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1 Introduction

Fixed points and fixed point theorems have always been a basic tool to find the
existence of solutions of problems that arise in theoretical mathematics. Recently
Samet, Vetro and Vetro [3] introduced a new concept namely ‘(α, ψ)-contractive’
mappings and proved the existence of fixed points of such mappings in metric space
setting which generalizes Banach contraction principle. After that Karapinar and
Samet [4] introduced ‘generalized (α, ψ)-contractive’ mappings and proved fixed
point results.
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In the context of generalization of contraction condition, in 2004, Berinde [5]
introduced ‘weak contraction maps’ which are named as ‘almost contraction maps’
in his later work and proved fixed point results in complete metric spaces. In this
paper, we use the terminology almost contractions for weak contractions. In 2008,
Babu, Sandhya and Kameswari [6] modified the above definition by introducing
‘condition (B)’ and proved that every selfmap T of a complete metric space satis-
fying ‘condition (B)’ has a unique fixed point.

In the direction of generalization of ambient spaces, in 2005, Mustafa and Sims
[2] introduced a new notion namely generalized metric space called G-metric space
and studied the existence of fixed points of various types of contraction mappings
in G-metric spaces. For more works on the existence of fixed points and coupled
fixed points in G-metric spaces, we refer [[7], [1], [8], [9]].

In this paper, we introduce almost generalized (α, ψ)-contractive mappings in
G-metric spaces. Further, we define ‘Condition (H)’ and under this additional
assumption, we prove uniqueness of fixed point. Our results generalize the results
of Alghamdi and Karapinar [1] and Mustafa and Sims [2].

In the following Section, we present some preliminaries that are needed to
prove our main results of Section 3.

2 Preliminaries

Throughout this paper we denote by Ψ the family of nondecreasing functions

ψ : [0, ∞) → [0, ∞) which satisfies
∞
∑

n=1
ψn(t) <∞ for each t > 0 where ψn is the

nth iterate of ψ.

Remark 2.1. Any function ψ ∈ Ψ satisfies lim
n→∞

ψn(t) = 0, ψ(t) < t for any

t > 0 and ψ is continuous at 0.

Definition 2.2. (Samet, Vetro and Vetro [3, Definition 2.1]) Let (X, d) be a metric
space and T : X → X . We say that T is (α, ψ)-contractive mapping if there exist
two functions α : X ×X → [0, ∞)
and ψ ∈ Ψ such that
α(x, y)d(Tx, T y) ≤ ψ(d(x, y)) for all x, y ∈ X . (2.2.1)

Definition 2.3. (Samet, Vetro and Vetro [3, Definition 2.1]) Let (X, d) be a metric
space, T : X → X and
α : X ×X → [0, ∞). We say that T is α-admissible if x, y ∈ X

α(x, y) ≥ 1 ⇒ α(Tx, T y) ≥ 1. (2.3.1)

For examples on α-admissible functions, we refer [9] and for more works on
α-admissible functions, we refer [[4], [10], [11], [3]].
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Theorem 2.4. (Samet, Vetro and Vetro [3, Theorem 2.2]) Let (X, d) be a com-

plete metric space and T : X → X. Suppose that there exist two functions

α : X ×X → [0,∞) and ψ ∈ Ψ such that

T is (α, ψ)-contractive map. Also, assume that

(i) T is α-admissible;

(ii) there exists x0 ∈ X such that α(x0, T x0) ≥ 1; either

(iii) T is continuous; (or)

(iv) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → x

as n→ ∞, then α(xn, x) ≥ 1 for all n.

Then T has a fixed point. i.e., there exists u ∈ X such that Tu = u.

Definition 2.5. (Karapinar and Samet [4, Definition 2.1]) Let (X, d) be a metric
space and T : X → X be a given mapping. We say that T is a generalized (α, ψ)-
contractive mapping if there exist two functions α : X ×X → [0,∞) and ψ ∈ Ψ
such that for all x, y ∈ X

α(x, y)d(Tx, T y) ≤ ψ(M(x, y)), where (2.5.1)

M(x, y) = max{d(x, y), d(x,Tx)+d(y,Ty)
2 ,

d(x,Ty)+d(y,Tx)
2 }.

