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Abstract : In this paper, some properties of compact operators on quaternionic
Hilbert spaces are studied. It is shown that the positiveness of a compact nor-
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eigenvalues. Some results analogous to the ones concerning compact operators on
Hilbert spaces are proved in the quaternionic context.
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1 Introduction and Auxiliary Results

In this paper, H will stand for the skew field of quaternions, whose elements
are in the form q = x0 +x1i+x2j+x3k, where x0, x1, x2 and x3 are real numbers
and i, j, k are called imaginary units and obey the following multiplication rules:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, and ki = −ik = j. (1.1)

We omit to describe the properties of quaternions and refer the readers to [1] for
more pertinent details.

Let H be a linear vector space over the field of quaternions under right scalar
multiplication. We suppose that a function 〈., .〉 : H × H −→ H exists such that
for every u, v, w ∈ H and p, q ∈ H the following properties hold:

(i) 〈u, v〉 = 〈v, u〉,
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(ii) 〈u, u〉 > 0 unless u = 0,

(iii) 〈u, vp+ wq〉 = 〈u, v〉p+ 〈u,w〉q,

this function is called an inner product. The quaternionic norm of u ∈ H is
defined by ‖u‖ =

√

〈u, u〉 and in [1], Proposition 2.2, it has been proved that
the quaternionic norm satisfies all properties of a norm, including the Cauchy-
Schwartz inequality. If H with the metric d(u, v) = ‖u − v‖ is a complete metric
space, then H is said to be a right quaternionic Hilbert space. Similar to the
complex Hilbert spaces, every right quaternionic Hilber space admits a Hilbert
basis (see Propositions 2.5 and 2.6 of [1]). For making this paper self-contained,
we bring these two propositions here.

Proposition 1.1 (Proposition 2.5 of [1]). Let H be a right quaternionic Hilbert
space and let N be a subset of H such that, for z, z′ ∈ N, 〈z|z′〉 = 0 if z 6= z′ and
〈z|z〉 = 1. Then conditions (a) − (e) listed below are pairwise equivalent.

(a) For every u, v ∈ H the series
∑

z∈N
〈u|z〉〈z|v〉 converges absolutely and it

holds:
〈u|v〉 =

∑

z∈N

〈u|z〉〈z|v〉.

(b) ‖u‖2 =
∑

z∈N
|〈z|u〉|2 for every u ∈ H.

(c) N
⊥ := {v ∈ H : 〈v|z〉 = 0, ∀z ∈ N} = {0}.

(d) 〈N〉 is dense in H.

The subset N in Proposition 1.1, is called a Hilbert basis.

Proposition 1.2 (Proposition 2.6 of [1]). Every right quaternionic Hilbert space
admits a Hilbert basis, and two Hilbert bases have the same cardinality. Further-
more, if N is a Hilbert basis of H, then every u ∈ H can be uniquely decomposed as
follows:

u =
∑

z∈N

z〈z|u〉,

where the series
∑

z∈N
z〈z|u〉 converges absolutely in H.

It is said that T : H −→ H is a right linear operator if for all u, v ∈ H and p ∈ H,

T (up+ v) = (Tu)p+ Tv.

Such an operator is called bounded if there exists K ≥ 0 such that, for all u ∈ H,

‖Tu‖ ≤ K‖u‖.

As in the complex case, the norm of a bounded right linear operator T is defined
by

‖T ‖ = sup

{

‖Tu‖

‖u‖
: 0 6= u ∈ H

}

. (1.2)
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The set of all bounded right linear operators on H is denoted by B(H), which
is a complete normed space with the norm defined by (1.2) (see [1]; Proposition
2.11, for more properties of B(H)). For every T ∈ B(H), there exists a unique
operator T ∗ ∈ B(H), which is called the adjoint of T , such that, for all u, v ∈ H,
〈Tu, v〉 = 〈u, T ∗v〉. Many properties of the adjoint operator, are stated and proved
in Theorem 2.15 and Remark 2.16 of [1], including ‖T ‖ = ‖T ∗‖. Self adjoint,
normal and positive operators are defined in the same manner of complex case
(see Definition 2.12 of [1]).

Definition 1.3 (Definition 4.1 of [1]). Let H be a right quaternionic Hilbert space
and T be a right linear operator on H. For q ∈ H, the associated operator ∆q(T )
is defined by:

∆q(T ) = T 2 − T (q + q) + I|q|2.

The spherical resolvent set of T is the set ρS(T ) ⊂ H consisting of all quaternions
q satisfying all the following conditions:

(a) ker(∆q(T )) = {0}.

(b) Ran(∆q(T )) is dense in H.

(c) ∆q(T )
−1 : Ran(∆q(T )) → D(T 2) is bounded.

The spherical spectrum σS(T ) of T is defined as the complement of ρS(T ) in H.
A partition for σS(T ) was introduced in [1], as follows:

(i) The spherical point spectrum of T :

σpS = {q ∈ H; ker(∆q(T )) 6= {0}}.

(ii) The spherical residual spectrum of T :

σrS(T ) = {q ∈ H; ker(∆q(T )) = {0}, Ran(∆q(T )) 6= H}.

