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1 Introduction

In wavelet analysis, a target function is decomposed into a wavelet series of
building blocks. Thus a target function is approximated by partial sums of this
series. Let the number of selected terms of wavelet series depending on the func-
tion concerned then non linear approximation is introduced. This is also known
as n-terms approximation. In 1907, Schmidth, at first, introduced the idea of ap-
proximation. Working in this direction, in 1979 Oskolkov discussed the n-terms
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approximation. The wavelet approximation has been studied by several researchers
like Natanson [1] Meyer [2] and Morlet et al [3].
The purpose of this paper is to determine the degree of approximation of f ∈
Lipα, 0 < α ≤ 1 under supremum norm and to generalize this result for the
function f ∈ Lip(ξ, p), 1 ≤ p <∞.

2 Definitions and Preliminaries

2.1 Function of Lipα Class

A function f ∈ Lipα if

|f(x)− f(y)| = O(|x− y|
α
), for 0 < α ≤ 1, (Titchmarsh [4], p.406).

f(x) = |x|
1

2 ∀ x ∈ [0, 1], 0 < α < 1.

If capital ‘O′ is replace by little ‘o′ in the above definition then

f ∈ lipα

i.e.
f ∈ lipα, 0 < α < 1,

if
|f(x)− f(y)| = o(|x− y|

α
), for 0 < α < 1.

Consider a function g(x) = x2 ∀x ∈ [0, 1].
For this,

g(x+ t)− g(x) = (x+ t)2 − x2

= t(2x+ t),

lim
t→0

g(x+ t)− g(x)

tα
= lim

t→0

t(2x+ t)

tα
, 0 < α < 1

= 0.

Thus f ∈ lipα, 0 < α < 1. Next,

lim
t→0

h(x+ t)− h(x)

t
= 0 ⇔ h′(x) = 0 ∀x ∈ [0, 1]

⇔ h is constant function.

In other words, if
|h(x+ t)− h(x)| = o(t)

i.e. h ∈ lip(1)

then h is constant function.
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2.2 Function of Lip(ξ, p) Class

Let ξ be a monotonic increasing function of t
f ∈ Lip(ξ, p) if

{

1

2π

∫ 2π

0

|f(x+ t)− f(x)|p dx

}

1

p

= O(ξ(t)), 1 ≤ p <∞, (Siddiqi [5])

and f ∈ lip(ξ, p) if

{

1

2π

∫ 2π

0

|f(x+ t)− f(x)|
p
dx

}

1

p

= o(ξ(t)), 1 ≤ p <∞,

Remark

• It is important to note that if ξ(t) = tα 0 < α ≤ 1, in Lip(ξ, p) then
Lip(ξ, p) reduces to the class Lip(α, p).

• If p→ ∞ in Lip(α, p) then this reduces to Lipα.

• lip(ξ, p) class of functions is the generalization of lip(α, p) and lipα classes.

2.3 Multiresolution Analysis and Haar Scaling Function

A multiresolution analysis of L2(R) is defined as a sequence of closed subspaces
Vj of L2(R), j ∈ Z, with the following properties:

1. Vj ⊂ Vj+1,

2. f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1,

3. f(x) ∈ V0 ⇔ f(x+ 1) ∈ V0,

4.

∞
⋃

j=−∞

Vj is dense in L2(R) and

∞
⋂

j=−∞

Vj = {0} ,

5. Suppose a function φ ∈ V0, exists such that the collection {φ(x− k); k ∈ Z}
is a Riesz basis of V0.

Let ψ ∈ L2(R), and ψj,k := 2
j

2ψ(2j − k) and

Wj := clos 〈ψj,k : k ∈ Z〉 .

Then this family of subspaces of L2(R) gives a direct sum decomposition of L2(R)
is the same that every f ∈ L2(R) has a unique decomposition

f(x) = · · ·+ g−2(x) + g−1(x) + g0(x) + g1(x) + g2(x) + · · ·

where gj ∈ Wj for all j ∈ Z and we describe this by writing

L2(R) = ⊕∞

j=−∞
Wj
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Thus
Vj := ⊕j−1

k=−∞
Wk.