Theorem 2.6. (Karapinar and Samet [4, Theorem 2.3]) Let (X, d) be a complete

metric space and T : X → X. Suppose that there exist two functions α : X×X →
[0,∞) and ψ ∈ Ψ such that T is a generalized (α, ψ)-contractive map

Also, assume that the following conditions are satisfied:

(i) T is α- admissible;

(ii) there exists x0 ∈ X such that α(x0, T x0) ≥ 1 ; either

(iii) T is continuous; (or)

(iv) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → x

as n→ ∞, then there exists a subsequence {xnk
} of {xn} such that

α(xnk
, x) ≥ 1 for all k.

Then there exists u ∈ X such that Tu = u.

Definition 2.7. (Berinde [5, Definition 1]) Let (X, d) be a metric space. A map
T : X → X is called an ‘almost contraction’ if there exist a constant δ ∈ (0, 1) and
L ≥ 0 such that
d(Tx, T y) ≤ δd(x, y) + Ld(y, Tx) for all x, y ∈ X. (2.7.1)

Definition 2.8. (Babu, Sandhya and Kameswari [6, Definition 2.1]) Let (X, d)
be a metric space. A map T : X → X is said to satisfy ‘condition (B)’ if there
exist a 0 < δ < 1 and L ≥ 0 such that for all x, y ∈ X

d(Tx, T y) ≤ δd(x, y)+Lmin{d(x, Tx), d(y, T y), d(x, T y), d(y, Tx)}. (2.8.1)
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Mustafa and Sims [2] introduced the concept of G-metric space as follows:

Definition 2.9. (Mustafa and Sims [2]) Let X be a non empty set and let
G : X3 → R+,R+ = [0,∞), be a function satisfying:

(G1) G(x, y, z) = 0 if x = y = z,

(G2) 0 ≤ G(x, x, y) for all x, y ∈ X , with x 6= y,

(G3) G(x, x, y) ≤ G(x, y, z) for all x, y ∈ X with z 6= y,

(G4) G(x, y, z) = G(y, x, z) = G(y, z, x) = ... (symmetry in all the three variables)
and,

(G5) G(x, y, z) ≤ G(x, a, a)+G(a, y, z) for all x, y, z, a ∈ X (rectangle inequality).

Then the function G is called a generalized metric (or) more specifically a G-metric
on X , and the pair (X,G) is called a G-metric space.

Example 2.10. (Mustafa and Sims [2]) Let (X, d) be a metric space. The map-
ping Gs : X

3 → R+ defined by
Gs(x, y, z) = d(x, y) + d(y, z) + d(z, x)

for all x, y, z ∈ X is a G-metric and so (X,Gs) is a G-metric space.

Example 2.11. (Mustafa and Sims [2]) Let (X, d) be a metric space. The map-
ping Gm : X3 → R+ defined by

Gm(x, y, z) = max{d(x, y), d(y, z), d(z, x)}
for all x, y, z ∈ X is a G-metric and so (X,Gm) is a G-metric space.

Definition 2.12. (Mustafa and Sims [2])A G-metric space (X,G) is called sym-

metric if G(x, y, y) = G(y, x, x) for all x, y ∈ X .

Definition 2.13. (Mustafa and Sims [2])Let (X,G) be a G-metric space and let
{xn} be a sequence of points of X . We say that {xn} is G-Convergent to x if
lim

n,m→∞

G(x, xn, xm) = 0; that is, for any ǫ > 0, there exists N ∈ N such that

G(x, xn, xm) < ǫ for all n,m ≥ N. We refer to x as the limit of the sequence {xn}.
We denote it by lim

n→∞

xn=
G x.

Definition 2.14. (Mustafa and Sims [2])Let (X,G) be a G-metric space and
let T : X → X . We say that {xn} is G-Continuous to x ∈ X if for any se-
quence {xn} ⊂ X with lim

n→∞

G(xn, u, u) = 0 implies lim
n→∞

G(Txn, T u, Tu) = 0.

i.e., lim
n→∞

xn=
G u implies lim

n→∞

Txn=
G Tu.

Proposition 2.15. (Mustafa and Sims [2]) Let (X,G) be a G-metric space. Then

for any x, y, z, a ∈ X we have that:

(1) if G(x, y, z) = 0 then x = y = z.
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(2) G(x, y, z) ≤ G(x, x, y) +G(x, x, z).