(iii) The spherical continuous spectrum of T :

σcS(T ) = {q ∈ H; ker(∆q(T )) = {0}, Ran(∆q(T )) = H,∆q(T )
−1 /∈ B(H)}.

The spherical spectral radius of T , denoted by rS(T ), is defined by:

rS(T ) = sup{|q| ∈ R
+ : q ∈ σS(T )}.

The eigenvector of T with eigenvalue q is an element u ∈ H − {0}, for which
Tu = uq.

The following proposition summarizes some properties of ∆q(T ) and its kernel
that can be proved easily, so we omit the proof.

Proposition 1.4. Let H be a right quaternionic Hilbert space, T ∈ B(H) and
q ∈ H, then
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(i) ∆q(T ) ∈ B(H).

(ii) (∆q(T ))
∗ = ∆q(T

∗), and if T is self adjoint then so is ∆q(T ).

(iii) ∆q(T ) is a normal operator, whenever T is a normal operator. In this case,

ker∆q(T ) = ker∆q(T
∗).

(iv) ker∆q(T ) is an invariant subspace for T , i.e. T (ker∆q(T )) ⊆ ker∆q(T ).

(v) T (ker∆q(T )
⊥) ⊆ ker∆q(T )

⊥ for a normal operator T .

Two quaternions p and q are said to be conjugated to each other, if p = sqs−1,
for some non-zero quaternion s. The set of all quaternions conjugated to q is called
the conjugacy class of q and is denoted by Sq. Obviously, q ∈ Sq (see [1] for more
properties of conjugacy classes).

Before bringing the next result we need to remind Proposition 4.5 of [1].

Proposition 1.5 (Proposition 4.5 of [1]). Let H be a right quaternionic Hilbert
space and T ∈ B(H). Then σps(T ) coincides with the set of all eigenvalues of T .

Proposition 1.6. Let H be a right quaternionic Hilbert space and T ∈ B(H) be
a normal operator. If q1 and q2 are two eigenvalues of T , so that q1 /∈ Sq2 , then
ker∆q1(T ) ⊥ ker∆q2(T ).

Proof. Let u and v be non-zero elements in ker∆q1(T ) and ker∆q2(T ), respec-
tively. Note that since T is normal, by part (iii) of Proposition 1.4, we have
ker∆q2(T ) = ker∆q2(T

∗). Thus, considering Tu = uq1 and T ∗v = vq2, we have

q2〈v|u〉 = 〈vq2|u〉 = 〈T ∗v|u〉 = 〈v|Tu〉 = 〈v|uq1〉 = 〈v|u〉q1.

If 〈u|v〉 6= 0 then q1 and q2 are conjugated to each other, contradicting the as-
sumption. So 〈u|v〉 = 0, i.e. ker∆q1(T ) ⊥ ker∆q2(T ).

Remark 1.7. According to Theorem 4.8.(b) of [1], the spherical spectrum of a
self-adjoint operator T ∈ B(H) is a subset of real numbers. Therefore, if q1 and
q2 are two eigenvalues of a self-adjoint operator T , then they are not conjugated
to each other and so, by Proposition 1.6, ker∆q1(T ) ⊥ ker∆q2(T ).

2 Positive Compact Operators

During this section, H will stand for a right quaternionic Hilbert space and
each operator will be right linear. Similar to the complex case, a compact operator
on H, is an operator T : H −→ H, for which T (B) is a compact set of H, where B is
any bounded subset of H. The set of all compact operators on H will be denoted by
B0(H). Simple examples of compact operators are the finite rank operators; those
with finite dimensional range. One can see more properties of compact operators
in [2] and of compact normal operators in [3]. Here we remind those we need later.
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Theorem 2.1 (Theorem 2 of [2]). B0(H) is a closed two sided ideal of B(H) and
is closed under adjunction.

Theorem 2.2 (Theorem 1.2 of [3]). For a compact normal operator T with spher-
ical point spectrum σpS(T ), there exists a Hilbert basis N ⊂ H of eigenvectors of T
such that:

Tx =
∑

z∈N

zλz〈z|x〉, (2.1)

where λz ∈ H is an eigenvalue relative to the eigenvector z and, if λz 6= 0 only
a finite number of distinct other elements z′ ∈ N verify λz = λz′ , moreover the
values λz are at most countable. Also, the set Λ of eigenvalues λz with z ∈ N has
the property that for every ε > 0 there is a finite set Λε ⊂ Λ with |λ| < ε if λ /∈ Λε.

Theorem 2.3 (Theorem 1.4 of [3]). Let T ∈ B(H). Assume that there exist
a Hilbert basis N of H and a map N ∋ z 7→ λz ∈ H satisfying the following
requirements:

(i) Tx =
∑

z∈N
zλz〈z|x〉 for every x ∈ H,

(ii) for every z ∈ N such that λz 6= 0, only a finite number of distinct other
elements z′ ∈ N verify λz = λz′ ,

(iii) the set Λ = {λz ∈ H : z ∈ N} is countable at most,

(iv) for every ε > 0, there is a finite set Λε ⊂ Λ with |λ| < ε if λ /∈ Λε.

