\{ s^{q-2m} \frac{\psi(r, s)}{2m} \right\} \right]_{s=r} r^{p-1} dr \qquad (2.15)$$

for $k \ge \frac{1}{2m}(p+q-2m)$ and

$$<\delta_{2}^{*(k)}(P), \varphi> = (-1)^{k} \int_{0}^{\infty} \left[\left(\frac{1}{2mr^{2m-1}} \frac{\partial}{\partial r} \right)^{k} \left\{ r^{p-2m} \frac{\psi(r, s)}{2m} \right\} \right]_{r=s} s^{q-1} ds$$
(2.16)

for $k \ge \frac{1}{2m}(p+q-2m)$.

In particular, for m=1, $\delta_1^{*(k)}(P)$ reduces to $\delta_1^{(k)}(P)$ and $\delta_2^{*(k)}(P)$ reduces to $\delta_2^{(k)}(P)$, See [1, p250].

3 Main Results

Theorem 3.1 Let P^{λ} be hyper-surface given by (1.4) for $p \geq 2m$ and $q \geq 2m$. Then the residues of P^{λ} at the singular point $\lambda = -k$ and $\lambda = -\frac{n}{2m} - k$ are

$$\underset{\lambda=-k}{\text{res}} P^{\lambda} = (-1)^{k-1} \frac{\delta_1^{*(k-1)}(P)}{(k-1)!}$$
(3.1)

and

$$\operatorname{res}_{\lambda = -\frac{n}{2m} - k} < P^{\lambda}, \varphi > = \frac{1}{k!} \left[\frac{\partial^{k}}{\partial u^{k}} \Phi(-\frac{n}{2m} - k, u) \right]_{u = 0}$$
(3.2)

where $\delta_1^{*(k-1)}(P)$ defined by (2.15), $\Phi(-\frac{n}{2m}-k,u)$ defined by (3.10) with $\lambda=-\frac{n}{2m}-k$ and $u=r^{2m}$. In particular, for k=0 we have

$$\underset{\lambda = -\frac{n}{2m}}{\operatorname{res}} P^{\lambda} = \frac{1}{m^2} \frac{\Gamma(\frac{q}{2m}) \Gamma(1 - \frac{n}{2m}) \pi^{\frac{n}{2}}}{\Gamma(1 - \frac{p}{2m}) \Gamma(\frac{p}{2}) \Gamma(\frac{q}{2})} \delta(x). \tag{3.3}$$

Proof. From (2.1),

$$\langle P^{\lambda}, \varphi \rangle = \int_{P>0} P^{\lambda} \varphi(x) \, dx$$

$$= \int_{P>0} (r^{2m} - s^{2m})^{\lambda} \varphi \, r^{p-1} s^{q-1} \, dr \, ds \, d\Omega_p \, d\Omega_q$$
(3.4)

by (2.8) and changing to bipolar coordinate. Write

$$\psi(r,s) = \int \varphi \, d\Omega_p \, d\Omega_q. \tag{3.5}$$

We obtain

$$\langle P^{\lambda}, \varphi \rangle = \int_{0}^{\infty} \int_{0}^{r} (r^{2m} - s^{2m})^{\lambda} \psi(r, s) \, r^{p-1} s^{q-1} \, ds \, dr.$$
 (3.6)

Since $\varphi \in \mathcal{D}$ - the space of infinitely differentiable function with compact support. Then $\psi(r,s)$ as defined in (3.5) is infinitely differentiable function of r^{2m} and s^{2m} with compact support. Thus $\psi(r,s) \in \mathcal{D}$. Put $u=r^{2m}, v=s^{2m}$ in the integrand of (3.6), writing

$$\psi(r,s) = \psi_1(u,v). \tag{3.7}$$

Then (3.6) becomes

$$\langle P^{\lambda}, \varphi \rangle = \frac{1}{4m^2} \int_0^{\infty} \int_0^u (u - v)^{\lambda} \psi_1(u, v) \, u^{\frac{p}{2m} - 1} v^{\frac{q}{2m} - 1} \, dv \, du.$$
 (3.8)

Write v = ut, thus (3.8) becomes

$$< P^{\lambda}, \varphi > = \frac{1}{4m^2} \int_0^{\infty} u^{\lambda + \frac{1}{2m}(p+q)-1} du \int_0^1 (1-t)^{\lambda} t^{\frac{q}{2m}-1} \psi_1(u, ut) dt.$$
 (3.9)

Write

$$\Phi(\lambda, u) = \frac{1}{4m^2} \int_0^1 (1 - t)^{\lambda} t^{\frac{q}{2m} - 1} \psi_1(u, ut) dt.$$
 (3.10)

Thus for $q \geq 2m$, $\Phi(\lambda, u)$ is regular for all λ except at the singularities

$$\lambda = -1, -2, -3, \ldots, -k, \ldots,$$

where it has simple poles. At these poles we have

$$\underset{\lambda = -k}{\operatorname{res}} \Phi(\lambda, u) = \frac{1}{4m^2} \frac{(-1)^{k-1}}{(k-1)!} \left[\frac{\partial^{k-1}}{\partial t^{k-1}} \{ t^{\frac{q}{2m} - 1} \psi_1(u, ut) \} \right]_{t=1} \tag{3.11}$$

like the function $\langle x_+^{\lambda}, \varphi \rangle$, See [1, p50].