(3) G(x, y, y) ≤ 2G(y, x, x).

(4) G(x, y, z) ≤ G(x, a, z) +G(a, y, z).

(5) G(x, y, z) ≤ 2
3 (G(x, y, a) +G(x, a, z) +G(a, y, z)).

Proposition 2.16. (Mustafa and Sims [2]) Let (X,G) be a G-metric space. Then

the following statements are equivalent:

(1) {xn} is G-convergent to x.

(2) G(xn, xn, x) → 0 as n→ ∞.

(3) G(xn, x, x) → 0 as n→ ∞.

Definition 2.17. (Mustafa and Sims [2]) Let (X,G) be a G-metric space. A
sequence {xn} is G-Cauchy in X if given ǫ > 0, there is an N ∈ N such that
G(xn, xm, xl) < ǫ for all n,m, l ≥ N; that is, if G(xn, xm, xl) → 0 as n,m, l → ∞.

Proposition 2.18. (Mustafa and Sims [2]) In a G-metric space X, the following

two statements are equivalent:

(1) The sequence {xn} is G-Cauchy.

(2) For every ǫ > 0, there exists N ∈ N such that G(xn, xm, xm) < ǫ for all

n,m ≥ N.

Definition 2.19. (Mustafa and Sims [2])A G-metric space X is said to be
G-Complete(or a complete G-metric space) if every G-Cauchy sequence in X is
G-Convergent in X .

Proposition 2.20. (Mustafa and Sims [2]) Let X be a G-metric space. Then the

function G(x, y, z) is jointly continuous in all three of its variables.

Proposition 2.21. (Mustafa and Sims [2]) Every G-metric space X defines a

metric space (X, dG) by
dG(x, y) = G(x, y, y) +G(y, x, x) for all x, y ∈ X.

In 2005, Mustafa [2] proved the following results.

Theorem 2.22. (Mustafa and Sims [2]) Let (X,G) be a complete G-metric space

and let T : X → X be a mapping satisfying the following condition for all

x, y, z ∈ X

G(Tx, T y, T z) ≤ kG(x, y, z), (2.22.1)
where k ∈ [0, 1). Then T has a unique fixed point.

Remark: A map T that satisfies the inequality (2.22.1) is called a G-contraction
map on X . Sometimes we also call it G-contraction map of type I.
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Theorem 2.23. (Mustafa and Sims [2]) Let (X,G) be a complete G-metric space

and let T : X → X be a mapping satisfying the following condition for all x, y ∈ X

G(Tx, T y, T y) ≤ kG(x, y, y), (2.23.1)
where k ∈ [0, 1). Then T has a unique fixed point.

A map that satisfies the inequality (2.23.1) is called a ‘G-contraction map of
type II.

Remark 2.24. The condition (2.22.1) implies the condition (2.23.1). The con-

verse is true only if k ∈ [0, 12 ).

Alghamdi and Karapinar [1] proved the following result.

Definition 2.25. (Alghamdi and Karapinar [1])Let (X,G) be a G-metric space
and let T : X → X be a given mapping. We say that T is a (G,α, ψ)-contractive
mapping of type I if there exist two functions α : X×X×X → [0,∞) and ψ ∈ Ψ
such that for all x, y, z ∈ X we have
α(x, y, z)G(Tx, T y, T z) ≤ ψ(G(x, y, z)). (2.25.1)

Definition 2.26. (Alghamdi and Karapinar [1]) Let (X,G) be a G-metric space
and let T : X → X be a given mapping. We say that T is a (G,α, ψ)-contractive
mapping of type II if there exist two functions α : X × X × X → [0,∞) and
ψ ∈ Ψ such that for all x, y ∈ X we have
α(x, y, y)G(Tx, T y, T y) ≤ ψ(G(x, y, y)). (2.26.1)

Definition 2.27. (Alghamdi and Karapinar [1])Let (X,G) be a G-metric space
and let T : X → X be a given mapping. We say that T is a (G,α, ψ)-contractive
mapping of type A if there exist two functions α : X×X×X → [0,∞) and ψ ∈ Ψ
such that for all x, y ∈ X we have
α(x, y, Tx)G(Tx, T y, T 2x) ≤ ψ(G(x, y, T 2x)). (2.27.1)

Theorem 2.28. (Alghamdi and Karapinar [1]) Let (X,G) be a complete G-metric

space. Suppose that T : X → X is a (G,α, ψ)-contractive mapping of type A that

satisfies the following conditions:

(i) T is α-admissible;

(ii) there exists x0 ∈ X such that α(x0, T x0, T x0) ≥ 1; either

(iii) T is G-continuous; (or)

(iv) if {xn} is a sequence in X such that α(xn, xn+1, xn+1) ≥ 1 for all n and

{xn} is G-convergent to x ∈ X, then α(xn, x, xn+1) ≥ 1 for all n.