{

ψj,k; k ∈ Z where ψj, k = 2
j

2ψ(2jx− k)
}

, is a Riesz basis of Wj .

Let φ ∈ V0, since V0 ⊂ V1, a sequence {hk} ∈ l2(Z) exists such that the ′φ′

function satisfies,

φ(x) = 2

∞
∑

j=−∞

hkφ(2x− k). (2.1)

This functional equation is known as the refinement equation or the dailation equa-
tion or the two-scale difference equation.The collection of functions {φj,k; k ∈ Z},

with φj,k(x) = 2
j

2φ(2jx−k), is a Riesz basis of Vj . Integrating equation (2.1), and
dividing by the (non-vanishing) integral of φ, we have

∞
∑

k=−∞

hk = 1 (2.2)

A function φ ∈ L2(R) is called a scaling function, if the subspace Vj , defined by

Vj := closL2(R) {φj,k : k ∈ Z} , j ∈ Z

satisfy the properties (1) to (5) stated above in this section. It is important to
note that the scaling function φ generates a Multiresolution analysis {Vj} of L

2(R).

Haar scaling function, denoted by φ, is defined by

φ(t) = χ[0,1) =

{

1, 0 ≤ x < 1;
0, otherwise.

The family of functions

{

φj,k = 2
j

2φ(2j .− k) where j, k ∈ Z

}

,

is called the system of Haar scaling functions .

The function χ[0,1) is discontinuous at 0 and 1. For each j, k ∈ Z, {φj,k} where

φj,k = 2
j

2φ(2j .− k) = D2jTkφ(t),

where dilation operator Daf(x) = a
1

2 f(ax) and translation operator Tkf(x) =
f(x− k). The φ = χ[0,1) generates an MRA {Vj} of L2(R). If the scaling function
φ ∈ L1(R), then it is uniquely defined by its dilation equation and the normaliza-
tion ([6])

∫

∞

−∞

φ(x)dx = 1 (2.3)
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2.4 Projection Pnf

Let Pnf be the orthogonal projection of L2(R) onto Vn. Then

Pnf =

∞
∑

k=−∞

an,kφn,k, n = 1, 2, 3, · · · ,

where, an,k = 〈f, φn,k〉 .
Thus,

Pnf =

∞
∑

k=−∞

〈f, φn,k〉φn,k (Sweldens and Piessens [7]).

2.5 Wavelet Approximation

The wavelet approximation under supremum norm is defined by

En(f) = ‖f − Pnf‖∞
= sup

x
|(f(x)− Pnf(x))| (Zygmund [8], p.114).

We define,

‖f‖p =

{

1

2π

∫ 2π

0

|f(x)|
p
dx

}

1

p

, 1 ≤ p <∞.

The degree of wavelet approximation En(f) of f byPnf under norm ‖‖p is given
by

En(f) = min
Pnf

‖f − Pnf‖p .

If En(f) → 0 as n → ∞ then En(f) is called the best approximation of f of
order n (Zygmund [8], p.115).

2.6 Generalized Minkowski’s Inequality:

Generalized Minkowski Inequality:

{

1

2π

∫ 2π

0

∣

∣

∣

∣

∣

∫ b

a

g(t, x)dt

∣

∣

∣

∣

∣

p

dx

}

1

p

≤

∫ b

a

{

1

2π

∫ 2π

0

|g(t, x)|
p
dx

}

1

p

dt, 1 ≤ p <∞

(Chui [9] p.37).

3 Main Results

In this paper, four new theorems have been established in the following forms:



414 Thai J. Math. 15 (2017)/ S. Lal and S. Kumar

Theorem 1. If a function f ∈ Lipα[0, 1], 0 < α ≤ 1, then the best wavelet ap-

proximation En(f) of f is given by

En(f) = ‖f − Pnf‖∞ = O

(

1

2nα

)

, 0 < α ≤ 1 n = 1, 2, 3, · · · .

Theorem 2. Let ξ be a monotonic increasing function of t such that

{

1

2π

∫ 2π

0

|f(x+ t)− f(x)|
p

}

1

p

= O(ξ(t)), 1 ≤ p <∞,

and ξ(t) → 0 as t→ 0+. Then the best wavelet approximation En(f) of a function

f ∈ Lip(ξ,p)[0, 1] satisfies:

En(f) = min
Pnf

‖f − Pnf‖p = O

(

ξ

(

1

2n

))

.

