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1 Introduction and Preliminaries

Marouf [1] introduced the idea of asymptotically equivalent sequences and
asymptotic regular matrices and thereafter Patterson [2] extends these concepts
by introducing asymptotically statistically equivalent analog and natural regu-
larity conditions for nonnegative summability matrices. Savas [3, 4] introduced
and studied the concepts of asymptotically equivalent and λ-statistical conver-
gence and generalized the idea of I-asymptotically lacunary statistical equivalent
sequences. Recently Esi and Esi [5] introduced the idea of asymptotically S∆

λ,L(F )-
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statistical equivalent by combining ∆-asymptotically equivalent and λ∆
L -statistical

convergence of fuzzy real numbers and Bilgin [6] studied f -asymptotically lacu-
nary equivalent sequence. Furthermore, the study of asymptotically equivalent
sequences from different point of view is found in [3, 6–11] and some others.

The study of Orlicz sequence spaces was initiated with a specific purpose in
Banach space theory. Lindberg [12] got interested in Orlicz spaces in connection
with finding Banach spaces with symmetric Schauder bases having complementary
subspaces isomorphic to c0 or ℓp (1 ≤ p < ∞). Subsequently Lindenstrauss
and Tzafriri [13] investigated Orlicz sequence spaces in more details and they
proved that every Orlicz sequence space ℓM contains a subspace isomorphic to
ℓp (1 ≤ p < ∞).

An Orlicz function M is a function M : [0,∞) → [0,∞) which is continuous,
non-decreasing and convex with M(0) = 0,M(x) > 0 for x > 0 and M(x) → ∞ as
x → ∞. If the convexity of M is replaced by sub-additive property, M(x + y) ≤
M(x) + M(y) then it is called a modulus function. It is known that M(λx) ≤
λM(x) for all with 0 < λ < 1. Orlicz function can be represented in integral form
given by

M(x) =

∫ x

0

p(t)dt,

where p known as the kernel of M is right differentiable for t ≥ 0 and (i) p(t) > 0,
for t > 0 (ii) q is non-decreasing (iii) q(t) → ∞ as t → ∞.

Remark 1.1. An Orlicz function satisfy the inequality M(λu) ≤ λM(u), for all
0 < λ < 1.

The difference sequence space X(∆) was introduced by Kizmaz [14] as follows:
X(∆) = {x = (xk) ∈ w : (∆xk) ∈ X}, for X = ℓ∞, c and c0; where ∆xk =
xk − xk+1 for all k ∈ N . It was generalized by Et and Çolak [15] as follows:

X(∆m) = {x = (xk) ∈ w : (∆mxk) ∈ X}.

The generalized difference operator has the following binomial representation:

∆mXk =
m
∑

n=0

(−1)n (mn )Xn+k.

Çolak et al. [16] studied it in terms of fuzzy real numbers. By a lacunary
θ = (kr)(r = 0, 1, 2, 3, ...) we mean an increasing sequence of non-negative integers
with, k0 = 0 and hr = kr − kr−1 → ∞ as r → ∞. The interval determined by θ is
denoted by Ir = (kr−1, kr] and the ratio kr

kr−1
is denoted by qr.

Different classes of lacunary sequences have been investigated by Altin et al.
[17], Altinok et al. [18], Dutta [19], Mursaleen [20] and others [6–10,21].

Fuzzy set is a mathematical model of vague qualitative or quantitative data,
generated by means of natural language. It is based on the generalization of the
classical concepts of set and its characteristic function. Fuzzy sets are considered
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with respect to a nonempty base set X of elements of interest. The essential idea
is that each element x ∈ X is assigned a membership grade µ(x) which takes value
from the unit interval [0, 1] with µ(x) = 0 for non-membership, 0 < µ(x) < 1 for
partial membership and µ(x) = 1 indicates full membership.

A fuzzy real number X is a fuzzy set on R, more precisely a mapping X : R →
I(= [0, 1]), associating each real number t with its grade of membership X(t). In
general X satisfies the following conditions:

(i) X is normal if there exists t ∈ R such that X(t) = 1.

(ii) X is upper-semi-continuous if for each ε > 0, X−1([0, a+ ε)), is open in the
usual topology of R, for all a ∈ I.

(iii) X is convex, if X(t) ≥ X(s) ∧X(r) = min{X(s), X(r)}, where s < t < r.

(iv) The closure of the set {t ∈ R : X(t) > 0}, denoted by X0 is compact.