Then there exists u ∈ X such that Tu = u.

Theorem 2.29. (Alghamdi and Karapinar [1]) Let (X,G) be a complete G-metric

space. Suppose that T : X → X is a (G,α, ψ)-contractive mapping of type II that

satisfies the following conditions:
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(i) T is α-admissible;

(ii) there exists x0 ∈ X such that α(x0, T x0, T x0) ≥ 1; either

(iii) T is G-continuous; (or)

(iv) if {xn} is a sequence in X such that α(xn, xn+1, xn+1) ≥ 1 for all n and

{xn} is G-convergent to x ∈ X, then α(xn, x, xn+1) ≥ 1 for all n.

Then there exists u ∈ X such that Tu = u.

In the following, we introduce almost generalized (α, ψ)-contractive type map.

Definition 2.30. Let (X,G) be a G-metric space and T : X → X be a given map-
ping. We say that T is an almost generalized (α, ψ)-contractive type mapping
if there exist two functions α : X×X×X → [0,∞), L ≥ 0, ψ ∈ Ψ and a constant
L ≥ 0 such that for all x, y ∈ X

α(x, y, y)G(Tx, T y, T y) ≤ ψ(M(x, y, y)) + LN(x, y, y), where (2.30.1)

M(x, y, y) = max{G(x, y, y), G(x, Tx, Tx), G(y, T y, T y), G(x,Ty,Ty)+G(y,Tx,Tx)
2 }

and N(x, y, y) = min{G(x, Tx, Tx), G(y, T y, T y), G(x, T y, T y), G(y, Tx, Tx)}.

Note: EveryG-contractionmap of type II is an almost generalized (α, ψ)-contractive
type map with α(x, y, y) = 1 ∀ x, y ∈ X, L = 0 and ψ(t) = kt, t ≥ 0 where
k ∈ [0, 1).
Note: Clearly, a map T that satisfies (2.26.1) then it satisfies the inequality
(2.30.1) with L = 0 so that T is an almost generalized (α, ψ)-contractive type
map. But its converse need not be true.

Example 2.31. Let X = [0, 3]. We define G : X3 → R+ by
G(x, y, z) = d(x, y)+d(y, z)+d(z, x). Let A = ∆∪{(1, 3, 3), (2, 3, 3), (0, 1, 1), (0, 1, 2)}.
We define mappings T : X → X by

T (x) =

{

2 + x2 if x ∈ [0, 1]
3 if x ∈ (1, 3].

We define α : X3 → [0,+∞) and ψ : R+ → R+ by

α(x, y, z) =

{

3 if x, y, z ∈ A

0 otherwise

and ψ(t) = 3t
4 for all t > 0.

The following three cases arise to verify the inequality (2.30.1).
Case (i): x = 1 and y = 3.
In this case, the inequality (2.30.1) holds trivially.
Case (ii): (x, y, y) = (2, 3, 3) or (0, 1, 2).
In this case, the inequality (2.30.1) holds trivially.
Case (iii): x = 0 and y = 1.
In this case, G(T 0, T 1, T 1) = 2, M(0, 1, 1) = 4 and N(0, 1, 1) = 2.
α(x, y, y)G(Tx, T y, T y) = α(0, 1, 1)G(T 0, T 1, T 1)
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= 6 ≤ ψ(4) + L.2 = ψ(M(0, 1, 1)) + L.N(0, 1, 1)
= ψ(M(x, y, y)) + L.N(x, y, y) holds with L = 2.

Hence, from the above cases, we choose L = 2, so that T is an almost general-
ized (α, ψ)-contractive type map.