Theorem 3. f ∈ lipα[0, 1], 0 < α < 1, i.e.

|f(x+ t)− f(x)| = o(tα) ⇐⇒ En(f) = o

((

1

2n

)α)

.

Theorem 4. f ∈ lip(ξ,p)[0, 1], 1 ≤ p <∞

⇐⇒ En(f) = o

(

ξ

(

1

2n

))

, n = 1, 2, 3, · · · .

3.1 Proof of Theorem 1

Projection operator Pnf : L2(R) → Vn is defined as

Pnf =
∑

k∈Z

an,kφn,k, n = 1, 2, 3, · · · .

where

an,k = < f, φn,k >

=

∫

∞

−∞

f(y)φn,k(y)dy
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Thus

(Pnf)(x) =
∑

k∈Z

{
∫

∞

−∞

f(y)φn,k(y)dy

}

φn,k(x)

=

∫

∞

−∞

f(y)

(

∞
∑

k=−∞

φn,k(x)φn,k(y)

)

dy

=

∫

∞

−∞

f(y)

(

∞
∑

k=−∞

2
n
2 φ(2nx− k)2

n
2 φ(2ny − k)

)

dy

= 2n
∫

∞

−∞

f(y)

(

∞
∑

k=−∞

φ(2nx− k)φ(2ny − k)

)

dy

= 2n
∫

∞

−∞

f(y)K(2nx, 2ny)dy.

Since K(x, y) =

∞
∑

k=−∞

φ(x− k)φ(y − k),

and

∫

∞

−∞

K(x, y)dy = 1, x ∈ R,

therefore, replacing y → 2ny and x→ 2nx, we have

2n
∫

∞

−∞

K(2nx, 2ny)dy = 1.

Next,

f(x) = f(x)2n
∫

∞

−∞

K(2nx, 2ny)dy (∵ 2n
∫

∞

−∞

K(2nx, 2ny)dy = 1)

= 2n
∫

∞

−∞

K(2nx, 2ny)f(x)dy.

Therefore

(Pnf)(x) − f(x) = 2n
∫

∞

−∞

f(y)K(2nx, 2ny)dy − 2n
∫

∞

−∞

K(2nx, 2ny)f(x)dy,

= 2n
∫

∞

−∞

K(2nx, 2ny)[f(y)− f(x)]dy,

=

∫

∞

−∞

K(2nx, y)[f(2−ny)− f(x)]dy, replacing y by 2−ny,

=

∫

∞

−∞

K(2nx, 2nx− u)[f(x− 2−ny)−f(x)]du, 2−ny = x−2−nu,

=

∫

∞

−∞

K(2nx, 2nx− y)[f(x− 2−ny)−f(x)]dy, replacing u by y.
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Haar Scaling function, denoted by φH , is defined by

χ[0,1) = φH =

{

1, 0 ≤ x < 1;
0, otherwise.

Then,

|(Pnf)(x)− f(x)| ≤

∫

∞

−∞

|K(2nx, 2nx− y)|
∣

∣f(x− 2−ny)− f(x)
∣

∣ dy,

≤

∫

∞

−∞

|K (2nx, 2nx− y)| dy sup
y

∣

∣f
(

x− 2−ny
)

− f (x)
∣

∣ ,

by Hölder’s ineqality,

= 2n
∫

∞

−∞

|K (2nx, 2nv)| dy sup
y

∣

∣f
(

x− 2−ny
)

− f (x)
∣

∣ ,

taking 2nx− y = 2nv, in first factor only,

= 2n
∫

∞

−∞

|K (2nx, 2ny)| dy sup
y

∣

∣f
(

x− 2−ny
)

− f (x)
∣

∣ ,

replacing v by y in first factor only,

= sup
y

∣

∣f
(

x− 2−ny
)

− f (x)
∣

∣ ,

since 2n
∫

∞

−∞

|K (2nx, 2ny)| dy = O (1) ,

= sup
y∈[0,1]

(

O
∣

∣2−ny
∣

∣

α)

,

∣

∣f
(

x− 2−ny
)

− f (x)
∣

∣ = O
(∣

∣2−ny
∣

∣

)

, f ∈ Lipα[0, 1],

= O

(
∫ 1

0

(2−ny)αdy

)

= O

((

1

2n

)α ∫ 1

0

yαdy

)

= O

(

1

2nα

)(

1

1 + α

)

= O

(

1

2nα

)

.