The α-level set of a fuzzy real number X is defined by

[X ]α =











{t ∈ R : X(t) ≥ α} if 0 < α ≤ 1;

{t ∈ R : X(t) > α} if α = 0.

The properties (i)-(iv) mentioned above imply that for 0 < α ≤ 1, the α-level
set is a non-empty compact convex subset of R. We denote the class of all upper-
semi-continuous, normal, convex fuzzy real numbers is by R(I) and R∗(I) denotes
the set of all positive fuzzy real numbers. For X,Y ∈ R(I), X ≤ Y if and only if
Xα ≤ Y α for α ∈ [0, 1] and ” ≤ ” is a partial order in R(I).

Let D be the set of all closed bounded intervals X = [XL, XR], Y = [Y L, Y R].
Then X ≤ Y implies that XL ≤ Y L and XR ≤ Y R. We write d(X,Y ) =
max{|XL − Y L|, |XR − Y R|}. It is easy to verify that (D, d) is a complete metric
space.

Consider the mapping d̄ : R(I)×R(I) → R defined by d̄(X,Y ) = sup
0≤α≤1d(X,Y ),

for X,Y ∈ R(I). Clearly d̄ define a metric on R(I). For any X,Y, Z ∈ R(I), the
linear structure ofR(I) induces additionX+Y and scalar multiplication λX, λ ∈ R

in terms of α-level set, defined as [X + Y ]α = [X ]α + [Y ]α and [λX ]α = λ[X ]α,
for each α ∈ [0, 1]. A subset E of R(I) is said to be bounded above if there exist a
fuzzy real number µ such that X ≤ µ for every X ∈ E. We called µ as the upper
bound of E and it is called least upper bound if µ ≤ µ∗ for all upper bound µ∗ of
E. A lower bound and greatest lower bound is defined similarly. The set E is said
to be bounded if it is both bounded above and bounded below.

The set of real numbers R can be embedded into R(I), since each r ∈ R can
be regarded as a fuzzy number r̄ given by

r̄(t) =

{

1 if t = r;

0 if t 6= r.
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The additive identity and multiplicative identity of R(I) are denoted by 0̄ and
1̄ respectively.

A sequence X = (Xk) fuzzy real number is a function X from the set of
positive integer into R(I). The fuzzy number Xk is called the kth term of the
sequence. The set EF of sequences taken from R(I) is said to be a sequence space
of fuzzy real number if, for (Xk), (Yk) ∈ EF , r ∈ R i.e. Xk, Yk ∈ R(I), and for all
k ∈ N , (Xk) + (Yk) = (Xk + Yk) ∈ EF and r(Xk) = (rXk) ∈ EF , where

r(Xk)(t) =

{

Xk(r
−1t) if r 6= 0;

0̄ if r = 0.

A sequence X = (Xk) of fuzzy number is said to be convergent to a fuzzy
number X0 if for ε > 0 there exist a positive integer n0 such that d̄(Xk, X0) < ε,
for every k > n0.

A fuzzy real-valued sequence (Xk) is said to be bounded if sup
k
d(Xk, 0̄) < ∞,

equivalently, if there exist µ ∈ R∗(I), such that |Xk| ≤ µ for all k ∈ N .

We denote the class of bounded sequences of fuzzy real numbers by ℓF∞. Se-
quences of fuzzy real numbers are studied from different points of view by Nuray
and Savas [22], Savas [23], Çolak et al. [24], Jaroslav et al. [25] and many others
([4, 26–29]).

A sequenceX = (Xk) of fuzzy real numbers is said to be statistically convergent
to a fuzzy real number X0 if for every ε > 0, δ

(

{k ∈ N : d̄(Xk, X0) > ε}
)

= 0.

A sequence X = (Xk) of fuzzy real numbers is said to be ∆-bounded if the set
{∆Xk : k ∈ N} is bounded. We denote the class of ∆-bounded sequences of fuzzy
real numbers by ℓF∞(∆).

A sequenceX = (Xk) of fuzzy real numbers is said to be ∆-statistically conver-
gent to a fuzzy real number X0, if for every ε > 0, δ

(

{k ∈ N : d̄(∆Xk, X0) > ε}
)

=
0.

In this article we have introduced the classes of fuzzy real-valued sequences
of strong ∆m-lacunary asymptotically equivalent, ∆m-statistical asymptotically
equivalent, strong ∆m-Cesàro asymptotically equivalent, strong ∆m-lacunary sta-
tistical asymptotically equivalent and established some relations between them in
terms of Orlicz function.