Here we note that if L = 0 in the inequality (2.30.1), then for x = 0 and y = 1
we have
α(0, 1, 1)G(T 0, T 1, T 1) = 6 
 ψ(4) = ψ(M(0, 1, 1)), for any ψ ∈ Ψ, so that the
inequality (2.30.1) fails to hold, which shows the importance of L.
Further, we observe that the inequality (2.25.1) fails to hold.

For, by choosing (x, y, z) = (0, 1, 2) we have
α(0, 1, 2)G(T 0, T 1, T 2) = 6 
 ψ(4) = ψ(G(0, 1, 2)) for this α.
This shows that the inequality (2.25.1) fails to hold so that T is not
(G,α, ψ)-contractive mapping of type I.
Here, we observe that the inequality (2.26.1) also fails to hold.

For, by choosing (x, y, y) = (0, 1, 1) we have
α(0, 1, 1)G(T 0, T 1, T 1) = 6 
 ψ(2) = ψ(G(0, 1, 1)) for this α.
This shows that the inequality (2.26.1) fails to hold so that T is not
(G,α, ψ)-contractive mapping of type II.
Also, we observe that the inequality (2.27.1) fails to hold.

For, by choosing (x, y, y) = (0, 1, 1) we have
α(0, 1, T 0)G(T 0, T 1, T 20) = 6 
 ψ(6) = ψ(G(0, 1, 1)) for this α.
This shows that the inequality (2.27.1) fails to hold so that T is not
(G,α, ψ)-contractive mapping of type A.
If α = 1, we note that the inequality (2.23.1) fails to hold.
For, by choosing (x, y) = (0, 1) we have

G(T 0, T 1, T 1) = 2 
 k · 2 = kG(0, 1, 1).

This shows that the inequality (2.23.1) fails to hold, for any α and k ∈ [0, 1).

In conclusion, we have the following remark.

Remark 2.32. From Example 2.31, we conclude that the class of almost

generalized (α, ψ)-contractive type maps is more general than the class of (G,α, ψ)-
contractive mappings of type I, the class of (G,α, ψ)-contractive mappings of type II

and the class of (G,α, ψ)-contractive mappings of type A.

In Section 3, we prove the existence of fixed points of almost generalized (α, ψ)-
contractive type mappings. Further, we define ‘Condition (H)’ and under this
additional assumption, we prove uniqueness of fixed point. In Section 4, we provide
examples in support of our main results.

3 Main Results

Theorem 3.1. Let (X,G) be a complete G-metric space and T : X → X be an

almost generalized (α, ψ)-contractive type mapping. Suppose that
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(i) T is α-admissible;

(ii) there exists x0 ∈ X such that α(x0, T x0, T x0) ≥ 1;

(iii) T is G-continuous.

Then there exists u ∈ X such that Tu = u.

Proof. Let x0 ∈ X be such that α(x0, T x0, T x0) ≥ 1.We define the sequence {xn}
inX by xn+1 = Txn for all n ≥ 0. (3.1.1)
If xn = xn+1 for some n, then xn = xn+1 = Txn so that xn is a fixed point of T .
Hence w.l.g. we assume that xn 6= xn+1 for all n.
Since α(x0, T x0, T x0) ≥ 1. i.e., α(x0, x1, x1) ≥ 1 and since T is α-admissible, we
have
α(Tx0, T x1, T x1) ≥ 1. i.e., α(x1, x2, x2) ≥ 1.
By repeating this process, we get
α(xn, xn+1, xn+1) ≥ 1 for all n = 0, 1, 2, ... . (3.1.2)
Now, from (2.30.1) and (3.1.2), we have
G(xn+1, xn, xn) = G(xn, xn+1, xn+1)

= G(Txn−1, T xn, T xn)
≤ α(xn−1, xn, xn)G(Txn−1, T xn, T xn)
≤ ψ(M(xn−1, xn, xn)) + LN(xn−1, xn, xn), (3.1.3)

where
M(xn−1, xn, xn) = max{G(xn−1, xn, xn), G(xn−1, T xn−1, T xn−1), G(xn, T xn, T xn),

G(xn−1,Txn,Txn)+G(xn,Txn−1,Txn−1)
2 }

= max{G(xn−1, xn, xn), G(xn−1, xn, xn), G(xn, xn+1, xn+1),
G(xn−1,xn+1,xn+1)+G(xn,xn,xn)