Thus

sup
x

‖(Pnf)(x)− f(x)‖
∞

= ‖Pnf − f‖
∞

= O

(

1

2nα

)

,

Hence

En(f) = O

(

1

2nα

)

.

Remark
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Converse of Theorem (1) is also true.

En(f) = O

(

1

2nα

)

, n = 1, 2, 3, · · · .

Let T := {0 = t0 < t1 < t2 < · · · < t2n−1 < t2n = 1} be a division/partition of
[0, 1] and Ik = [t2k−1, t2k ], 1 ≤ k ≤ n. x, y ∈ Ikfor some 1 ≤ k ≤ n.

Then

|f(x)− f(y)| = |f(x) − (Pnf)(x) + (Pnf)(x) − (Pnf)(y) + (Pnf)(y)− f(y)|

≤ |f(x) − (Pnf)(x)| + |(Pnf)(x)− (Pnf)(y)|+ |(Pnf)(y)− f(y)|

≤ ‖f − (Pnf)‖∞ + sup
x,y∈T

|(Pnf)(x)− (Pnf)(y)|+ ‖(Pnf)− f‖
∞

= O

(

1

2nα

)

+ 0 +O

(

1

2nα

)

= O

(

1

2nα

)

= O(|x− y|
α
)

so f ∈ Lipα[0, 1].
Thus the Theorem 1 is completely established.

3.2 Proof of Theorem 2

Following the proof of theorem (1),

|(Pnf)(x)− f(x)| =

∫

∞

−∞

|K(2nx, 2nx− y)|
∣

∣f(x− 2−ny)− f(x)
∣

∣ dy

≤ O(1)

∫ 1

0

∣

∣f(x− 2−ny)− f(x)
∣

∣ dy

Applying generalized Minkoski‘s inequality in above expression, we have

‖Pnf − f‖p = O(1)

∫ 1

0

∥

∥f(x− 2−ny)− f(x)
∥

∥

p
dy

= O(1)

∫ 1

0

ξ(2−ny)dy

= O(ξ(
1

2n
))

∫ 1

0

dy, f ∈ Lip(ξ, p)

= O(ξ(
1

2n
))

En(f) = min
Pnf

‖f − Pnf‖p = O(ξ(
1

2n
)), n = 1, 2, 3, · · · .
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Remark
Converse of Theorem 2 is also, true.

|f(x+ t)− f(x)| = |f(x+ t)− (Pnf)(x+ t) + (Pnf)(x+ t)− (Pnf)(x)

+ (Pnf)(x)− f(x)|

≤ |f(x+ t)− (Pnf)(x+ t)|+ |(Pnf)(x+ t)− (Pnf)(x)|

+ |(Pnf)(x)− f(x)|

so

{

1
2π

∫ 2π

0

|f(x+ t)− f(x)|p dx

}

1
p

≤

{

1

2π

∫ 2π

0

|f(x+ t)− (Pnf)(x+ t)|p dx

}

1
p

+

{

1

2π

∫ 2π

0

|(Pnf)(x+ t)− (Pnf)(x)|
p
dx

}

1

p

+

{

1

2π

∫ 2π

0

|(Pnf)(x)− f(x)|
p
dx

}

1

p

= O(ξ(
1

2n
)) + 0 +O(ξ(

1

2n
))

= O

(

ξ

(

1

2n

))

so f ∈ Lip(ξ,p)[0, 1].
Thus the Theorem 2 is completely established.

3.3 Proof of Theorems 3 and 4

Proofs of Theorem 3 & 4 can be developed on the lines of proofs of Theorems
1 & 2 considering f ∈ lipα[0, 1] and f ∈ lip(ξ,p)[0, 1]respectively.

4 Notes

En(f) → 0 as n → ∞ in Theorems 1, 2,3 & 4 the wavelet approximations deter-
mined in these theorems are best possible.
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