2 Definitions and Notations

In this section we begin with some known definitions.

Definition 2.1. The sequence (Xt) of fuzzy real numbers is said to be statistically
convergent to a fuzzy real number X0, if

lim
n

1

n

{

number of t ≤ n : d̄(Xt, X0) > ε
}

= 0.
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Definition 2.2. Two sequences X = (Xt) and Y = (Yt) of fuzzy real numbers
are said to be asymptotically equivalent if

lim
t

d̄

(

Xt

Yt

, 1̄

)

= 0.

Definition 2.3. Two sequences (Xt) and (Yt) of fuzzy real numbers are said to
be asymptotically statistically equivalent of multiple L, provided

lim
n

1

n

{

number of t ≤ n : d̄

(

Xt

Yt

, L

)

> ε

}

= 0.

Definition 2.4. Let θ = (kr) be a lacunary sequence. Two sequences (Xt) and
(Yt) of fuzzy real numbers are said to be strongly lacunary asymptotically equivalent
of multiple L, if

lim
r

1

hr

∑

t∈Ir

d̄

(

Xt

Yt

, L

)

= 0.

Definition 2.5. Let θ = (kr) be a lacunary sequence. Two sequences (Xt) and
(Yt) of fuzzy real numbers are said to be lacunary asymptotically statistical equiv-
alent of multiple L, provided that for every

lim
r

1

hr

{

number of t ∈ Ir : d̄

(

Xt

Yt

, L

)

> ε

}

= 0.

Esi and Esi [5] formulate the following definition for fuzzy real valued se-
quences.

Definition 2.6. Two sequences (Xt) and (Yt) of fuzzy real numbers are said to
be ∆-asymptotically equivalent if

lim d̄

(

∆Xt

∆Yt

, 1̄

)

= 0.

Definition 2.7. Two sequences (Xt) and (Yt) of fuzzy real numbers are said to
be ∆-statistically asymptotically equivalent of multiple L, if for every ε > 0,

lim
n

1

n

{

number of t ≤ n : d̄

(

∆Xt

∆Yt

, L

)

> ε

}

= 0.

We write it as X SL(∆)
∼ Y . For L = 1̄ it is simply ∆-statistically asymptotically

equivalent.

Definition 2.8. Two sequences (Xt) and (Yt) of fuzzy real numbers are said to
be strong ∆-Cesàro asymptotically equivalent to multiple L, if

lim
n→∞

1

n

n
∑

t=1

d̄

(

∆Xt

∆Yt

, L

)

= 0.
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It is written as X CL

1 (∆)
∼ Y . For L = 1̄, it is simply strong ∆-Cesàro asymptot-

ically equivalent.

We introduced the following definitions.

Definition 2.9. Let M be an Orlicz function. A sequences (Xt) of fuzzy real
numbers is said to be strong ∆m-Cesàro summable to L with respect to M if

lim
n→∞

1

n

n
∑

t=1

M
{

d̄(∆mXt, L)
}

= 0.

Definition 2.10. Let M be an Orlicz function. A sequences (Xt) of fuzzy real
numbers is said to be ∆m-strong almost convergent to L with respect to M uni-
formly in p if

lim
n→∞

1

n

n
∑

t=1

M
{

d̄(∆mXt+p, L)
}

= 0.

Definition 2.11. Let M be an Orlicz function and θ = (kr) be a lacunary se-
quence. A sequences (Xt) of fuzzy real numbers is said to be strong ∆m-lacunary
convergent to L with respect to M if

lim
r→∞

1

hr

∑

t∈Ir

M
{

d̄(∆mXt, L)
}

= 0.

Definition 2.12. Let M be an Orlicz function. Two sequences (Xt) and (Yt) of
fuzzy real numbers are said to be strong ∆m-asymptotically equivalent of multiple
L with respect to M if

lim
t

M

{

d̄

(

∆mXt

∆mYt

, L

)}

= 0.

We denote it asX (ML,∆m)
∼ Y . For L = 1̄ it is simply strong ∆m-asymptotically

equivalent.

Definition 2.13. Two sequences (Xt) and (Yt) of fuzzy real numbers are said to
be strong ∆m-asymptotically statistically equivalent of multiple L if

lim
n

1

n

{

number of t ≤ n : d̄

(

∆mXt

∆mYt

, L

)}

= 0.