2 }

= max{G(xn−1, xn, xn), G(xn, xn+1, xn+1),
G(xn−1,xn+1,xn+1)

2 }
≤ max{G(xn−1, xn, xn), G(xn, xn+1, xn+1),

G(xn−1,xn,xn)+G(xn,xn+1,xn+1)
2 }

= max{G(xn, xn−1, xn−1), G(xn, xn+1, xn+1)} and
N(xn−1, xn, xn) = min{G(xn−1, T xn−1, T xn−1), G(xn, T xn, T xn),

G(xn, T xn−1, T xn−1), G(xn−1, T xn, T xn)}
= min{G(xn−1, xn, xn), G(xn, xn+1, xn+1),

G(xn, xn, xn), G(xn−1, xn+1, xn+1)} = 0.
If max{G(xn, xn−1, xn−1), G(xn, xn+1, xn+1)} = G(xn, xn+1, xn+1) then
from (3.1.3) we have
G(xn+1, xn, xn) ≤ ψ(G(xn, xn+1, xn+1)) = ψ(G(xn+1, xn, xn)) < G(xn+1, xn, xn),
a contradiction.
Hence max{G(xn, xn−1, xn−1), G(xn, xn+1, xn+1)} = G(xn, xn−1, xn−1) so that
from (3.1.3) we have
G(xn+1, xn, xn) ≤ ψ(G(xn, xn−1, xn−1)) for all n ≥ 1.
Hence by induction, it follows that
G(xn+1, xn, xn) ≤ ψn(G(x0, x1, x1)) (3.1.4)
From (3.1.4) and using triangular inequality, for all k ≥ 1, we have

G(xn, xn+k, xn+k) ≤G(xn, xn+1, xn+1) +G(xn+1, xn+2, xn+2) + ...
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+G(xn+k−1, xn+k, xn+k)

=Σn+k−1
p=n G(xp, xp+1, xp+1)

≤Σ+∞

p=nψ
p(G(x0, x1, x1)) → 0 as p→ ∞.

This implies that {xn} is a Cauchy sequence in X . Since (X,G) is complete,
there exists u ∈ X such that

lim
n→∞

xn=
G u. (3.1.5)

i.e., lim
n→∞

G(xn, u, u) = 0. Since T is G-continuous, it follows that

lim
n→∞

G(Txn, T u, Tu) = 0. i.e., lim
n→∞

G(xn+1, T u, Tu) = 0.

i.e., lim
n→∞

xn+1=
G Tu.

Hence Tu = u in G-metric space.

Theorem 3.2. Let (X, G) be a complete G-metric space and T : X → X be an

almost generalized (α, ψ)-contractive type mapping. Suppose that

(i) T is α admissible;

(ii) there exists x0 ∈ X such that α(x0, T x0, T x0) ≥ 1;

(iii) if {xn} is a sequence in X such that α(xn, xn+1, xn+1) ≥ 1 for all n and

xn → x ∈ X as n→ ∞, then α(xn, x, x) ≥ 1 for all n.

Then there exists u ∈ X such that Tu = u.

Proof. The Cauchy part of {xn} follows from the proof of Theorem 3.1.
Let lim

n→∞

xn = x∗, x∗ ∈ X.

We now show that Tx∗ = x∗. By using the hypotheses (iii), we have
α(xn, x

∗, x∗) ≥ 1 for all n ∈ N. (3.2.1)
By using triangular inequality and (2.30.1), we have
G(Tx∗, xn, xn) ≤ G(Tx∗, T xn, T xn) +G(Txn, xn, xn)

= G(Txn, T x
∗, T x∗) +G(Txn, xn, xn)

≤ α(xn, x
∗, x∗)G(Txn, T x

∗, T x∗) +G(Txn, xn, xn)
≤ ψ(M(xn, x

∗, x∗)) + LN(xn, x
∗, x∗) +G(xn+1, xn, xn), (3.2.2)

where
M(xn, x

∗, x∗) = max{G(xn, x
∗, x∗), G(xn, T xn, T xn), G(x

∗, T x∗, T x∗),
1
2 (G(xn, T x

∗, T x∗) +G(x∗, T xn, T xn))}
= max{G(xn, x

∗, x∗), G(xn, xn+1, xn+1), G(x
∗, T x∗, T x∗)

1
2 (G(xn, T x

∗, T x∗) +G(x∗, xn+1, xn+1))} and
N(x∗, xn, xn) = min{G(xn, xn+1, xn+1), G(x

∗, T x∗, T x∗),
G(xn, T x

∗, T x∗), G(x∗, xn+1, xn+1)}.
On letting n→ ∞, we have
lim
n→∞

M(xn, x
∗, x∗) = G(x∗, T x∗, T x∗) and lim

n→∞

N(xn, x
∗, x∗) = 0.