Thus $\operatorname{res}_{\lambda=-k}\Phi(\lambda,u)$ is a functional concentrated on the space of P=0 cone. Now (3.9), can also be written as

$$\langle P^{\lambda}, \varphi \rangle = \int_0^\infty u^{\lambda + \frac{1}{2m}(p+q)-1} \Phi(\lambda, u) du.$$
 (3.12)

Even at the regular points of $\Phi(\lambda, u)$ the integral of (3.12) have poles at

$$\lambda = -\frac{n}{2m}, -\frac{n}{2m} - 1, \dots, -\frac{n}{2m} - k, \dots$$

where p + q = n is the dimension of \mathbb{R}^n and n is odd.

At these point we have

$$\operatorname{res}_{\lambda = -\frac{n}{2m} - k} \langle P^{\lambda}, \varphi \rangle = \frac{1}{k!} \left[\frac{\partial^{k}}{\partial u^{k}} \Phi(-\frac{n}{2m} - k, u) \right]_{u=0}. \tag{3.13}$$

These the residues of $\langle P^{\lambda}, \varphi \rangle$ at $\lambda = -\frac{n}{2m} - k$ is a functional concentrated on the vertex of the cone.

Now consider the singular point $\lambda = -k$. By (3.11) and (3.12) and also See [1, p255-256]. We obtain

$$\operatorname{res}_{\lambda = -k} \frac{(-1)^{k-1}}{(k-1)!} < \delta_1^{*(k-1)}(P), \varphi >$$
(3.14)

where

$$<\delta_{1}^{*(k-1)}(P), \varphi> = \frac{1}{4m^{2}} \int_{0}^{\infty} \left[\left(\frac{1}{2ms^{2m-1}} \frac{\partial}{\partial s} \right)^{k-1} \left\{ s^{q-2m} \frac{\psi(r,s)}{2m} \right\} \right]_{s=r} r^{p-1} dr. \tag{3.15}$$

Summarizing, we have the following. For odd n for even n if $k < \frac{1}{2m}n$, the generalized function P^{λ} has simple poles at $\lambda = -k$ for positive integral values of k, where the residues are

$$\underset{\lambda=-k}{\text{res}} P^{\lambda} = \frac{(-1)^{k-1}}{(k-1)!} \delta_1^{*(k-1)}(P). \tag{3.16}$$

Now consider the singular point at $\lambda = -\frac{n}{2m} - k$, from (3.13) we have

$$\underset{\lambda = -\frac{n}{2m} - k}{\operatorname{res}} < P^{\lambda}, \varphi > = \frac{1}{k!} \left[\frac{\partial^{k}}{\partial u^{k}} \Phi(-\frac{n}{2m} - k, u) \right]_{u=0}$$

for n odd with p odd and q even. Thus, for k = 0 we have

$$\mathop{\hbox{res}}_{\lambda=-\frac{n}{2m}} < P^{\lambda}, \varphi > = \Phi(-\frac{n}{2m}, 0).$$

By (3.10), we obtain

$$\underset{\lambda = -\frac{n}{2m}}{\operatorname{res}} \langle P^{\lambda}, \varphi \rangle = \frac{1}{4m^{2}} \int_{0}^{1} (1-t)^{-\frac{n}{2m}} t^{\frac{q}{2m}-1} \psi_{1}(0,0) dt
= \frac{\psi_{1}(0,0)}{4m^{2}} \int_{0}^{1} (1-t)^{-\frac{n}{2m}} t^{\frac{q}{2m}-1} dt
= \frac{\psi_{1}(0,0)}{4m^{2}} \frac{\Gamma(\frac{q}{2m})\Gamma(-\frac{n}{2m}+1)}{\Gamma(-\frac{p}{2m}+1)},$$

since

$$\int_{0}^{1} (1-t)^{-\frac{n}{2m}} t^{\frac{q}{2m}-1} dt = \frac{\Gamma(\frac{q}{2m})\Gamma(-\frac{n}{2m}+1)}{\Gamma(-\frac{p}{2m}+1)}.$$

Now

$$\psi_1(0,0) = \psi(0,0) = \int \varphi(0) d\Omega_p d\Omega_q \quad \text{by (3.5)}$$
$$= \Omega_p \Omega_q \varphi(0)$$

56

and

$$\Omega_p = rac{2\pi^{rac{p}{2}}}{\Gamma(rac{p}{2})} \quad ext{and} \ \ \Omega_q = rac{2\pi^{rac{q}{2}}}{\Gamma(rac{q}{2})}.$$