We denote it as X (SL,∆m)
∼ Y . For L = 1̄ it is simply strong ∆m-asymptotically

statistically equivalent.

Definition 2.14. Let M be an Orlicz function and θ = (kr) be a lacunary se-
quence. Two sequences (Xt) and (Yt) of fuzzy real numbers are said to be strong
∆m-lacunary asymptotically equivalent of multiple L, with respect to M , if for
every ε > 0,
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lim
r→∞

1

hr

∑

t∈Ir

M

{

d̄

(

∆mXt

∆mYt

, L

)}

= 0.

We write it as X NL

θ
(∆m,M)
∼ Y . For L = 1̄ it is simply strong ∆m-lacunary

asymptotically equivalent.

Definition 2.15. Let M be an Orlicz function. Two sequences (Xt) and (Yt) of
fuzzy real numbers are said to be strong ∆m-Cesàro asymptotically equivalent to
multiple L with respect to M , if

lim
n→∞

1

n

n
∑

t=1

M

{

d̄

(

∆mXt

∆mYt

, L

)}

= 0.

We write it as X CL

1 (∆m,L)
∼ Y . For L = 1̄, it is simply ∆m- strong Cesàro

asymptotically equivalent.

Definition 2.16. Two sequences (Xt) and (Yt) of fuzzy real numbers are said to
be ∆m-lacunary statistically asymptotically equivalent of multiple L with respect
to M , if for every ε > 0,

lim
r

1

hr

{

number of k ∈ Ir : d̄

(

∆mXt

∆mYt

, L

)

> ε

}

= 0.

We write it as X SL

θ
(∆)
∼ Y . For L = 1̄ it is simply ∆m-lacunary statistical

asymptotically equivalent.

Definition 2.17. Two sequences (Xt) and (Yt) of fuzzy real numbers are said to
be ∆m-strong almost asymptotically equivalent of multiple L with respect to M , if

lim
n→∞

1

n

n
∑

t=1

M

{

d̄

(

∆mXt+m

∆mYt+m

, L

)}

= 0.

We write it as X |AC|L(∆m,M)
∼ Y . For L = 1̄, it is simply strongly ∆m-almost

asymptotically equivalent.

3 Main Results

Theorem 3.1. Let M be an Orlicz function, then

(i) If X (ML,∆m)
∼ Y then X∆m

∼ Y .

(ii) If X CL

1 (∆m,M)
∼ Y then X (SL,∆m)

∼ Y .

(iii) If M is bounded then X (SL,∆m)
∼ Y ⇒ X CL

1 (∆m,M)
∼ Y .
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Proof. (i) Let X = (Xt), Y = (Yt) ∈ wF . Since M is continuous and M(x) = 0 iff
x = 0. We have

lim
t

M

[

d̄

(

∆mXt

∆mYt

, L

)]

=0 ⇒ M

[

lim
t

d̄

(

∆mXt

∆mYt

, L

)]

=0 iff lim
t

d̄

(

∆mXt

∆mYt

, L

)

=0.

Thus X∆m

∼ Y . This completes the proof.

(ii) Let X = (Xt), Y = (Yt) ∈ wF be such that X CL

1 (∆m,M)
∼ Y , then

lim
n→∞

1

n

n
∑

t=1

M

[

d̄

(

∆mXt

∆mYt

, L

)]

= 0.

We consider d̄
(

∆mXt

∆mYt
, L

)

≥ ε for a given ε > 0. Thus we have

1

n

n
∑

t=1

M

[

d̄

(

∆mXt

∆mYt

, L

)]

≥
1

n

∑

t≤n

M

[

d̄

(

∆mXt

∆mYt

, L

)]

≥ M(ε)
1

n

{

number of t ≤ n : d̄

(

∆mXt

∆mYt

, L

)

≥ ε

}

.

Now taking limit as r → ∞ the result follows, X (SL,∆m)
∼ Y .

(iii) Let X (SL,∆m)
∼ Y and suppose that M is bounded. Then we have

1

n

n
∑

t=1

M

[

d̄

(

∆mXt

∆mYt

, L

)]

=
1

n

n
∑

t=1; d̄(∆mXt

∆mYt
,L)≥ǫ

M

[

d̄

(

∆mXt

∆mYt

, L

)]

+
1

n

n
∑

t=1; d̄(∆mXt

∆mYt
,L)<ǫ

M

[

d̄

(

∆mXt

∆mYt

, L

)]

≤ supM(n)
1

n

{

number of t ≤ n : d̄

(

∆mXt

∆mYt

, L

)

≥ ε

}

+M(ε).