On letting n→ ∞ in (3.2.2), we have
G(Tx∗, x∗, x∗) ≤ ψ(G(x∗, T x∗, T x∗)) + L.0 + 0.
Which implies that G(x∗, T x∗, T x∗) = 0. Therefore Tx∗ = x∗.
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Now we prove the uniqueness of fixed point of T under ‘Condition (H)’ and it
is the following:

Condition (H): For all x, y ∈ X there exists z ∈ X such that α(x, z, z) ≥ 1 and
α(y, z, z) ≥ 1.

Theorem 3.3. In addition to the hypotheses of Theorem 3.1 if Condition (H)
holds, then T has a unique fixed point.

Proof. Suppose that x∗ and y∗ are two fixed points of T . By Condition (H), there
exists z ∈ X such that
α(x∗, z, z) ≥ 1 and α(y∗, z, z) ≥ 1. (3.3.1)
Since T is α-admissible, from (3.3.1) we have
α(x∗, T nz, T nz) ≥ 1 and α(y∗, T nz, T nz) ≥ 1 for all n ∈ N. (3.3.2)
We define the sequence {zn} in X by zn+1 = Tzn for all n ≥ 0.
From (2.30.1) and (3.3.2), we have

G(x∗, zn+1, zn+1) = G(Tx∗, T zn, T zn)

≤ α(x∗, zn, zn)G(Tx
∗, T zn, T zn)

≤ ψ(M(x∗, zn, zn)) + LN(x∗, zn, zn), (3.3.3)

where

M(x∗, zn, zn) = max{G(x∗, zn, zn), G(x
∗, T x∗, T x∗), G(zn, T zn, T zn),

G(Tzn, T zn, x
∗) +G(zn, T x

∗, T x∗)

2
}

≤ max{G(x∗, zn, zn), 0, G(zn, zn+1, zn+1),

G(zn+1, zn+1, x
∗) +G(zn, x

∗, x∗)

2
}

= max{G(x∗, zn, zn), G(zn, zn+1, zn+1), G(zn+1, zn+1, x
∗)}

and

N(x∗, zn, zn) = min{G(x∗, T x∗, T x∗), G(zn, T zn, T zn), G(Tzn, T zn, x
∗),

G(zn, T x
∗, T x∗)}

= min{0, G(zn, zn+1, zn+1), G(zn+1, zn+1, x
∗), G(zn, x

∗, x∗)} = 0.

Case (i): If

max{G(x∗, zn, zn), G(zn, zn+1, zn+1), G(zn+1, zn+1, x
∗)}

= G(zn+1, zn+1, x
∗),

then from (3.3.3), we have

G(x∗, zn+1, zn+1) ≤ ψ(G(zn+1, zn+1, x
∗))

= ψ(G(x∗, zn+1, zn+1))

< G(x∗, zn+1, zn+1),
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a contradiction.
Case (ii): If

max{G(x∗, zn, zn), G(zn, zn+1, zn+1), G(zn+1, zn+1, x
∗)}

= G(zn, zn, x
∗)

then from (3.3.3), we have

G(x∗, zn+1, zn+1) = G(zn+1, zn+1, x
∗) ≤ ψ(G(zn, zn, x

∗))

≤ ψ2(G(zn−1, zn−1, x
∗)) ≤ .... ≤ ψn(G(z0, z0, x

∗)).

Therefore G(x∗, zn+1, zn+1) → 0 as n→ +∞. Similarly, G(y∗, zn+1, zn+1) → 0 as
n→ +∞. Hence x∗ = y∗.
Case (iii): If

max{G(x∗, zn, zn), G(zn, zn+1, zn+1), G(zn+1, zn+1, x
∗)}

= G(zn, zn+1, zn+1),

then from (3.3.3), we have

G(x∗, zn+1, zn+1) ≤ ψ(G(zn, zn+1, zn+1))

≤ ψ2(G(zn−1, zn, zn)) ≤ .... ≤ ψn(G(z0, z0, z1)).