Thus

$$\underset{\lambda = -\frac{n}{2m}}{\operatorname{res}} \langle P^{\lambda}, \varphi \rangle = \frac{1}{4m^2} \frac{\Gamma(\frac{q}{2m})\Gamma(-\frac{n}{2m}+1)}{\Gamma(-\frac{p}{2m}+1)} \left(\frac{2\pi^{\frac{p}{2}}}{\Gamma(\frac{p}{2})}\right) \left(\frac{2\pi^{\frac{q}{2}}}{\Gamma(\frac{q}{2})}\right) \varphi(0). \tag{3.17}$$

Now, for $p \ge 2m$ and p is even then $\Gamma(-\frac{p}{2m}-1) = \infty$. Thus $\operatorname{res}_{\lambda=-\frac{n}{2m}} < P^{\lambda}, \varphi > 0$. From (3.17),

$$\begin{split} \underset{\lambda=-\frac{n}{2m}}{\operatorname{res}} < P^{\lambda}, \varphi > &= \frac{1}{4m^2} \frac{\Gamma(\frac{q}{2m})\Gamma(-\frac{n}{2m}+1)}{\Gamma(-\frac{p}{2m}+1)} \frac{4\pi^{\frac{p+q}{2}}}{\Gamma(\frac{p}{2})\Gamma(\frac{q}{2})} < \delta(x), \varphi > \\ &= \frac{1}{m^2} \frac{\Gamma(\frac{q}{2m})\Gamma(-\frac{n}{2m}+1)}{\Gamma(-\frac{p}{2m}+1)} \frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{p}{2})\Gamma(\frac{q}{2})} < \delta(x), \varphi > . \end{split}$$

Thus

$$\underset{\lambda = -\frac{n}{2m}}{\operatorname{res}} P^{\lambda} = \frac{1}{m^2} \frac{\Gamma(\frac{q}{2m})\Gamma(1 - \frac{n}{2m})\pi^{\frac{n}{2}}}{\Gamma(1 - \frac{p}{2m})\Gamma(\frac{p}{2})\Gamma(\frac{q}{2})} \delta(x). \tag{3.18}$$

In particular, if m = 1 then (3.18) reduces to

$$\underset{\lambda=-\frac{n}{2}}{\operatorname{res}}P^{\lambda}=\frac{(-1)^{q}\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2})}\delta(x),$$

which appeared in [1,eq.(23),p258].

Moreover, for equations (3.1) and (3.2), if m = 2 we obtain

$$\operatorname{res}_{\lambda=-k}(-1)\widehat{{}^{k}K_{2k,2k}}(x) = \frac{1}{(2\pi)^{n/2}} \operatorname{res}_{\lambda=-k} P^{\lambda} = \frac{(-1)^{k-1}}{(2\pi)^{n/2}(k-1)!} \delta_{1}^{*(k-1)}(P)$$

and

$$\mathop{\mathrm{res}}_{\lambda = -\frac{n}{4} - k} < P^{\lambda}, \varphi > = \frac{1}{k!} \left[\frac{\partial^k}{\partial u^k} \Phi(-\frac{n}{4} - k, u) \right]_{u = 0}$$

where $(-1)^k K_{2k,2k}(x)$ is the Fourier transform of the Diamond kernel, see [2, pages 715-723]. And if m=4 we obtain

$$\operatorname{res}_{\lambda=-k}(-1)^{k}\widehat{K_{2k,2k,2k,2k}}(x) = \operatorname{res}_{\lambda=-k}P^{\lambda} = \frac{(-1)^{k-1}}{(k-1)!}\delta_{1}^{*(k-1)}(P)$$

and

$$\mathop{\mathrm{res}}_{\lambda = -\frac{n}{8} - k} < P^{\lambda}, \varphi > = \frac{1}{k!} \left[\frac{\partial^k}{\partial u^k} \Phi(-\frac{n}{8} - k, u) \right]_{u = 0}$$

where $(-1)^k K_{2k,2k,2k}(x)$ is the Fourier transform of the distributional kernel of the operator \oplus^k , defined by

$$\oplus^k = \left[\left(\sum_{i=1}^p \frac{\partial^2}{\partial x_i^2} \right)^4 - \left(\sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2} \right)^4 \right]^k, \quad p+q=n, \text{see } [3]. \square$$

Acknowledgements

The authors would like to thank The Thailand Research Fund for financial support.

References

- [1] I.M. Gel'fandand G.E. Shilov, *Generalized Functions*, Vol.I, Academic Press, New York, 1964.
- [2] A. Kananthai, On the Spectrum of the Distributional Kernel Related to the Residue, *International Journal of Mathematics and Mathematical Sciences* (27):12(2001), 715-723.
- (27):12(2001), 715-723.
 [3] A. Kananthai, S. Suantai, On the Residue of the Distributional Kernel Related to the Spectrum. In preparition.

(Received 10 June 2003)

A. Kananthai, K. Nonlaopon Department of Mathematics, Chiangmai University, Chiangmai, 50200 Thailand.

E-mail: malamnka@science.cmu.ac.th