Thus the result is obtained by taking limit as n → ∞.

Lemma 3.2. Let M be an Orlicz function and consider 0 < δ < 1. Then for y 6= 0

and each x
y
> δ we have M

(

x
y

)

≤ 2M(1)δ−1
(

x
y

)

.

Theorem 3.3. Let θ = (kr) be a lacunary and M be an Orlicz function. Then

X NL

θ
(∆m)
∼ Y implies X NL

θ
(M,∆m)
∼ Y .

Proof. Let X = (Xt), Y = (Yt) ∈ wF be such that X NL

θ
(∆m)
∼ Y . Then

τr =
1

hr

∑

t ∈ Ir
d̄

(

∆mXt

∆mYt

, L

)

→ 0 as r → ∞.
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For a given ε > 0 choose 0 < δ < 1 such that f(u) < ε for 0 ≤ u ≤ δ.
By using Lemma 3.2 we have

1

hr

∑

t ∈ Ir
M

[

d̄

(

∆mXt

∆mYt

, L

)]

=
1

hr

∑

t∈Ir; d̄(∆mXt

∆mYt
,L)≤ǫ

M

[

d̄

(

∆mXt

∆mYt

, L

)]

+
1

hr

∑

t∈Ir ; d̄(∆mXt

∆mYt
,L)>ǫ

M

[

d̄

(

∆mXt

∆mYt

, L

)]

≤
1

hr

(hrε) +
1

hr

2M(1)δ−1

[

d̄

(

∆mXt

∆mYt

, L

)]

≤
1

hr

(hrε) +
1

hr

2M(1)δ−1τrhr.

Thus the result is obtained by taking limit as r → ∞.

Theorem 3.4. Let θ = (kr) be a lacunary and M be an Orlicz function. Then

X NL

θ
(M,∆m)
∼ Y ⇒ X NL

θ
(∆m)
∼ Y iff lim

t→∞
M(t)

t
= β > 0.

Proof. Let X = (Xt), Y = (Yt) ∈ wF be such that X NL

θ
(M,∆m)
∼ Y . Select β > 0

such that M(t) ≥ βt, for all t ≥ 0. Now we have

1

hr

∑

t∈Ir

M

[

d̄

(

∆mXt

∆mYt

, L

)]

≥
1

hr

∑

t∈Ir

β

[

d̄

(

∆mXt

∆mYt

, L

)]

=
1

hr

β
∑

t∈Ir

[

d̄

(

∆mXt

∆mYt

, L

)]

.

Taking r → ∞, the L.H.S will be zero and hence we have

lim
r

1

hr

β

∑

t ∈ Ir

[

d̄

(

∆mXt

∆mYt

, L

)]

→ 0.

Thus X NL

θ
(∆m)
∼ Y .

Theorem 3.5. Let θ = (kr) be a lacunary and M be an Orlicz function. Then

X |AC|L(∆m,M)
∼ Y implies X NL

θ
(∆m,M)
∼ Y .

Proof. Let X = (Xt), Y = (Yt) ∈ wF be such that X |AC|L(∆m,M)
∼ Y . Then for

ε > 0 there exist N > 0 such that

1

n

n
∑

t=1

M

[

d̄

(

∆mXt+m

∆mYt+m

, L

)]

< ε for n > N and m = 0, 1, 2, 3, ....

For 0 < R ≤ r such that hr > N and then we have

1

hr

∑

t∈Ir

M

[

d̄

(

∆mXt

∆mYt

, L

)]

< ε
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Taking limit as r → ∞ we have the result X NL

θ
(∆m,M)
∼ Y .

Theorem 3.6. Let θ = (kr) be a lacunary and M be an Orlicz function. If

limr inf qr > 1 then X CL

1 (∆m,M)
∼ Y ⇒ X NL

θ
(∆m,M)
∼ Y .

Proof. Let X,Y ∈ wF be such that X CL

1 (∆m,M)
∼ Y . Suppose 1 < limr inf qr

then there exist δ > 0 such that qr = kr

kr−1
≥ 1 + δ for sufficiently large r and

hr

kr
= kr−kr−1

kr
≤ δ

1+δ
. Now we have for kr−1 < n ≤ kr

1

n

n
∑

t=1

M

[

d̄

(

∆mXt

∆mYt

, L

)]

>
1

kr

kr
∑

t=1

M

[

d̄

(

∆mXt

∆mYt

, L

)]

>
1

kr

∑

t∈Ir

M

[

d̄

(

∆mXt

∆mYt

, L

)]

=
hr

kr

1

hr

∑

t∈Ir

M

[

d̄

(

∆mXt

∆mYt

, L

)]

.