Therefore G(x∗, zn+1, zn+1) → 0 as n → +∞. Similarly, G(y∗zn+1, zn+1) → 0 as
n→ +∞. Hence x∗ = y∗.

4 Corollaries and Examples

Corollary 4.1. Let (X,G) be a complete G-metric space and T : X → X be a

G-contraction map of type II. Suppose that

(i) T is α admissible;

(ii) there exists x0 ∈ X such that α(x0, T x0, T x0) ≥ 1; either

(iii) T is continuous; (or)

(iv) if {xn} is a sequence in X such that α(xn, xn+1, xn+1) ≥ 1 for all n and

xn → x ∈ X as n→ ∞, then α(xn, x, x) ≥ 1 for all n.

Then there exists u ∈ X such that Tu = u.

Proof. The conclusion of this corollary follows by taking ψ(t) = kt, t ≥ 0 where
k ∈ [0, 1) and L = 0 in Theorem 3.1.

Remark 4.2. Theorem 2.29 follows as a corollary to Theorem 3.1 by choosing

L = 0.
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The following is an example in support of Theorem 3.1.

Example 4.3. Let X = [0, 1]. We define G : X3 → R+ by
G(x, y, z) = d(x, y) + d(y, z) + d(z, x). Then (X,G) is a complete G-metric space.

We define mapping T : X → X by T (x) =























x2

2 if x ∈ [0, 14 ]

1
32 if x ∈ [ 14 ,

1
2 )

1
16 (31x− 15) if x ∈ [ 12 , 1].

We define α : X3 → [0,+∞) and ψ : R+ → R+ by

α(x, y, z) =

{

3
2 if x, y = z ∈ [0, 14 ]
0 otherwise

and ψ(t) = t
2 for all t > 0.

We choose x0 = 1
4 ∈ X , then α(x0, T x0, T x0) =

3
2 > 1. Then, it is easy to verify

that T is continuous, α-admissible and satisfies the inequality (2.30.1). Here
xn = 1

22n+1 → 0 as n → ∞. Thus T satisfies all the hypotheses of Theorem 3.1
and fixed points of T are 0 and 1. Here we observe that for x = 0 and y = 1

we have α(x, z, z) =

{

3
2 if z ∈ [0, 14 ]
0 otherwise

and α(y, z, z) = 0 for all z ∈ X so that

Condition (H) fails to hold.

The following is an example in support of Theorem 3.2 when T is not
continuous.

Example 4.4. Let X = [0, 2]. We define G : X3 → R+ by
G(x, y, z) = d(x, y) + d(y, z) + d(z, x). Then (X,G) is a complete G-metric space.

We define mapping T : X → X by T (x) =

{

x2 if x ∈ [0, 14 ]
x if x ∈ (14 , 2].

We define α : X3 → [0,+∞) and ψ : R+ → R+ by

α(x, y, z) =

{

1 if x, y = z ∈ [0, 14 ]
0 otherwise

and ψ(t) = t
t+1 for all t > 0.

We choose x0 = 1
4 ∈ X , then α(x0, T x0, T x0) = 1. Then, it is easy to verify that T

is α-admissible and satisfies the inequality (2.30.1). Here xn = 1
22n → 0 as n→ ∞.

Thus T satisfies all the hypotheses of Theorem 3.2 and fixed points of T are 0 and
every point of the interval [ 14 , 2]. Here we observe that T is not continuous. In
this example also, it is easy to see that α fails to satisfy Condition (H).

Example 4.5. Let X, T, Ψ and α be as in Example 2.31. Then T is continuous
and α-admissible. We choose x0 = 1, then α(x0, T x0, T x0) = α(1, 3, 3) ≥ 1.
Also T is an almost generalized (α, ψ)-contractive type map (Example 2.31) and
T satisfies condition (H). We note that T satisfies all the hypotheses of the
Theorem 3.3 and 3 is the unique fixed point of T .

Remark 4.6. Remark 2.32 and Example 4.5 suggest that Theorem 3.3 is a

generalization of Theorem 2.29.
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