Under these conditions T is normal and compact.

The following results regarding positiveness of compact operators, are direct
consequences of Theorems 2.2 and 2.3.

Corollary 2.4. A compact normal operator T ∈ B(H) is positive if and only if
all its eigenvalues are non-negative real numbers.

Proof. If T is a positive operator, for each x ∈ H we have 〈Tx|x〉 > 0. Now using
equation (2.1) and considering that 〈Tz|z〉 = λz for each z ∈ N, we obtain λz > 0.
Conversely, if all the eigenvalues of T are non-negative real numbers, by Theorem
2.2 and the notations therein, for each x ∈ H we have 〈Tx|x〉 =

∑

z∈N
λz |〈z|x〉|

2 >

0 which proves that T is a positive operator.

Proposition 2.5. If T ∈ B0(H) is a positive operator, then its square root is also
a compact operator.

Proof. By Theorem 2.2 and Corollary 2.4, there is a Hilbert basis N of H consisting
of eigenvectors z of T such that the eigenvalues λz corresponding to each z is a
non-negative real number and such that Tx =

∑

z∈N
zλz〈z|x〉. Define

Sx =
∑

z∈N

z
√

λz〈z|x〉. (2.2)

According to Theorem 2.2, Theorem 2.3, and Corollary 2.4 the operator S defined
by (2.2) is a positive compact operator on H and easy calculations shows that
S2 = T .
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Before bringing an immediate consequence of Proposition 2.5, let us recall that
the absolute value of T ∈ B(H) is the square root of the positive operator T ∗T
(see [1] for more properties of the absolute value of T ∈ B(H)).

Corollary 2.6. The absolute value of a compact operator is a compact operator.

Proof. Let T be a compact operator, by Theorem 2.1, the operators T ∗ and T ∗T
are compact. Now, Proposition 2.5 completes the proof.

The following theorem is the quaternionic version of Proposition 2.3 of [4],
with the same technique of the proof.

Theorem 2.7. Let T ∈ B(H) be a positive operator. If there exists a countable
Hilbert basis N = {zn}n∈N of H such that

+∞
∑

n=1

〈Tzn|zn〉 < +∞, (2.3)

then T is a compact operator.

Proof. Let S be the square root of T . The operator S ∈ B(H) is positive and
hence it is also self-adjoint (see Proposition 2.17(b) of [1]). Then

∑+∞

n=1
‖Szn‖

2 =
∑+∞

n=1
〈Tzn|zn〉, which is finite by the assumption (2.3). Since N is a Hilbert

basis for H, by Proposition 1.2, Szn =
∑+∞

m=1
zm〈zm|Szn〉 =

∑+∞

m=1
zmqmn, where

qmn = 〈zm|Szn〉 and the series converges absolutely in H. Thus, for all n ∈ N,

‖Szn‖
2 =

+∞
∑

m=1

|〈zm|Szn〉|
2 =

+∞
∑

m=1

|qmn|
2.

Now, we conclude that
∑+∞

n=1

∑+∞

m=1
|qnm|2 =

∑+∞

n=1
‖Szn‖

2 < +∞. For any N ∈
N, let

qNmn =

{

qmn, 1 ≤ m,n ≤ N,

0, otherwise.

Let SN be the bounded operator in B(H) given by

SNzn =

{

∑N
m=1

zmqNmn, 1 ≤ n ≤ N,

0, n > N.

Obviousely, SN has finite rank and so it is a compact operator. Now, for all
u ∈ H, by Proposition 1.1(b), Proposition 1.2 and the Couchy- Schwarz inequality,
we obtain

‖(S − SN)u‖ = ‖(S − SN )

+∞
∑

n=1

zn〈zn|u〉‖
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≤

+∞
∑

n=1

‖(S − SN )zn‖|〈zn|u〉|

≤

(

+∞
∑

n=1

|〈zn|u〉|
2

)1/2(
+∞
∑

n=1

‖(S − SN )zn‖
2

)1/2

= ‖u‖

(

+∞
∑

n=1

‖(S − SN )zn‖
2

)1/2

.

But

(S − SN )zn =

{

∑+∞

m=N+1
zmqmn, 1 ≤ n ≤ N,

∑+∞

m=1
zmqmn, n > N.

(2.4)

Therefore, from (2.4), we have

‖(S − SN )zn‖
2 =

{

∑+∞

m=N+1
|qmn|

2, 1 ≤ n ≤ N,
∑+∞

m=1
|qmn|

2, n > N.

So

+∞
∑

n=1

‖(S − SN )zn‖
2 =

N
∑

n=1

+∞
∑

m=N+1

|qmn|
2 +

+∞
∑

n=N+1

+∞
∑

m=1

|qmn|
2

≤

+∞
∑

m=N+1

∞
∑

n=1

|qmn|
2 +

+∞
∑

n=N+1

+∞
∑

m=1

|qmn|
2 → 0,

as N → +∞. Thus, SN → S in the norm of B(H). Finally, since B0(H) is a closed
two-sided ideal of B(H), as stated in Theorem 2.1, the operators S and T = S2

are compact.
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