Taking limit as r → ∞ and using the fact that X CL

1 (∆m,M)
∼ Y we have

1

hr

∑

t∈Ir

M

[

d̄

(

∆mXt

∆mYt

, L

)]

→ ∞.

Thus it proves that X CL

1 (∆m,M)
∼ Y ⇒ X NL

θ
(∆m,M)
∼ Y.

Theorem 3.7. Let θ = (kr) be a lacunary and M be an Orlicz function. If

limr sup qr < ∞ then X NL

θ
(∆m,M)
∼ Y ⇒ X CL

1 (∆m,M)
∼ Y.

Proof. LetX = (Xt), Y = (Yt) ∈ wF be such thatX NL

θ
(∆m,M)
∼ Y and limr sup qr <

∞, then there exist B > 0 such that qr < B. Now for a given ε > 0, we can choose
n > 0 and K such that for every r ≥ n

Hr =
1

hr

∑

t∈Ir

M

[

d̄

(

∆mXt

∆mYt

, L

)]

< ε and Hr ≤ K, for all r.

Now for kr−1 < n ≤ kr we have

1

n

n
∑

t=1

M

[

d̄

(

∆mXt

∆mYt

, L

)]

≤
1

kr−1

kr
∑

t=1

M

[

d̄

(

∆mXt

∆mYt

, L

)]

=
1

kr−1

[

∑

t∈I1

M

{

d̄

(

∆mXt

∆mYt

, L

)}

+ ...+
∑

t∈Ir

M

{

d̄

(

∆mXt

∆mYt

, L

)}

]

=
1

kr−1

∑

t∈I1

M

{

d̄

(

∆mXt

∆mYt

, L

)}

+ ...+
1

kr−1

∑

t∈In

M

{

d̄

(

∆mXt

∆mYt

, L

)}
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+
1

kr−1

∑

t∈[In+1,r]

M

{

d̄

(

∆mXt

∆mYt

, L

)}

=
1

kr−1
{k1H1 + ......+ knHn}+

1

kr−1
(kr − kn)ε

≤
1

kr−1

sup

i
Hiki +

1

kr−1
(kr − kn)ε <

1

kr−1
Kkn + εB.

Thus taking limit as r → ∞ we have

1

n

n
∑

t=1

M

[

d̄

(

∆mXt

∆mYt

, L

)]

→ 0.

This shows that X NL

θ
(∆m,M)
∼ Y ⇒ X CL

1 (∆m,M)
∼ Y.

Theorem 3.5 and theorem 3.6 can be combined in to the following way.

Theorem 3.8. Let θ = (kr) be a lacunary and M be an Orlicz function. If

1 < limr inf qr ≤ limr sup qr < ∞, then X CL

1 (∆m,M)
∼ Y ⇔ X NL

θ
(∆m,M)
∼ Y .

Theorem 3.9. Let θ = (kr) be a lacunary and M be an Orlicz function. Then

X NL

θ
(∆m,M)
∼ Y ⇒ X SL

θ
(∆m)
∼ Y .

Proof. For a given ε > 0 there exist N > 0 such that

1

hr

∑

t∈Ir

M

[

d̄

(

∆mXt

∆mYt

, L

)]

≥
1

hr

∑

t≤N ; d̄(∆mXt

∆mYt
,L)≥ǫ

M

[

d̄

(

∆mXt

∆mYt

, L

)]

≥ M(ε)
1

hr

{

number of t ∈ Ir : d̄

(

∆mXt

∆mYt

, L

)

≥ ε

}

The L.H.S will be zero as r → ∞ thus we have

1

hr

∑

t∈Ir

M

[

d̄

(

∆mXt

∆mYt

, L

)]

→ 0

This completes the proof.

Theorem 3.10. Let θ = (kr) be a lacunary and M be a bounded Orlicz function.

Then X NL

θ
(∆m,M)
∼ Y ⇔ X SL

θ
(∆m)
∼ Y .

Proof. The “if part” is similar to theorem 3.8 and the “only if part” can be proved
in similar way.
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